Prevention of Oxaliplatin-Related Neurotoxicity by Calcium and Magnesium Infusions: A Retrospective Study of 161 Patients Receiving Oxaliplatin Combined with 5-Fluorouracil and Leucovorin for Advanced Colorectal Cancer

Laurence Gamelin,1,4 Michele Boisdron-Celle,1,2 Remy Delva,1 Véronique Guérin-Meyer,1 Norbert Ifrah,3 Alain Morel,1,2 and Erick Gamelin1,2
1Department of Medical Oncology and Oncopharmacology, 2INSERM U564, Anticancer Centre Paul Papin, and 3Department of Hematology, and 4Antipoison Center, University Hospital, Angers Cedex, France

ABSTRACT

Purpose: Oxaliplatin is active in colorectal cancer. Sensory neurotoxicity is its dose-limiting toxicity. It may come from an effect on neuronal voltage-gated Na channels, via the liberation of its metabolite, oxalate. We decided to use Ca and Mg as oxalate chelators.

Experimental Design: A retrospective cohort of 161 patients treated with oxaliplatin + 5-fluorouracil and leucovorin for advanced colorectal cancer, with three regimens of oxaliplatin (85 mg/m2/2w, 100/2w, 130/3w) was identified. Ninety-six patients received infusions of Ca gluconate and Mg sulfate (1 g) before and after oxaliplatin (Ca/Mg group) and 65 did not.

Results: Only 4% of patients withdrew for neurotoxicity in the Ca/Mg group versus 31% in the control group (P = 0.000003). The tumor response rate was similar in both groups. The percentage of patients with grade 3 distal paresthesia was lower in Ca/Mg group (7 versus 26%, P = 0.001). Acute symptoms such as distal and lingual paresthesia were much less frequent and severe (P = 10-7), and pseudolaryngospasm was never reported in Ca/Mg group. At the end of the treatment, 20% of patients in Ca/Mg group had neuropathy versus 45% (P = 0.003). Patients with grade 2 and 3 at the end of the treatment in the 85 mg/m2 oxaliplatin group recovered significantly more rapidly from neuropathy than patients without Ca/Mg.

Conclusions: Ca/Mg infusions seem to reduce incidence and intensity of acute oxaliplatin-induced symptoms and might delay cumulative neuropathy, especially in 85 mg/m2 oxaliplatin dosage.

INTRODUCTION

Oxaliplatin combined with 5-fluorouracil (5FU) is now considered a standard treatment for metastatic colorectal cancer (1, 2) and is also under evaluation in the adjuvant setting (3). Its overall safety profile is good, but neurotoxicity is a frequent dose-limiting toxicity. The peculiar acute neurotoxicity of oxaliplatin (including cold-related dysesthesia and sometimes accompanied by muscle contractions), which may occur shortly after drug administration, differs greatly from cisplatin neurotoxicity and is not explained by morphological damage of the nerve (3, 4). These clinical manifestations of acute neurotoxicity resemble those described in patients with congenital myotonia or tetany (5). Therefore, we hypothesized that oxaliplatin had a unique direct effect on nerve excitability. We suspected that oxalate, one of the oxaliplatin metabolites, responsible for acute neurotoxic effects of ethylene glycol poisoning (6) and known chelator of both Ca and Mg, might be involved in this acute neurotoxic effect via Ca and/or Mg chelation. We tested the effectiveness of both Ca and Mg infusions in several oxaliplatin-treated patients who developed the manifestations of acute neurotoxicity (including those with pseudolaryngospasm). The immediate and important improvement in both the pseudolaryngospasm and other acute neurotoxicities we observed prompted us to extend that approach to their preventive treatment, and we began to administer Ca and Mg before and just after oxaliplatin infusion to prevent the acute neurological manifestations that can occur during or within the hours following oxaliplatin administration.

We recently demonstrated in vitro models that the acute (and possibly chronic) neurotoxicity associated with oxaliplatin may be either directly or indirectly linked (via the chelation of calcium by oxalate) to an effect on neuronal voltage-gated sodium (Na+) channels (7, 8).

