Mechanisms of Inhibition of Tumor Angiogenesis and Vascular Tumor Growth by Epigallocatechin-3-Gallate

Gianfranco Fassina,1,3 Roberta Venè,2 Monica Morini,1 Simona Minghelli,4 Roberto Benelli,2 Douglas M. Noonan,1 and Adriana Albinì2

1Tumor Progression Unit and 2Molecular Oncology Lab, Istituto Nazionale per la Ricerca sul Cancro, Genoa; 3Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, section of Genoa; and 4Advanced Biotechnology Center, Genoa, Italy

ABSTRACT

Purpose: Green tea consumption has been linked to a reduced occurrence of some tumor types. Current data indicate that the principal mediator of this chemopreventive effect is epigallocatechin-3-gallate (EGCG), the most abundant polyphenol found in dried tea leaves. Here, we examined the effects of this compound on the two key cell populations typically involved in tumor growth: tumor cells and endothelial cells.

Experimental Design: The effects of green tea and EGCG were tested in a highly vascular Kaposi’s sarcoma (KS) tumor model and on endothelial cells in a panel of in vivo and in vitro assays.

Results: EGCG inhibited KS-IMM cell growth and endothelial cell growth, chemotaxis, and invasion over a range of doses; high concentrations also induced tumor cell apoptosis. EGCG inhibited the metalloprotease-mediated gelatinolytic activity produced by endothelial cell supernatants and the formation of new capillary-like structures in vitro. Green tea or purified EGCG when administered to mice in the drinking water inhibited angiogenesis in vivo in the Matrigel sponge model and restrained KS tumor growth. Histological analysis of the tumors were consistent with an anti-angiogenic activity of EGCG and green tea.

Conclusions: These data suggest that the green tea gallate or its derivatives may find use in the prevention and treatment of vascular tumors in a chemoprevention or adjuvant setting.

INTRODUCTION

Tea is the most popular beverage in the world, next to water; inhabitants of oriental countries regularly consume green tea, whereas those in Europe and the United States preferentially use the fermented form of tea leaves (black tea). Epidemiological studies have suggested that the low occurrence of some tumors in Asian countries could be linked to regular drinking of green tea infusions, which conserve most of the crude content of the tea plant. In particular, in areas of green tea production, a significantly lower death rate for all types of cancers, especially for gastrointestinal tumors (stomach, esophagus, and liver cancer), has been reported (1).

Green tea extract derives from dried leaves of the tea plant (Camelia sinensis). The chemical composition of green tea extract is similar to that extracted from fresh leaves; in contrast, in manufacturing black tea, the flavonols undergo the fermentation process, resulting in oxidation of simple polyphenols to a more complex, condensed polyphenol (2). The polyphenols present in green tea are flavonols, commonly known as cathechins; desiccated tea leaves contain high levels of these polyphenols (30% of the total weight of tea infusion; Ref. 1), which show diverse chemical and biological activities. These include an antioxidant function (2), carcinogen metabolism modulation (3, 4), inhibition of tumor growth (5), cell proliferation and cell cycle arrest (6, 7), induction of apoptosis (8, 9), inhibition of invasion and metastasis (10–12), and inhibition of angiogenesis (13). Most of the properties of green tea have been ascribed to the most abundant polyphenol, epigallocatechin-3-gallate (EGCG), which represents the 67% of the total polyphenols in tea extract.

The antioxidant activity of EGCG may represent only a marginal role in the control of tumor progression by this molecule. Plasma levels of EGCG reach 0.1–5 μM after moderate green tea consumption (14), and recent studies suggest that consumption of higher levels of EGCG does not give substantially higher plasma concentrations, reaching a Cmax in the plasma of 1 μM (15). It is likely that the antioxidant activity would be insufficient to result in tumor suppression. Several studies indicate that in vitro growth factor receptor signaling (1, 16) and cell cycling (6, 17) can be inhibited by EGCG, blocking tumor cell proliferation. EGCG has shown anti-invasive properties as a potent inhibitor of the gelatinases [matrix metalloprotease (MMP)-2 and MMP-9], enzymes associated with invasive potential that are frequently overexpressed in cancer (18–21) and inflammation (22). EGCG inhibited these type IV collagenases at low concentrations (MMP-2 and to a slightly lesser extent MMP-9) with IC50 values that approximate the
levels detected in the serum of moderate green tea drinkers, suggesting another mechanism by which EGCG could prevent or treat some tumors. Neutrophil elastase is even more sensitive to inhibition by EGCG (23), and recently, EGCG has been found to inhibit replication of two different HIV strains in peripheral blood lymphocytes, probably by interfering with reverse transcriptase activity (24).

