Characterization of Active Mitogen-Activated Protein Kinase in Ovarian Serous Carcinomas

Chih-Yi Hsu,1,3,4 Robert Bristow,2 Moon Seok Cha,2 Brant G. Wang,1 Chung-Liang Ho,1 Robert J. Kurman,1,2 Tian-Li Wang,2 and Ie-Ming Shih1,2
Departments of 1Pathology and 2Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland; 3Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital Taipei, Taiwan; and 4Department of Pathology, National Yang-Ming University School of Medicine, Taipei, Taiwan

ABSTRACT
Purpose: Mitogen-activated protein kinase (MAPK) plays a pivotal role in signal transduction. Activation of MAPK is regulated by upstream kinases including KRAS and BRAF, which are frequently mutated in low-grade ovarian serous carcinoma. This study evaluates the expression of active MAPK in ovarian serous carcinomas, with response to treatment and survival.

Experimental Design: Expression of active MAPK was assessed by immunohistochemistry in 207 cases of ovarian serous tumors. Immunoreactivity was correlated with tumor grade, mutational status of KRAS and BRAF, in vitro drug resistance, and clinical outcome.

Result: There was a lower frequency of expression of active MAPK in high-grade ovarian serous carcinomas as compared with low-grade serous tumors, including borderline tumors and low-grade serous carcinoma (P < 0.001). Active MAPK was present in all of the 19 low-grade tumors with either KRAS or BRAF mutations as well as in 14 (41%) of 34 tumors with wild-type KRAS and BRAF in both low- and high-grade carcinomas. Expression of active MAPK alone served as a good survival indicator in the 2-year follow-up (P = 0.037) but not in the 5-year follow-up (P = 0.145). However, a combination of expression of active MAPK and in vitro sensitivity of paclitaxel significantly correlated with a better prognosis in 5-year survival rate (P = 0.048) in patients with advanced-stage high-grade serous carcinoma.

Conclusions: Active MAPK is more frequently expressed in low-grade than in high-grade ovarian serous carcinoma. Active MAPK serves as a good prognostic marker in patients with high-grade serous carcinomas.

INTRODUCTION
Ovarian cancer is the leading cause of death in women who suffer from gynecologic cancer. Of the various histologic subtypes of ovarian cancer, ovarian serous carcinoma is the most common and corresponds to what is generally referred to as ovarian cancer. Based on a number of clinicopathologic and molecular genetic studies (1), we have recently proposed a dualistic model for the development of ovarian serous carcinoma (2, 3). In this model serous carcinomas are subdivided into low- and high-grade tumors. Low-grade serous carcinoma, also known as invasive micropapillary serous carcinoma, develops in a step-wise fashion from an intraepithelial (in situ) low-grade serous carcinoma, which in turn arises from an atypical proliferative serous tumor. These two noninvasive neoplasms correspond to borderline tumors. Atypical proliferative serous tumor may develop either from a cystadenoma or directly from ovarian surface epithelium. High-grade serous carcinoma develops in a de novo fashion directly from ovarian surface epithelium or from small epithelial inclusion cysts as no intermediate stages have thus far been identified. Low-grade serous carcinomas typically have an indolent course with recurrences developing over many years, but eventually these patients develop intrabdominal carcinomatosis, which proves to be fatal. High-grade serous carcinomas are highly aggressive, and most patients present with advanced stage disease at the time of diagnosis (4). Recent studies have shown that activating mutations of BRAF or KRAS are found in ~60% of serous borderline tumors (atypical proliferative tumors and intraepithelial low-grade serous carcinomas) and low-grade serous carcinomas but rarely in the high-grade serous carcinomas (1). This suggests that the signaling pathway involving KRAS and BRAF is important in the development of low-grade serous tumors.