Therefore, since 1996, when oxaliplatin was made widely available for patients with advanced colorectal cancer, we empirically started treating patients receiving oxaliplatin for advanced colorectal cancer with Ca and Mg infusions. After several years of empirical use, the very encouraging results, described by the nurses, the patients, and the treating physicians of our department prompted us to review these data and conduct a retrospective analysis of our patients’ experiences after approval by our institutional Review Board to perform that study.
PATIENTS AND METHODS

Patients and Treatments. Patients received second line therapy with oxaliplatin + high-dose 5FU continuous infusion and leucovorin (LV) for advanced colorectal cancer on the development of progression on 5FU/LV (Mayo Clinic regimen) in the years 1996–2000. All of the files presented here were identified from our database of patients undergoing a systematic pharmacokinetic study of 5FU at the initiation of treatment (9). The doses of 5FU were optimized in each patient according to pharmacological findings and thus permitted to dramatically reduce 5FU-induced toxic effects and limit the interference with our study about oxaliplatin toxic side effects.

Oxaliplatin was given in a 2-h infusion, routinely preceded by 3 mg of granisetron and 20 mg of dexamethasone, and followed by 30 mg of metoclopramide and 48 mg of methylprednisolone for 3 days. Three different regimens were used (Table 1), according to the evolution of the standard practice in Centre Paul Papin between 1996 and 2000.

The files from 161 patients, representing 1134 delivered cycles of chemotherapy, were reviewed and analyzed. Ninety-six of the 161 patients received infusions of Ca/Mg (the Ca/Mg group) as prevention of their symptoms and 65 patients did not.

The treatment consisted of Ca gluconate and Mg sulfate, 1 g each, delivered i.v. over 15 min just before the oxaliplatin infusion and repeated at the same dose after the completion of the oxaliplatin infusion (7, 9). Ca gluconate and Mg sulfate were given in the same bag. Ca/Mg infusions were not administered to patients with known hypercalcemia or already treated with thiazidic diuretics or digitalis.

Of the 66 patients who did not receive Ca/Mg infusion (the control group) in that time period, 42 were treated in the first years of practice when Ca/Mg was not yet used in our institution, and 23 were enrolled in clinical trials that did not allow any concomitant treatments.

Efficacy and Toxicity Assessment. In this case series, according to the standard practice of our institution, tumor response was evaluated after 3 months of treatment, corresponding to four or six cycles of treatment. Response to treatment was classified according to WHO criteria. Confirmation of response at least 1 month after first evaluation was not done outside of clinical studies. Treatment with oxaliplatin/5FU/LV was continued to a total of at least 6 months, except for progressive disease or toxicity. Toxicity was evaluated repetitively, every week in FUFOX regimen, because 5FU was administered weekly in daily hospitalization, or every 2 weeks in FOLFOX 4 and FOLFOX 6 regimens, and graded in the patients’ files according to the National Cancer Institute-Common Toxicity Criteria (NCI-CTC), version 1 scale. In addition, a specific neurotoxicity scale (10, 11) was used for oxaliplatin-related neurotoxicity (Table 2).

The Doses of 5FU and Oxaliplatin Were Adjusted According to Standard Practice for Toxicity. In the event of grade 2 neurotoxicity (specific scale), the oxaliplatin dose remained unchanged, and the following cycle was delayed until resolution. In case of recurrence of toxicity, the dose was reduced by 20%. In case of grade 3 toxicity, treatment was interrupted until resolution of the symptoms and then restarted with a 20% decrease of the dose. In case of other NCI-CTC grade 2 toxicities, the oxaliplatin dose remained unchanged, but the cycle was delayed until resolution. In case of recurrence, the dose was reduced by 20%. In case of any grade 3 toxicity, treatment was interrupted until resolution and then restarted with a 20% dose decrease. Treatment was permanently stopped in case of any grade 4 toxicity.

In the review of the data, we captured from the files the main specific neurotoxicity symptoms such as distal, oral and perioral paresthesias, cold induced or not, pharyngolaryngeal dysesthesia and pseudolaryngospasm, trismus, cramps and pain in the limbs, abdominal pain, acute diarrhea, and asthenia. Pharyngolaryngeal dysesthesia were defined as cold-related dysesthesia occurring during swallowing, whereas pseudolaryngospasm was defined as acute noncold-related feeling of difficulty in breathing, frequently occurring during oxaliplatin infusion. Cumulative doses of oxaliplatin, as well as dose intensities,
duration of treatment, number, and reason for drop outs, were collected and analyzed. We evaluated treatment efficacy after 3 months of treatment, but data were collected only in the 130 mg/m² group to have two sufficient and homogeneous populations in term of number of patients.