Invasion of surrounding tissues and colonization of different sites are markers of tumor malignancy, whereas neovascularization is necessary for tumor growth and its metastatic dissemination. Kaposi’s sarcoma (KS) is a highly angiogenic lesion, frequently associated with AIDS, which appears to consist largely of vascular cells recruited from the host. The products of KS cells are highly angiogenic in vivo and induce both inflammatory and endothelial cell migration and invasion in vitro (25). In the present study, we used this model to investigate the effects of EGCG on KS and endothelial cell invasion in vitro and angiogenesis in vivo.

MATERIALS AND METHODS

Cell Cultures. KS-IMM cells, a spontaneously immortalized line obtained from a KS biopsy as previously described (26), were cultured in RPMI 1640 (BioWhittaker, Caravaggio, Bergamo, Italy) supplemented with 10% FCS (Seromed, Milan, Italy) and 1% glutamine. Human umbilical vein endothelial cells (HUVECs) and human microvascular endothelial cells (HMVECs) were cultured in gelatin-coated flasks in medium 199 (Seromed) containing 10% FCS, 1% glutamine, 10 ng/ml acidic fibroblast growth factor, 10 ng/ml basic fibroblast growth factor (PeproTech, Inc., Rocky Hill, NJ), 10 ng/ml epidermal growth factor, 100 ng/ml heparin sodium salt (ICN Pharmaceuticals, Inc., Costa Mesa, CA), and 1 μg/ml hydrocortisone (Sigma Chemical Co., St. Louis, MO). For treatment with EGCG (purchased from Sigma Chemical Co.), a 1 mM stock solution was freshly prepared in culture medium and added to cell culture at the indicated concentrations.

Crystal Violet (CV) Cell Growth Assay. Cytostatic and toxic effects of EGCG were tested using the colorimetric CV method. Cells were seeded at a concentration of 1500 cells/well in 96-microwell plates in 100 μl of complete medium and treated with EGCG at the indicated concentrations. Complete RPMI was used as a control. Plates were incubated for 4 days, and the number of cells was assessed every 24 h by washing with PBS and fixing and staining with 50 μl of CV solution for 30 min. Plates were then extensively washed in tap water and air-dried. The CV stain was eluted with 50% ethanol and 0.1% methanol solution, and the absorbance at 595 nm was read with an automatic microtiter plate reader.

ELISA Assessment of Apoptosis. The Cell Death Detection ELISA assay (Roche, Mannheim, Germany) used is based on a quantitative sandwich enzyme immunoassay principle that uses mouse monoclonal antibodies directed against DNA and histones. This allows the specific determination of mono- and oligonucleosomes in the citoplasmatic fraction of cell lysates. Briefly, samples were placed into a streptavidin-coated microtiter plate, added with a mixture of anti-histone-biotin and anti-DNA-peroxidase and incubated. After 2 h, unbound components were removed by washing, and the amount of peroxidase retained in the immunocomplex was determined with 2,2′-azino-di(3-ethylbenzothiazolinesulfonate) diaminonium salt as a substrate in an ELISA reader at 405 nm. The assay was performed 24 h after EGCG treatment. Ten μM vincristine apoptotic agent were used as a positive control.

Preparation of Conditioned Medium. NIH/3T3 cells, approximately at 80% confluence, were rinsed twice with serum-free medium (SFM) and incubated for 24 h with 8 ml of SFM in a T75 flask. The conditioned medium (NIH/3T3-CM) was successively collected, centrifuged at 200 × g for 10 min to eliminate cell debris, and stored in aliquots at −20°C until used as a chemoattractant in migration and invasion assays.