The mitogen-activated protein kinase (MAPK), also known as extracellular signal-regulated protein kinase (ERK), is a downstream target of the Ras, Raf, and MAP/ERK kinase and is crucial for transduction of growth signals from several key growth factors, cytokines, and proto-oncogenes (5). Mutations or overexpression of components, including KRAS and BRAF, in the MAPK pathway lead to constitutive activation of MAPK by phosphorylation. Activation of MAPK in turn activates downstream protein kinases, nuclear proteins, and transcription factors (6), which may contribute to the tumor development (7). Besides its role in oncogenesis, activation of MAPK may sensitize cancer cells to anticancer agents (5) as activation of MAPK is essential for the killing effect of CD437, a synthetic retinoid that has been reported to induce growth arrest and
apoptosis in ovarian cancer cell lines (8). It has been shown that constitutive activation of the MAPK signaling pathway occurs in a wide variety of human carcinomas including pancreatic, colorectal, lung, breast, and prostate carcinomas (9). In this study, we attempted to characterize the expression of active (phosphorylated) MAPK in ovarian serous tumors by assessing its differential expression in low-grade and high-grade serous tumors. In addition, we examined whether phosphorylated MAPK alone, or in combination with other clinical parameters, could serve as a prognostic marker.

MATERIALS AND METHODS

Tissue Samples. Formalin-fixed, paraffin-embedded tissue samples of 207 ovarian serous tumors including 29 serous cysts, 7 atypical proliferative serous tumors, 15 intraepithelial low-grade serous carcinomas, 16 low-grade serous carcinomas, and 140 high-grade serous carcinomas were retrieved from the archival file of the Department of Pathology from the Johns Hopkins Hospital. The acquisition of paraffin tissues was approved by the Johns Hopkins Institutional Review Board. The paraffin tissues were organized into tissue microarrays, which were made by removing three 1.5-mm diameter cores of tumor from each block. The selection of areas for core was made by two pathologists (Chih-Yi Hsu and Ie-Ming Shih) based on review of the H&E slides. To evaluate whether expression of active MAPK was a prognostic marker in patients with ovarian serous carcinoma, we analyzed 117 advanced stage high-grade serous carcinomas of which 96 were Fédération Internationale des Gynaecologistes et Obstétristes (FIGO) stage III and 21 were FIGO stage IV.

Immunohistochemistry and Western Blot Analysis. Expression of the active (phosphorylated) form of MAPK was assessed by immunohistochemistry and Western blot analysis. The antibody used was a rabbit polyclonal antibody, pTEpY, that specifically reacts with the phosphorylated but not the unphosphorylated MAPK (Promega, Madison, WI). Immunohistochemistry was done on tissue microarrays at a dilution of 1:500 followed by the EnVision/H11001 System with the peroxidase method (DAKO, Carpinteria, CA). The percentage of positive cells was estimated by randomly counting ~ 500 tumor cells from three different high-power fields ($\times 40$) within one specimen. For the negative control, an isotype (IgG1) matched antibody, MN-4, was used in parallel (10). A positive reaction was defined as discrete localization of the brown chromagen in the nucleus or cytoplasm. Cases in which more than 5% of the tumor cells showed detectable immunoreactivity were scored as positive.

Western blot analysis was done with the same antibody (1:3,000) on 2 representative ovarian serous carcinomas and one specimen of an ovarian surface epithelial cell culture. One of the ovarian serous carcinoma cell cultures was previously treated with CI-1040, a compound that specifically inhibits the activity of MEK which activates (phosphorylates) MAPK (7). For positive control, the same blot was incubated with an antibody that reacts to glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Research Diagnostics, Inc., Flanders, NJ) at a dilution of 1:2,000. Similar amounts of total protein from each lysate were loaded and separated on 12% Tris-glycine-SDS polyacrylamide gels (Novex, San Diego, CA) and electroblotted to Millipore Immobilon-P polyvinylidene difluoride membranes. Western blots were developed by chemiluminescence (Pierce, Rockford, IL).