Statistical Analysis. Descriptive statistics were performed to compare the two groups of patients in terms of baseline characteristics, cumulative doses, dose intensity, response to chemotherapy, dropouts, toxicity (all grades and grades 3), and incidence of specific neurotoxicity symptoms. Percentages were compared, and the differences were statistically evaluated using the χ² test. According to the number of patients in each group, Yates modification could be applied.

For the comparison of distribution of samples we used, the χ² test of independence of two distributions (all calculated effectives were >5). The methods used to analyze the cumulative toxicity was Kaplan-Meier and log-rank testing.

RESULTS
Patient Characteristics. Patient characteristics are displayed in Table 3.

A total of 42 patients (29 Ca/Mg, 13 no Ca/Mg) received FOLFOX 4, 34 patients (25 Ca/Mg, 9 no Ca/Mg) FOLFOX 6, and 85 patients (42 Ca/Mg and 43 no Ca/Mg) FUFOX. None of the patients had previously received oxaliplatin or other platinum agents.

The Ca/Mg group and the group without Ca/Mg were comparable for age, gender, performance status, primary tumor site, and previous chemotherapy.

Effect of Ca/Mg on the Efficacy of Oxaliplatin-Based Chemotherapy. Table 4 summarizes the details of oxaliplatin/5FU/LV chemotherapy modalities in the two groups of patients. Significantly fewer patients stopped treatment for toxicity (any type) in the Ca/Mg group compared with the group without Ca/Mg: 33 versus 51% (P < 0.02). The difference was also significant in the subgroup oxaliplatin 130 mg/m². Mean cumulative oxaliplatin doses were slightly higher in the Ca/Mg group compared with the group without oxaliplatin, but the difference was not significant. Likewise, treatment duration was not significantly longer in the Ca/Mg group. The relative dose intensity was similarly good in both groups.

We evaluated treatment efficacy after 3 months of treatment. Data were collected only in the 130 mg/m² group to have two homogeneous populations in term of number of patients. The response rate (best response) was 45% in the group with Ca/Mg compared with 35%, percentage of stable disease was 34 versus 46% and progressive disease was 21 versus 18%.

Effect of Ca/Mg on Oxaliplatin Toxicity. No Ca/Mg-induced toxicity has been reported in the 96 patients having received this treatment. The main effects of Ca/Mg infusions on oxaliplatin neurotoxicity are summarized in Table 5. Acute neurotoxic symptoms were less frequent and less severe in the Ca/Mg group.

Distal and lingual paresthesia, cold induced or not, trismus, cramps and pains in the limbs, and diarrhea were significantly less frequently reported; pharyngolaryngeal dysesthies were

Table 3 Patient characteristics

<table>
<thead>
<tr>
<th>Ca/Mg infusions</th>
<th>No Ca/Mg</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>96</td>
<td>65</td>
</tr>
<tr>
<td>Age (mean ± SE)</td>
<td>62 ± 11</td>
<td>61 ± 13</td>
</tr>
<tr>
<td>Male/female (%)</td>
<td>60/40</td>
<td>60/40</td>
</tr>
<tr>
<td>Performance status 0-1/2-3 (%)</td>
<td>91/9</td>
<td>92/8</td>
</tr>
<tr>
<td>Primary tumor site: colon/rectum/both (%)</td>
<td>63/33/4</td>
<td>65/31/5</td>
</tr>
</tbody>
</table>

Table 4 Effect of Ca/Mg on the efficacy of oxa chemotherapy (oxa/5FU/LV)*

<table>
<thead>
<tr>
<th>OXA 85</th>
<th>OXA 100</th>
<th>OXA 130</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca/Mg</td>
<td>No Ca/MG</td>
<td>Ca/Mg</td>
<td>No Ca/MG</td>
</tr>
<tr>
<td>Patients</td>
<td>29</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>Mean total OXA doses mg ± SD (Range)</td>
<td>705 ± 314 (255-1360)</td>
<td>659 ± 245 (245-950)</td>
<td>907 ± 392 (200-1800)</td>
</tr>
<tr>
<td>Patients (%) on study after</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>No. cycles</td>
<td>8 ± 3.5 (3-16)</td>
<td>7.5 ± 3.6 (3-12)</td>
<td>9.5 ± 3.9 (4-18)</td>
</tr>
<tr>
<td>Patient’s performance status 0-1/2-3 (%)</td>
<td>60/40</td>
<td>60/40</td>
<td>60/40</td>
</tr>
</tbody>
</table>

*Oxa, oxaliplatin; SFU, 5-fluorouracil; LV, leucovorin; NA, not applicable.
never reported in the Ca/Mg group versus 9% in the no Ca/Mg group \((P = 10^{-8})\). The percentage of patients presenting a grade 3 NCI-CTC scale or specific neurotoxicity scale at any time on oxaliplatin treatment was significantly lower in the Ca/Mg group than in the control group \((7–26\% ; P = 0.001)\).