Chemotaxis and Chemoinvasion Assays. The Boyden chamber chemoinvasion assay was performed as described previously (27). Cells were harvested with trypsin, resuspended in SFM with 0.1% BSA, and placed in the upper compartment of a Boyden chamber (1.5 × 105 cells/800 μl/chamber) with EGCG at the indicated concentrations. The compartments were separated by polycarbonate filters (Millipore; Vimodrone, Milan, Italy) with 8-μm pores for KS-IMM cells or 12-μm pores for HUVECs coated with Matrigel (12–20 μg/filter). NIH/3T3-CM was used as a chemoattractant and SFM as a negative control. The chemotaxis assay was performed as for chemoinvasion assay, except for the filters that were coated with a solution of 5 μg/ml gelatin for KS-IMM and 5 μg/filter of collagen IV for HUVECs. Chambers were incubated for 6 h at 37°C, 5% CO2. Cells remaining on the upper side of the filter were removed, whereas those migrated to the lower side were fixed in ethanol and stained with Toluidine blue (Sigma Chemical Co.). Five to eight fields/filter were counted. Assays were performed in triplicate and repeated several times.

Gelatin Zymography. KS-IMM and HUVECs were incubated in SFM for 6 h without or with EGCG at the indicated concentrations. Supernatants were collected and concentrated, and gelatin zymographs were then performed as described previously (28). Briefly, enzyme-containing samples were electrophoresed in 7.5% SDS-PAGE gels containing copolymerized gelatin at a final concentration of 0.6 mg/ml. Gels were washed in 2.5% Triton X-100 for 30 min to remove SDS and incubated for 18 h at 37°C in collagenase buffer [40 mM Tris, 200 mM NaCl, 10 mM CaCl2 (pH 7.5)]. In other experiments, HUVECs were incubated in SFM for 6 h, and the supernatants were collected, concentrated, and loaded onto a single wide lane. After electrophoresis, the single lane was divided into equal strips and incubated either in collagenase buffer alone or buffer containing EGCG. Gels were then stained in 0.1% Coomassie brilliant blue and destained. Enzyme-digested regions were observed as white bands against a blue background. Digestion bands were quantified by densitometric analysis.

Matrigel Morphogenesis Assay. Matrigel was thawed at 4°C in an ice-water bath, and 300 μl/well were carefully added to a 24-microwell plate, prechilled at −20°C using a cold pipette. Matrigel was allowed to polymerize for 30’ at 37°C. After polymerization, 7 × 104 cells/well in endothelial cell growth medium without serum were layered on top of polymerized gel in the presence or not of EGCG at the indicated concentrations. Plates were then incubated at 37°C in a 5%
CO₂-humidified atmosphere. The effects on morphogenesis of endothelial cells were evident after few hours. Wells at 7 and 24 h were photographed in a Leitz DR-IMB microscope with charge-coupled device optics and a digital analysis system (Image Pro Plus 3.0; Media Cybernetics, Silver Spring, MD).

Angiogenesis in vivo. The Matrigel sponge model of angiogenesis introduced by Passaniti and modified by Albini (29) was used to test the ability of EGCG to inhibit the formation of new blood vessels. KS-CM and heparin were added to unpolymerized liquid Matrigel at 4°C to a 600-μl final volume. The resulting suspension was slowly injected s.c. into the flanks of C57BL/6 male mice (Charles River; Calco, Lecco, Italy) with a cold syringe. The Matrigel quickly polymerizes in vivo to form a solid gel. Mice were randomized into three groups, and controls were provided water ad libitum. Another group of animals was treated with EGCG in the drinking water at a concentration of 0.05%. Finally, a third group was provided commercially available (China or Sri Lanka) green tea leaves that were steeped in 1 liter (12.4 g/liter) of boiled distilled water for 1–2 min. Animals received treatment p.o. starting 3 days before the Matrigel injection. Four days after injection, the gels were recovered, weighed, and either fixed in formalin and embedded in paraffin for histological examination or minced and diluted in water for hemoglobin content measurement with a Drabkin kit (Sigma Chemical Co.). Final hemoglobin concentration was calculated from a standard calibration curve.