Fig. 1 Western blot analysis of active MAPK (top panel) and glyceraldehyde-3-phosphate dehydrogenase (bottom panel) in ovarian serous tumors. Active MAPK (M, 42,000) is identified in a high-grade and a low-grade DMSO serous carcinoma cell cultures but not in ovarian surface epithelial culture. Expression of active MAPK is decreased to an undetectable level in the low-grade serous carcinoma cell culture treated with CI-1040, a compound that inhibits MEK and phosphorylation of MAPK. The same blot was probed with a glyceraldehyde-3-phosphate dehydrogenase antibody and showed a similar amount of protein loaded in each lane. (GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HG, high-grade; LG, low-grade; OSE, ovarian surface epithelial).

Fig. 2 Immunohistochemistry of active MAPK in ovarian serous tumors. An intense immunoreactivity is present in both nuclei and cytoplasm of a high-grade and a low-grade serous tumor, atypical proliferative serous tumor. The negative control did not show any detectable immunoreactivity. (APST, atypical proliferative serous tumor).
Mitogen-activated Protein Kinase in Ovarian Carcinomas

Serous borderline tumor
Low-grade serous carcinoma 16 13 (81)

The extreme drug resistance was intermediate, and low drug resistance with the criteria described in the treated cells were compared with the untreated controls. Assay days agents at a concentration of a maximum tolerated dose for 5 soft agar. Tumor cells were then exposed to antineoplastic suggested to disaggregate the tumor cells, which were then plated in analysis. The tumor tissue was minced and enzymatically digested by an agar-based cell culture system with radioactive thymidine was introduced during the last in vitro Drug Resistance Assay. Drug sensitivity was assessed by an agar-based cell culture system with radioactive thymidine ascorbate in the cytoplasm of the tumor cells (Fig. 2), which is consistent with a previous report (14). The frequency of expression of the active MAPK in ovarian serous tumors was assessed with immunohistochemistry. The specificity of the antibody for binding with the active (phosphorylated) form of MAPK was shown by Western blot analysis. As shown in Fig. 1, a single band of M_r 42,000 corresponding to the phosphorylated MAPK is present in both the high-grade and low-grade serous carcinoma cell cultures but not in ovarian surface epithelial cells. The band from the low-grade tumor cells was not detectable in cells pretreated with CI-1040 that inhibited phosphorylation of MAPK, confirming the specificity of the antibody.

RESULTS

Patients with high-grade serous carcinoma [median (range), 61 (33 to 86) years] were older than patients with low-grade serous carcinoma [39 (24 to 65) years; Mann-Whitney test, $P < 0.001$]. Expression of the active MAPK in ovarian serous tumors was assessed with immunohistochemistry. The specificity of the antibody for binding with the active (phosphorylated) form of MAPK was shown by Western blot analysis. As shown in Fig. 1, a single band of M_r 42,000 corresponding to the phosphorylated MAPK is present in both the high-grade and low-grade serous carcinoma cell cultures but not in ovarian surface epithelial cells. The band from the low-grade tumor cells was not detectable in cells pretreated with CI-1040 that inhibited phosphorylation of MAPK, confirming the specificity of the antibody.

Because of the frequent mutations in $K\text{RAS}$ and $B\text{RAF}$ in ovarian low-grade serous tumors as compared with high-grade serous carcinoma (1, 13), we examined whether there is a differential expression of activated MAPK in low-grade and high-grade serous tumors. The immunoreactivity of active (phosphorylated) MAPK was detected in both the nucleus and the cytoplasm of the tumor cells (Fig. 2), which is consistent with a previous report (14). The frequency of expression of active MAPK in high-grade serous carcinomas (41%) was significantly lower than in low-grade serous carcinomas (81%), intraepithelial low-grade serous carcinomas (80%), and atypical proliferative serous tumors (71%; χ^2 test, $P < 0.001$; Table 1).