Only 4% of patients withdrew for neurotoxicity in the Ca/Mg group versus 31% in the control group \((P = 0.00003)\). The percentage of patients who experienced at least 1 grade 3 paresthesia was 7% in the no Ca/Mg group and 9% in the Ca/Mg group, corresponding to three cycles of 130 mg/m\(^2\), four cycles of 100 mg/m\(^2\), five cycles of 85 mg/m\(^2\) regimens; and (Fig. 2) cumulative oxaliplatin doses (Fig. 2A; \(\sim 400 \text{ mg/m}^2\)), corresponding to three cycles of 130 mg/m\(^2\), four cycles of 100 mg/m\(^2\), five cycles of 85 mg/m\(^2\); and (Fig. 2B; \(\sim 500 \text{ mg/m}^2\)), corresponding to four cycles of 130 mg/m\(^2\), five cycles of 100 mg/m\(^2\), and six cycles of 85 mg/m\(^2\). Patients receiving Ca/Mg infusions had significantly less frequent and less severe neurotoxic effects because 95% of them had grade 0 or grade 1 neurotoxicity. The \(\chi^2\) test of independence of the two distributions, with and without Ca/Mg, showed that they were highly independent.

Men and women had about the same incidence of oxaliplatin-induced neurotoxicity, but women seemed to have more severe neurotoxic effects because 95% of them had grade 0 or grade 1 neurotoxicity. The \(\chi^2\) test of independence of the two distributions, with and without Ca/Mg, showed that they were highly independent.

Table 5: Effect of CA/Mg on oxaliplatin toxicity\(^a\)

<table>
<thead>
<tr>
<th></th>
<th>OXA 85</th>
<th>OXA 100</th>
<th>OXA 130</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca/Mg</td>
<td>No CaMg</td>
<td>Ca/Mg</td>
<td>No CaMg</td>
</tr>
<tr>
<td>No. of patients</td>
<td>28</td>
<td>13</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>No. of cycles</td>
<td>(155)</td>
<td>(62)</td>
<td>(150)</td>
<td>(44)</td>
</tr>
<tr>
<td>Cycles 1-6: percentage of cycles with (\geq) grade 2 symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distal paresthesia</td>
<td>6</td>
<td>38</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Lingual paresthesia</td>
<td>0</td>
<td>28</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>PLD(^a)</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trismus</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Limbs contractions</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Limbs pain</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>9</td>
<td>26</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Asthenia</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>44</td>
</tr>
<tr>
<td>Distal paresthesia, grade 3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Pseudolaryngospasm, grade 3 (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percentage of patients who experienced at least 1 grade 3 paresthesia</td>
<td>7</td>
<td>15</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>Percentage of weight loss at 3 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable</td>
<td>90</td>
<td>77</td>
<td>100</td>
<td>89</td>
</tr>
<tr>
<td><5%</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><10%</td>
<td>3</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><20%</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

Dropouts (%) for neurotoxicity any grade | 0 | 15 | 4 | 33 | 7 | 35 \((P=0.003)\) | 4 | 31 \((P=0.000003)\) |

Dropouts (%) due to grade 3 chronic neurotoxicity | 0 | 8 | 0 | 11 | 0 | 14 \((P=0.02)\) | 0 | 12 \((P=0.0016)\) |

Chronic neuropathy at the end of treatment (%) | | | | | | | | |
Grade 0	79	46	64	33	60	36	65	37
Grade 1	18	15	8	34	12	17	13	18
Grade 2	3	15	16	11	16	31	12	25
Grade 3	0	23	12	22	12	17	8	20 \((P = 0.003)\)

\(^a\) In parentheses, the significance of the difference between the two groups, with and without Ca/Mg.