In vivo Tumor Growth Assays. Seven-week-old (CD-1)BR nude mice were purchased from Charles River and housed in pathogen-free conditions. KS tumors were obtained by s.c. injection of 5 × 10⁶ KS-IMM cells mixed with liquid Matrigel (final volume, 250 μl) in the flanks of nude mice as described previously (28). Animals were randomized into three groups. Controls were provided water ad libitum; one group was given EGCG (0.05%) and another group green tea extract (China or Sri Lanka, 12.4 g/liter, prepared as above) starting 3 days before cell injection. The infusion was cooled to room temperature, filtered, and stored at 20°C until use. Green tea was provided every other day to prevent dehydration due to its diuretic effects, as was EGCG for comparative purposes. Animals were weighed, and tumor growth was monitored for 30 days by measuring two tumor diameters every 2 days with calipers and

Fig. 1 Effects of epigallocatechin-3-gallate (EGCG) on endothelial and Kaposi’s sarcoma (KS-IMM) cell growth measured by the crystal violet assay. Concentrations of EGCG of ≥25 μM significantly inhibited KS-IMM cell growth (A); 25 μM EGCG also showed a strong cytostatic effect after 48 h of treatment in human umbilical vein endothelial cells (HUVECs; B). Doses > 25 μM EGCG completely blocked cell growth in both cell lines. Means ± SD are shown.

Fig. 2 Epigallocatechin-3-gallate (EGCG)-induced apoptosis as assessed by cell death ELISA kit. EGCG dose dependently induced apoptosis in both Kaposi’s sarcoma (KS-IMM) cells (A) and human umbilical vein endothelial cells (HUVECs; B) at a doses > 25 μM. EGCG did not modify the basal level of apoptosis and necrosis at low doses (1–25 μM) and was not able to prevent apoptosis induced by vincristine (10 μM; B). Data shown are representative of multiple experimental repetitions. On the x axis, upper level numbers are EGCG concentrations (μM), lower numbers vincristine (when present).
EGCG Blocks Multicellular Targets in Tumor Angiogenesis

Calculating the tumor volumes with the formula length × width²/2.

Histochemistry. On day 30, animals were sacrificed and the tumors removed. Each sample was fixed in formalin and paraffin embedded. Four-μm sections were rehydrated and stained with H&E for histological examination.

RESULTS

EGCG Effects on Endothelial and KS-IMM Cell Growth. The effects of EGCG were first tested on cell growth in vitro. Concentrations of EGCG of 25 μM and over significantly (P < 0.001 at and beyond 48 h, two-way ANOVA) inhibited KS-IMM cell growth as measured by the CV assay (Fig. 1A), with an apparent reduction in total cell number at concentrations > 50 μM. The EC₅₀ of KS-IMM growth inhibition by EGCG was ~26 μM at all time points. Similar growth inhibitory effects of EGCG were observed for HUVECs; 25 μM EGCG showed a strong cytostatic effect from 72 h of treatment (Fig. 1B; P < 0.001, two-way ANOVA). Higher doses of EGCG again completely blocked cell growth, with significant (P < 0.001, two-way ANOVA) inhibition of cell growth from 24 h. The EC₅₀ for EGCG growth inhibition of HUVECs decreased linearly with increasing time in culture from 40 μM at 24 h to 22 μM at 96 h of exposure.

Apoptosis. Because the effects of EGCG on cell growth suggested a potential apoptotic or cytotoxic action, EGCG effects on apoptosis were examined. EGCG after 24 h of treatment did not modify the basal level of apoptosis and necrosis at low doses (10–25 μM) in either Kaposi’s or endothelial cells, as assessed by the Cell Death Elisa kit. At doses > 25 μM, EGCG dose dependently induced apoptosis in both KS-IMM and HUVECs (Fig. 2, A and B); a 50 μM concentration appeared to be borderline in both cell lines. In HUVECs, the level of apoptosis attained was similar to that induced by the typical apoptotic agent vincristine (10 μM; Fig. 2B). However, EGCG was not additive with nor was it able to prevent the apoptosis induced by vincristine (Fig. 2B).

EGCG Effects on HUVEC and KS-IMM Cell Chemotaxis and Invasion. Key steps in the process of angiogenesis and tumor metastasis are migration and invasion through extracellular matrix barriers. Chemotaxis and chemoinvasion assays were used to measure the effects of EGCG on cell responses to the strong angiogenic factors contained in conditioned medium from NIH/3T3 cells used as a chemoattractant. Treatment with EGCG dose dependently and significantly (P = 0.0128 for 25 μM, P = 0.0015 for 50 μM, and P < 0.0001 for 100 μM; Mann-Whitney U test) inhibited migration of KS-IMM cells. Although high concentrations (100 μM; Fig. 3A) of EGCG essentially blocked migration, no overt effects on invasion in the chemoinvasion assay were observed (data not shown). EGCG also significantly inhibited endothelial cell migration over the same dose range (P = 0.001 for 50 μM and P < 0.0001 for 100 μM, Mann-Whitney U test; Fig. 3B). Furthermore, HUVEC invasion was significantly (P < 0.0001, Mann-Whitney U test) inhibited by 50 μM EGCG (Fig. 3B, insert).