Among the high-grade serous carcinomas, the expression of active MAPK was more frequent in younger patients (53% in patients <60 years versus 31% in patients \geq60 years old; χ^2 test, $P = 0.010$). Expression of active MAPK did not correlate with FIGO stage ($P = 0.398$) nor with drug resistance for paclitaxel ($P = 0.893$), cisplatin ($P = 0.071$), and carboplatin ($P = 1.000$) that are commonly used in treating ovarian cancer.

Table 3 Correlation of MAPK immunoreactivity and mutational status of $B\text{RAF}$ and $K\text{RAS}$.

<table>
<thead>
<tr>
<th>Mutation in</th>
<th>High-grade</th>
<th>Low-grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B\text{RAF}$ or $K\text{RAS}$</td>
<td>MAPK+</td>
<td>9</td>
</tr>
<tr>
<td>MAPK−</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>No mutation in $B\text{RAF}$ or $K\text{RAS}$</td>
<td>MAPK+</td>
<td>0</td>
</tr>
<tr>
<td>MAPK−</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total cases 25 28
In low-grade serous tumors, expression of activated MAPK was independent of age (Mann-Whitney test, $P = 0.368$) and FIGO stage (x^2 test, $P = 0.777$).

To assess if there was a correlation of expression of active MAPK and mutation in \textit{KRAS} or \textit{BRAF}, we compared the immunoreactivity of active MAPK in 28 cases of low-grade serous carcinomas and 25 cases of high-grade serous carcinomas that were available for mutational analysis (Table 3). Mutational status of \textit{KRAS} and \textit{BRAF} in 38 of the 53 cases has been reported in our previous study (1). In low-grade serous tumors, all of the 19 cases with mutant \textit{KRAS} or \textit{BRAF} were MAPK positive, whereas 5 of 9 low-grade tumors with wild-type 	extit{KRAS} and 	extit{BRAF} were MAPK positive. Thus, mutations in \textit{KRAS} or \textit{BRAF} correlated with the immunoreactivity of active MAPK (100 versus 55.6%; Fisher’s exact test, $P = 0.006$). In high-grade serous carcinomas, all of the 25 cases contained wild-type \textit{KRAS} and \textit{BRAF}. Nine of the high-grade serous carcinomas were positive for activated MAPK.

Next, we evaluated whether expression of active MAPK was a prognostic marker in patients with ovarian serous carcinoma. We focused on 117 advanced stage high-grade serous carcinomas because this is the most common clinical presentation in patients with ovarian cancer. As compared with high-grade serous carcinomas, low-grade serous carcinomas are rare, and the case number is not sufficient for statistical analysis of cumulative survival. The median survival for stage III patients was 51 months, and the median survival for stage IV patients was only 30 months (x^2 test, $P = 0.002$). The 2-year and 5-year survival rates in patients whose tumors expressed active MAPK appeared better than those not expressing it (90.4 versus 71.1% and 58.6 versus 37.3%, respectively).
Mitogen-activated Protein Kinase in Ovarian Carcinomas

expression of active MAPK in low-grade serous carcinoma compared with high-grade serous carcinoma together with previous molecular genetic findings of frequent mutations of KRAS and BRAF in low-grade serous tumors support the view that low-grade and high-grade serous tumors develop along different pathways. Active MAPK in combination with in vitro paclitaxel sensitivity may serve as a prognostic marker in patients with advanced stage high-grade serous carcinoma. This finding would have important implications for clinical management of ovarian cancer patients.

ACKNOWLEDGMENTS

We thank the immunohistochemistry laboratory for excellent immunostaining and the members in the Molecular Genetics of Ovarian Cancer Laboratory at Johns Hopkins Medical Institutions for previewing the manuscript.

REFERENCES

Characterization of Active Mitogen-Activated Protein Kinase in Ovarian Serous Carcinomas

Chih-Yi Hsu, Robert Bristow, Moon Seok Cha, et al.

Updated version Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/10/19/6432

Cited articles This article cites 15 articles, 2 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/10/19/6432.full.html#ref-list-1

Citing articles This article has been cited by 8 HighWire-hosted articles. Access the articles at:
/content/10/19/6432.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.