\(^b\) PLD, pharyngolaryngeal disesthesia.

<table>
<thead>
<tr>
<th></th>
<th>OXA 85</th>
<th>OXA 100</th>
<th>OXA 130</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca/Mg</td>
<td>No CaMg</td>
<td>Ca/Mg</td>
<td>No CaMg</td>
</tr>
<tr>
<td>OXA 85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA 130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\chi^2\) test of independence of the two distributions, with and without Ca/Mg, showed that they were highly independent.

DISCUSSION

The main aim of this retrospective study of our population of 161 colorectal patients receiving oxaliplatin/SFU/LV was to assess the efficacy of Ca/Mg infusions in preventing acute and possibly chronic oxaliplatin-induced neurotoxicity.
Because this study is retrospective, not randomized and not blind, therefore, patients of the control group may differ from patients in the Ca/Mg group because they were either treated early after the commercial availability of oxaliplatin or were included in randomized clinical trials excluding the use of concomitant experimental treatments. Furthermore, the patients and the medical and nursing staff may have been biased in their reporting or assessment of signs and symptoms due to a placebo effect.

Despite these limitations, patients receiving Ca/Mg and controls were comparable for most baseline characteristics and support the hypothesis that sodium channel disturbances related to intracellular Ca/Mg pool may be responsible for the acute neuropathy.

The comparison of the two groups of patients showed that only 4% of patients withdrew for neurotoxicity in the Ca/Mg group versus 31% in the control group ($P = 0.000003$). However, it should be noted that in FOLFOX4 and FOLFOX6 groups, more patients were given calcium magnesium infusion, making the results more open to bias and placebo effect. Dropouts for grade 3 neurotoxicity are probably less influenced by placebo effect. The difference in dropping out because of grade 3 neurotoxicity is less important but remains significant ($P = 0.0016$). The difference in term of mean cumulative doses and duration of treatment did not reach significance threshold.

Ca/Mg infusions did not decrease treatment efficacy. In the group oxaliplatin (130 mg/m2), the response rate was 45% in the group with Ca/Mg compared with 35%, percentage of stable disease was 34 versus 46%, and progressive disease was 21 versus 18%. This was not the main purpose of this posthoc study, and consequently, we cannot draw any firm conclusions. However, efficacy appeared to be at least as good in the group of patients with Ca/Mg infusions, compared with the group without Ca/Mg. The response rate was high in this series: a confirmatory computed tomography scan was not systematically performed to confirm the response. Also, bolus standard 5FU/LV regimen was used in first line treatment of these patients, whereas in the second line, oxaliplatin was combined with infusional 5FU.

The fact that neurotoxicity requires treatment discontinuation in a much smaller percentage of patients may allow more patients to benefit from oxaliplatin containing treatment until disease progression.

Fig. 1 Duration of grade \geq 2 neuropathy in the two groups of patients and in the three subgroups: A, 85 mg/m2; B, 100 mg/m2; C, 130 mg/m2.

Because this study is retrospective, not randomized and not blind, therefore, patients of the control group may differ from patients in the Ca/Mg group because they were either treated early after the commercial availability of oxaliplatin or were included in randomized clinical trials excluding the use of concomitant experimental treatments. Furthermore, the patients and the medical and nursing staff may have been biased in their reporting or assessment of signs and symptoms due to a placebo effect.

Despite these limitations, patients receiving Ca/Mg and controls were comparable for most baseline characteristics and support the hypothesis that sodium channel disturbances related to intracellular Ca/Mg pool may be responsible for the acute neuropathy.

The comparison of the two groups of patients showed that only 4% of patients withdrew for neurotoxicity in the Ca/Mg group versus 31% in the control group ($P = 0.000003$). However, it should be noted that in FOLFOX4 and FOLFOX6 groups, more patients were given calcium magnesium infusion, making the results more open to bias and placebo effect. Dropouts for grade 3 neurotoxicity are probably less influenced by placebo effect. The difference in dropping out because of grade 3 neurotoxicity is less important but remains significant ($P = 0.0016$). The difference in term of mean cumulative doses and duration of treatment did not reach significance threshold.