EGCG Inhibits Gelatinolytic Activity in Endothelial Cells. The gelatinases in collagenase IV metalloproteases MMP-2 and MMP-9 are involved in the invasion processes of both cancer
and angiogenesis. Because EGCG inhibited endothelial cell invasion and has been previously reported to directly inhibit MMP-2 (18, 19), we tested its effects on the MMP activity produced by endothelial cells. Gelatin zymography revealed the activity of the metalloprotease MMP-2 produced by HUVECs, and treatment of the cells with EGCG resulted in a dose-dependent decrease in the release of MMP-2 that reached complete inhibition at 100 μM EGCG (Fig. 4A). When EGCG was added directly to the collagenase buffer to examine the ability of this molecule to interfere with MMP enzymatic activity, a strong inhibition of MMP-2 (and partially of MMP-9, which was poorly expressed in HUVECs) even at low doses (12.5 μM) was observed (Fig. 4B).

Effects of EGCG on Morphogenesis. Migration, invasion, and matrix remodeling are all required for the morphogenesis of endothelial cells into capillaries. The morphogenesis on Matrigel assay provides an indication of the ability of endothelial cells to reorganize and differentiate into capillary-like structures; here, we tested both HUVECs and HMVECs. Untreated HUVECs and HMVECs showed formation of the typical cellular network 7 h after plating (Fig. 5, A and C); 50 μM EGCG had little effect on the morphogenesis of HUVECs (Fig. 5B). In contrast, treatment of the HMVECs with 50 μM EGCG inhibited the formation of the capillary-like structures (Fig. 5D).

EGCG Inhibits Angiogenesis in vivo. The in vitro data all suggested that EGCG could inhibit KS cell-induced angiogenesis in vivo. Subcutaneous injection of Matrigel rapidly produces a three-dimensional sponge in vivo, if angiogenic factors such as KS-CM are included in the Matrigel, the angiogenic elements become rapidly vascularized in vivo (Fig. 6A). The extent of angiogenesis can be estimated by measurement of the hemoglobin content in the Matrigel sponges recovered after 4 days (Fig. 6B). Treatment of the animals with EGCG or green tea extract, beginning 3 days before Matrigel injection, drastically and significantly (P < 0.003 and 0.005, t test) reduced the hemoglobin content of the recovered gels. The reduction was calculated as 42- and 9-fold for EGCG and tea extract treatment, respectively (Fig. 6B). Histological analysis of the recovered gels indicated rare infiltrating stellar cells in the green tea- or EGCG-treated samples, whereas control samples showed formation of extensive vascular lacunae (data not shown).

EGCG Reduces KS Tumor Growth. Finally, given the ability of EGCG to suppress KS cell growth and angiogenesis, we examined whether EGCG or green tea was able to inhibit vascular tumor growth in vivo. The immortalized KS cell line KS-IMM forms highly angiogenic tumors when injected s.c. in male nude mice. Treatment in drinking water with EGCG or green tea extract every other day starting 3 days before KS-IMM cell injection significantly (P < 0.05 and 0.001, two-way ANOVA, respectively) reduced the tumor growth as compared with controls receiving water alone (Fig. 7). All treated mice developed slow growing tumors limited in size, whereas the controls showed large tumors in 90% of the animals. No differences were noted in animal body weights, indicating limited or no toxicity of the EGCG or green tea treatments, and no differences were observed for the two sources of green tea used. Mice treated with EGCG showed a 50% reduction in tumor size; interestingly, the reduction was even more evident in animals treated with green tea extract.

Histochemical analysis (Fig. 8A–C) of the recovered tumors indicated a significant (P < 0.001, one-way ANOVA) reduction in the number of vessels in tumors from mice after treatment with EGCG and green tea extracts (Fig. 8D).