Ca/Mg infusions did not decrease treatment efficacy. In the group oxaliplatin (130 mg/m2), the response rate was 45% in the group with Ca/Mg compared with 35%, percentage of stable disease was 34 versus 46%, and progressive disease was 21 versus 18%. This was not the main purpose of this posthoc study, and consequently, we cannot draw any firm conclusions. However, efficacy appeared to be at least as good in the group of patients with Ca/Mg infusions, compared with the group without Ca/Mg. The response rate was high in this series: a confirmatory computed tomography scan was not systematically performed to confirm the response. Also, bolus standard 5FU/LV regimen was used in first line treatment of these patients, whereas in the second line, oxaliplatin was combined with infusional 5FU.

The fact that neurotoxicity requires treatment discontinuation in a much smaller percentage of patients may allow more patients to benefit from oxaliplatin containing treatment until disease progression.

Fig. 1 Duration of grade \geq 2 neuropathy in the two groups of patients and in the three subgroups: A, 85 mg/m2; B, 100 mg/m2; C, 130 mg/m2.

Because this study is retrospective, not randomized and not blind, therefore, patients of the control group may differ from patients in the Ca/Mg group because they were either treated early after the commercial availability of oxaliplatin or were included in randomized clinical trials excluding the use of concomitant experimental treatments. Furthermore, the patients and the medical and nursing staff may have been biased in their reporting or assessment of signs and symptoms due to a placebo effect.

Despite these limitations, patients receiving Ca/Mg and controls were comparable for most baseline characteristics and support the hypothesis that sodium channel disturbances related to intracellular Ca/Mg pool may be responsible for the acute neuropathy.

The comparison of the two groups of patients showed that only 4% of patients withdrew for neurotoxicity in the Ca/Mg group versus 31% in the control group ($P = 0.000003$). However, it should be noted that in FOLFOX4 and FOLFOX6 groups, more patients were given calcium magnesium infusion, making the results more open to bias and placebo effect. Dropouts for grade 3 neurotoxicity are probably less influenced by placebo effect. The difference in dropping out because of grade 3 neurotoxicity is less important but remains significant ($P = 0.0016$). The difference in term of mean cumulative doses and duration of treatment did not reach significance threshold.

Ca/Mg infusions did not decrease treatment efficacy. In the group oxaliplatin (130 mg/m2), the response rate was 45% in the group with Ca/Mg compared with 35%, percentage of stable disease was 34 versus 46%, and progressive disease was 21 versus 18%. This was not the main purpose of this posthoc study, and consequently, we cannot draw any firm conclusions. However, efficacy appeared to be at least as good in the group of patients with Ca/Mg infusions, compared with the group without Ca/Mg. The response rate was high in this series: a confirmatory computed tomography scan was not systematically performed to confirm the response. Also, bolus standard 5FU/LV regimen was used in first line treatment of these patients, whereas in the second line, oxaliplatin was combined with infusional 5FU.

The fact that neurotoxicity requires treatment discontinuation in a much smaller percentage of patients may allow more patients to benefit from oxaliplatin containing treatment until disease progression.

Fig. 1 Duration of grade \geq 2 neuropathy in the two groups of patients and in the three subgroups: A, 85 mg/m2; B, 100 mg/m2; C, 130 mg/m2.

Because this study is retrospective, not randomized and not blind, therefore, patients of the control group may differ from patients in the Ca/Mg group because they were either treated early after the commercial availability of oxaliplatin or were included in randomized clinical trials excluding the use of concomitant experimental treatments. Furthermore, the patients and the medical and nursing staff may have been biased in their reporting or assessment of signs and symptoms due to a placebo effect.

Despite these limitations, patients receiving Ca/Mg and controls were comparable for most baseline characteristics and support the hypothesis that sodium channel disturbances related to intracellular Ca/Mg pool may be responsible for the acute neuropathy.

The comparison of the two groups of patients showed that only 4% of patients withdrew for neurotoxicity in the Ca/Mg group versus 31% in the control group ($P = 0.000003$). However, it should be noted that in FOLFOX4 and FOLFOX6 groups, more patients were given calcium magnesium infusion, making the results more open to bias and placebo effect. Dropouts for grade 3 neurotoxicity are probably less influenced by placebo effect. The difference in dropping out because of grade 3 neurotoxicity is less important but remains significant ($P = 0.0016$). The difference in term of mean cumulative doses and duration of treatment did not reach significance threshold.

Ca/Mg infusions did not decrease treatment efficacy. In the group oxaliplatin (130 mg/m2), the response rate was 45% in the group with Ca/Mg compared with 35%, percentage of stable disease was 34 versus 46%, and progressive disease was 21 versus 18%. This was not the main purpose of this posthoc study, and consequently, we cannot draw any firm conclusions. However, efficacy appeared to be at least as good in the group of patients with Ca/Mg infusions, compared with the group without Ca/Mg. The response rate was high in this series: a confirmatory computed tomography scan was not systematically performed to confirm the response. Also, bolus standard 5FU/LV regimen was used in first line treatment of these patients, whereas in the second line, oxaliplatin was combined with infusional 5FU.

The fact that neurotoxicity requires treatment discontinuation in a much smaller percentage of patients may allow more patients to benefit from oxaliplatin containing treatment until disease progression.

Fig. 1 Duration of grade \geq 2 neuropathy in the two groups of patients and in the three subgroups: A, 85 mg/m2; B, 100 mg/m2; C, 130 mg/m2.

Because this study is retrospective, not randomized and not blind, therefore, patients of the control group may differ from patients in the Ca/Mg group because they were either treated early after the commercial availability of oxaliplatin or were included in randomized clinical trials excluding the use of concomitant experimental treatments. Furthermore, the patients and the medical and nursing staff may have been biased in their reporting or assessment of signs and symptoms due to a placebo effect.

Despite these limitations, patients receiving Ca/Mg and controls were comparable for most baseline characteristics and support the hypothesis that sodium channel disturbances related to intracellular Ca/Mg pool may be responsible for the acute neuropathy.

The comparison of the two groups of patients showed that only 4% of patients withdrew for neurotoxicity in the Ca/Mg group versus 31% in the control group ($P = 0.000003$). However, it should be noted that in FOLFOX4 and FOLFOX6 groups, more patients were given calcium magnesium infusion, making the results more open to bias and placebo effect. Dropouts for grade 3 neurotoxicity are probably less influenced by placebo effect. The difference in dropping out because of grade 3 neurotoxicity is less important but remains significant ($P = 0.0016$). The difference in term of mean cumulative doses and duration of treatment did not reach significance threshold.

Ca/Mg infusions did not decrease treatment efficacy. In the group oxaliplatin (130 mg/m2), the response rate was 45% in the group with Ca/Mg compared with 35%, percentage of stable disease was 34 versus 46%, and progressive disease was 21 versus 18%. This was not the main purpose of this posthoc study, and consequently, we cannot draw any firm conclusions. However, efficacy appeared to be at least as good in the group of patients with Ca/Mg infusions, compared with the group without Ca/Mg. The response rate was high in this series: a confirmatory computed tomography scan was not systematically performed to confirm the response. Also, bolus standard 5FU/LV regimen was used in first line treatment of these patients, whereas in the second line, oxaliplatin was combined with infusional 5FU.

The fact that neurotoxicity requires treatment discontinuation in a much smaller percentage of patients may allow more patients to benefit from oxaliplatin containing treatment until disease progression.
Acute neuromuscular manifestations, especially distal and lingual paresthesia, cold induced or not, were very rare in the Ca/Mg group compared with the other one in the whole population of patients and in every oxaliplatin dosage subgroup. The difference is highly significant ($P < 10^{-8}$ and 10^{-7}, respectively). The frequency of grade 3 neurotoxic effects, severely interfering with patients’ comfort and autonomy, was deeply reduced. We can say that Ca/Mg infusions had a deep impact on patients’ quality of life. On the same way, other acute toxic effects such as trismus, pharyngolaryngeal dysesthesia, and cramps and pains in the legs were significantly less frequent. Pseudolaryngospasm, a very bothersome toxicity, never occurred when patients were receiving Ca and Mg, which is really helping the management of oxaliplatin infusions in the day hospital. It is noteworthy that we found less frequent and less severe diarrhea in the Ca/Mg group, even if oxaliplatin was combined with 5FU. Ca/Mg infusions had a positive effect on acute, severe, and short-lasting diarrhea, occurring during the few hours immediately after the oxaliplatin infusion or even during infusion. Thus, oxaliplatin-induced could be caused by an increased excitability of parasympathetic nerves, probably mediated by oxaliplatin effect on voltage-gated Na channels. This finding is of importance because oxaliplatin combined with bolus or short-term 5-FU regimens may be associated with a higher incidence of diarrhea.