DISCUSSION

A wide variety of different mechanisms of action of green tea or green tea flavanols on diverse physiological or patholog-

![Fig 5 Effects of epigallocatechin-3-gallate (EGCG) on morphogenesis. A and C, untreated human umbilical vein endothelial cells (HUVECs) and human microvascular endothelial cells (HMVECs), respectively; B and D, 50 μM EGCG treated HUVECs and HMVECs, respectively. All pictures represent the morphology of cells 7 h after plating and treatment, cultured in the absence of serum. Untreated HUVECs and HMVECs showed formation of the typical cellular network 7 h after plating (A and C); 50 μM EGCG had little effect on the morphogenesis of HUVECs (B) but inhibited the formation of the capillary-like structures in microvascular endothelial cells (D). Nominal magnification, ×25.](http://clincancerres.aacrjournals.org)
ical situations have been proposed. Makimura et al. (30) showed that the steric structure of 3-o-gallate group is important for the inhibition of collagenase activity. It has been suggested that cathechins can block free radicals through their polyphenol group (2). Moreover, a pyrogallol-type B-ring structure is the minimal requirement for induction of apoptosis by cathechins, and a 3-o-gallate group in cis-configuration to the B ring could enhance this activity. Cathechins without a pyrogallol-type structure showed no activity (31). Protection against chemical carcinogenesis and UV irradiation appears to be exerted both by green and black tea and mediated by direct sequestration of free radicals and activation of antioxidative responses, according to Xu and Dashwood (32). The great majority of in vitro studies on EGCG have shown activities at doses from 10 to 100 μM, substantially higher than those obtained in vivo. Inhibition of tumor cell proliferation appears to be mediated either through modulation of the activities of several key G1 regulatory pro-

Fig. 6 Epigallocatechin-3-gallate (EGCG) inhibited angiogenesis in vivo. Matrigel injected s.c. with Kaposi’s sarcoma conditioned medium (KS-CM) and heparin angiogenic factors, produced rapidly vascularized sponges in vivo (A). Treatment with EGCG and green tea extract caused a strong and significant (*P* < 0.005 and *P* < 0.005, *t* test) reduction (×42 and ×9, respectively) in angiogenesis as measured by hemoglobin content in tumors recovered after 4 days (B). Means ± SEM are shown.

Fig. 7 Epigallocatechin-3-gallate (EGCG) repressed Kaposi’s sarcoma tumor growth. Mice receiving, after s.c. injection of highly angiogenic tumor-forming KS-IMM cells, EGCG or green tea extract p.o. showed a ≥50% reduction in tumor size, as compared with controls receiving water alone. *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001, two-way ANOVA. Means ± SEM are shown.

EGCG has been reported to inhibit matrix metallopro-

Fig. 6 Epigallocatechin-3-gallate (EGCG) inhibited angiogenesis in vivo. Matrigel injected s.c. with Kaposi’s sarcoma conditioned medium (KS-CM) and heparin angiogenic factors, produced rapidly vascularized sponges in vivo (A). Treatment with EGCG and green tea extract caused a strong and significant (*P* < 0.005 and *P* < 0.005, *t* test) reduction (×42 and ×9, respectively) in angiogenesis as measured by hemoglobin content in tumors recovered after 4 days (B). Means ± SEM are shown.

Fig. 7 Epigallocatechin-3-gallate (EGCG) repressed Kaposi’s sarcoma tumor growth. Mice receiving, after s.c. injection of highly angiogenic tumor-forming KS-IMM cells, EGCG or green tea extract p.o. showed a ≥50% reduction in tumor size, as compared with controls receiving water alone. *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001, two-way ANOVA. Means ± SEM are shown.

EGCG has been reported to inhibit matrix metallopro@

Fig. 6 Epigallocatechin-3-gallate (EGCG) inhibited angiogenesis in vivo. Matrigel injected s.c. with Kaposi’s sarcoma conditioned medium (KS-CM) and heparin angiogenic factors, produced rapidly vascularized sponges in vivo (A). Treatment with EGCG and green tea extract caused a strong and significant (*P* < 0.005 and *P* < 0.005, *t* test) reduction (×42 and ×9, respectively) in angiogenesis as measured by hemoglobin content in tumors recovered after 4 days (B). Means ± SEM are shown.

Fig. 7 Epigallocatechin-3-gallate (EGCG) repressed Kaposi’s sarcoma tumor growth. Mice receiving, after s.c. injection of highly angiogenic tumor-forming KS-IMM cells, EGCG or green tea extract p.o. showed a ≥50% reduction in tumor size, as compared with controls receiving water alone. *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001, two-way ANOVA. Means ± SEM are shown.

EGCG has been reported to inhibit matrix metallopro-

Fig. 6 Epigallocatechin-3-gallate (EGCG) inhibited angiogenesis in vivo. Matrigel injected s.c. with Kaposi’s sarcoma conditioned medium (KS-CM) and heparin angiogenic factors, produced rapidly vascularized sponges in vivo (A). Treatment with EGCG and green tea extract caused a strong and significant (*P* < 0.005 and *P* < 0.005, *t* test) reduction (×42 and ×9, respectively) in angiogenesis as measured by hemoglobin content in tumors recovered after 4 days (B). Means ± SEM are shown.

Fig. 7 Epigallocatechin-3-gallate (EGCG) repressed Kaposi’s sarcoma tumor growth. Mice receiving, after s.c. injection of highly angiogenic tumor-forming KS-IMM cells, EGCG or green tea extract p.o. showed a ≥50% reduction in tumor size, as compared with controls receiving water alone. *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001, two-way ANOVA. Means ± SEM are shown.

EGCG has been reported to inhibit matrix metallopro-

Fig. 6 Epigallocatechin-3-gallate (EGCG) inhibited angiogenesis in vivo. Matrigel injected s.c. with Kaposi’s sarcoma conditioned medium (KS-CM) and heparin angiogenic factors, produced rapidly vascularized sponges in vivo (A). Treatment with EGCG and green tea extract caused a strong and significant (*P* < 0.005 and *P* < 0.005, *t* test) reduction (×42 and ×9, respectively) in angiogenesis as measured by hemoglobin content in tumors recovered after 4 days (B). Means ± SEM are shown.

Fig. 7 Epigallocatechin-3-gallate (EGCG) repressed Kaposi’s sarcoma tumor growth. Mice receiving, after s.c. injection of highly angiogenic tumor-forming KS-IMM cells, EGCG or green tea extract p.o. showed a ≥50% reduction in tumor size, as compared with controls receiving water alone. *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001, two-way ANOVA. Means ± SEM are shown.

EGCG has been reported to inhibit matrix metallopro-

Fig. 6 Epigallocatechin-3-gallate (EGCG) inhibited angiogenesis in vivo. Matrigel injected s.c. with Kaposi’s sarcoma conditioned medium (KS-CM) and heparin angiogenic factors, produced rapidly vascularized sponges in vivo (A). Treatment with EGCG and green tea extract caused a strong and significant (*P* < 0.005 and *P* < 0.005, *t* test) reduction (×42 and ×9, respectively) in angiogenesis as measured by hemoglobin content in tumors recovered after 4 days (B). Means ± SEM are shown.

Fig. 7 Epigallocatechin-3-gallate (EGCG) repressed Kaposi’s sarcoma tumor growth. Mice receiving, after s.c. injection of highly angiogenic tumor-forming KS-IMM cells, EGCG or green tea extract p.o. showed a ≥50% reduction in tumor size, as compared with controls receiving water alone. *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001, two-way ANOVA. Means ± SEM are shown.