We found also a positive effect on asthenia and body weight. Patients with Ca/Mg experienced less severe and prolonged asthenia and more frequently kept their weight unchanged than in the control group, probably because of improved neurological status.

We also investigated the effects of Ca/Mg on cumulative neurotoxicity because it can alter patients’ quality of life, and little is known about its relationship with acute neurosensory symptoms: do they share a common mechanism or do they represent two distinct types of toxicity?

Incidence of cumulative grade 3 neuropathy has been previously evaluated as 18% in 85 mg/m² weekly oxaliplatin schedule in MOSAIC adjuvant trial (3). This frequency was probably underestimated, efficacy being the main objective and neurotoxicity not being closely followed up.

In our series, patients with Ca/Mg appeared to have significantly less frequent and severe chronic grade 3 toxicity than controls ($P = 0.003$; Table 5). At the end of treatment with oxaliplatin, 65% of patients in the Ca/Mg group and 37% in the control group had no neuropathy. Ca/Mg infusions were more efficient in 85 mg/m² schedule (0 versus 23% grade 3 neurotoxicity) than in 100 and 130 mg/m² dosages, suggesting a dose effect of Ca/Mg necessary to chelate oxalate. Moreover, when patients in the Ca/Mg group had grade 3 toxicity, it seemed to be more rapidly reversible upon oxaliplatin withdrawal than in control patients, especially with 85 mg/m² oxaliplatin, where the difference was significant (Fig. 1).

According to these results, the two types of neurotoxicity (acute and cumulative) may indeed be linked. However, neurotoxic effects do not fully disappear with the use of Ca/Mg infusions, especially in the subpopulation treated with oxaliplatin at the highest dose of 130 mg/m². Possibly, dosage and administration schedule could be optimized, and patients might optimally benefit from more intensive or oral prolonged preventive treatment.

We and others (8, 11, 12) observed in preclinical investigations in different models that oxaliplatin appeared to act on Na channels. We additionally demonstrated that oxaliplatin acted via oxalate selectively on a subpopulation of Ca-dependent Na channels (8). Repeated administration of oxaliplatin...

Fig. 2 Ca/Mg effect on percentage of patients with neuropathy (National Cancer Institute), according to equivalent cumulative oxaliplatin doses (161 patients): A, 390–425 mg, corresponding to three cycles of 130 mg/m², four cycles of 100 mg/m², five cycles of 85 mg/m² regimens; and B, 500–520 mg/m², corresponding to four cycles of 130 mg/m², five cycles of 100 mg/m², and six cycles of 85 mg/m² (χ^2 test of distributions was highly significant $\ll 0.001$).

4060 Oxaliplatin Neurotoxicity Prevention by Ca/Mg

platin could hinder processes such as neurotransmitter release, growth cone elongation, and gene expression and then selectively damage this population of Na channels and induce a persistent neuropathy (13, 14).

Finally, in our experience, Ca and Mg infusions are well tolerated and not toxic. Our approach compares favorably with other alternatives such as carbamazepine, glutathione, α-lipoic acid, or amifostine (15–19), which can generate toxic side effects, can interfere with oxaliplatin efficacy, or whose results are not confirmed.

A prospective, multicenter, double-blind, randomized, placebo-controlled study on 160 patients is currently underway to confirm the efficacy of Ca and Mg infusions in the prevention of acute and chronic oxaliplatin-related neurological symptoms. In conclusion, our data suggest that Ca/Mg infusions reduce the incidence and intensity of acute oxaliplatin-induced sensory and neuromuscular and visceral symptoms and might decrease or delay the incidence of cumulative sensory neuropathy, allowing for higher oxaliplatin doses and longer treatment duration.

ACKNOWLEDGMENTS

We thank Laura Bossi for expert review, Marie Claire Craipeau and Catherine Hameline for technical assistance, and Olivier Guérin for precious advice in statistical analysis.

REFERENCES

Prevention of Oxaliplatin-Related Neurotoxicity by Calcium and Magnesium Infusions: A Retrospective Study of 161 Patients Receiving Oxaliplatin Combined with 5-Fluorouracil and Leucovorin for Advanced Colorectal Cancer

Laurence Gamelin, Michele Boisdron-Celle, Remy Delva, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/10/12/4055

Cited articles
This article cites 18 articles, 4 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/10/12/4055.full#ref-list-1

Citing articles
This article has been cited by 32 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/10/12/4055.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.