EGCG has been reported to inhibit matrix metallopro-

Fig. 6 Epigallocatechin-3-gallate (EGCG) inhibited angiogenesis in vivo. Matrigel injected s.c. with Kaposi’s sarcoma conditioned medium (KS-CM) and heparin angiogenic factors, produced rapidly vascularized sponges in vivo (A). Treatment with EGCG and green tea extract caused a strong and significant (*P* < 0.005 and *P* < 0.005, *t* test) reduction (×42 and ×9, respectively) in angiogenesis as measured by hemoglobin content in tumors recovered after 4 days (B). Means ± SEM are shown.
endothelial morphogenesis in vitro (53, 55). Interestingly, we observed that HMVECs appeared more sensitive to EGCG in the morphogenesis assay than were HUVECs. Nanomolar concentrations of EGCG has been found to inhibit Bcl-2 family proteins (56); we have previously reported that Bcl-2 overexpression is linked to enhanced angiogenesis (57), implying that Bcl-2 inhibition may contribute to the antiangiogenic effects of EGCG. In recent studies, Dona et al. (58) demonstrated that EGCG and green tea are potent inhibitors of neutrophil-mediated angiogenesis in vitro and in vivo. These data are in agreement with the reduced vascular formation in response to vascular endothelial growth factor in corneal implants in mice receiving green tea and a dose-dependent inhibition of basic fibroblast growth factor-stimulated cell growth in endothelial cells in vitro shown by Cao and Cao (13). Here, we demonstrate that EGCG has the properties of an angiogenesis inhibitor in vitro, albeit at doses higher than that obtained in vivo, with effective doses on the order of 10–50 μM. However, oral administration of green tea or EGCG strongly inhibited angiogenesis in the Matrigel sponge model in vivo, and treatment of (CD-1)BR nude mice with EGCG in drinking water, starting 3 days before s.c. injection of highly hemorrhagic- and angiogenic tumor-forming KS-IMM cells, resulted in a significant inhibition of tumor growth. This correlated with a significant reduction of the vascularization of the tumors in animals treated with either green tea or EGCG as compared with controls, additionally confirming the antiangiogenic potential of these compounds. Interestingly, recent studies have found that induction of tumor cell death at relatively high doses of EGCG (20–25 μM) corresponded to an increase in the sensitivity of the same tumor cells to chemotherapy agents such as 5-fluorouracil or Taxol (34, 35) at doses obtainable in vivo. This suggests that the effects of EGCG observed at high doses in vitro may synergize together or with other agents at lower doses, as suggested by Yang et al. (59). Thus the diverse antiangiogenic effects reported here and by other groups, at doses from 10–100 μM, may act together to produce the remarkable antiangiogenic effects observed with green tea or EGCG in vivo.

The bioavailability of EGCG is also of importance: recent studies have indicated that most of the EGCG is eliminated through the bile, whereas other similar polyphenols are eliminated in the urine (60). We noted that green tea extract showed an equivalent, if not greater, effect in tumor growth inhibition in vivo than did purified EGCG at 0.05%, a dose estimated to be 10-fold when consumed by avid green tea drinkers (61). This dose of EGCG corresponds to ~70 mg/kg EGCG and was not associated with any side effects either here or in other studies (61). Human volunteers have been given >10-fold higher doses of EGCG with little or no adverse effects (15, 62), suggesting potential therapeutic application. The observation that green tea was as effective, if not more so, than pure EGCG suggests that EGCG may cooperate or synergize with other polyphenols present in the green tea extract or that the other components of green tea may improve the stability or bioavailability of EGCG in green tea. Modifications of EGCG that improve its bioavailability will be an interesting strategy to pursue for its potential pharmaceutical applications.

Although no significant side effects have been noted over

Fig. 8 Histochemical analysis of tumors. Treatment with epigallocatechin-3-gallate (EGCG) and green tea extracts p.o. caused a significant reduction in the number of vessels in tumors recovered from the animals. Photomicrographs of H&E-stained sections of tumors from panels A, control; B, EGCG; or C, green tea extract-treated animals. Nominal magnification, ×200. D, distribution of vessel numbers/unit field; *P < 0.001 (one-way ANOVA) for both EGCG and green tea extract versus controls.
the millennia that green tea has been consumed, adverse effects have been reported for specific tumor types such as bladder cancer (63). These data suggest that we should use caution when proposing high doses of tea polyphenols for therapy of established cancer (51, 64). Although over the last few years several clinical trials have been carried out, including Phase II trials, the results in the inhibition of established tumor growth have not been completely satisfactory (65). We suggest that greater attention should be given to the chemopreventive aspect of green tea derivatives (64, 66, 67). Consequently, additional effort is needed to fully understand the mechanisms of action of EGCG and green tea extracts, which could be efficiently used as low cost, low side effect chemicals to flank standard clinical therapies.

ACKNOWLEDGMENTS
We thank Dr. Anna Rapetti for expert secretarial assistance and Monica Barabino for data searches.

REFERENCES

44. Chen W, Dong Z, Valcic S, Timmermann BN, Bowden GT. Inhibition of ultraviolet B-induced c-fos gene expression and p38 mitogen-activated protein kinase activation by (-)-epigallocatechin gallate in a human keratinocyte cell line. Mol Carcinog 1999;24:79–84.

Mechanisms of Inhibition of Tumor Angiogenesis and Vascular Tumor Growth by Epigallocatechin-3-Gallate

Gianfranco Fassina, Roberta Venè, Monica Morini, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/10/14/4865

Cited articles
This article cites 63 articles, 17 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/10/14/4865.full#ref-list-1

Citing articles
This article has been cited by 11 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/10/14/4865.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.