Expression of Hypoxia-related Tissue Factors Correlates with Diminished Survival of Adjuvantly Treated Patients with Chromosome 1p Aberrant Oligodendrogial Neoplasms and Therapeutic Implications

Peter Birner, Matthias Preusser, Ellen Gelpi, Johannes Berger, Brigitte Gatterbauer, Inge M. Ambros, Peter F. Ambros, Till Acker, Karl H. Plate, Adrian L. Harris, and Johannes A. Hainfellner

ABSTRACT

Purpose: Oligodendrogial neoplasms with chromosome 1p deletion are chemosensitive, and stratified adjuvant therapies have been proposed on the basis of 1p status. In this study, we evaluated expression of hypoxia-related factors and its influence on survival in oligodendrogial brain tumors with chromosome 1p aberrations.

Experimental Design: Forty-four primary and 16 recurrent oligodendrogial neoplasms with 1p aberrations (deletion or imbalance) were investigated immunohistochemically for expression of hypoxia-inducible factor 1α and carbonic anhydrase-9. We used in situ hybridization to investigate expression of vascular endothelial growth factor mRNA. We defined as “low hypoxia score” expression of no or only one marker and as “high hypoxia score” expression of two or three markers. The predominant vascular patterns of tumors were defined as classic or bizarre vascular formations, based on anti-CD34-immunostaining.

Results: High hypoxia score was evident in 16 of 44 (36.4%) primary tumor specimens and in 14 of 16 (87.5%) recurrent tumors (P = 0.001). High hypoxia score was associated with the presence of bizarre vascular proliferations and WHO grade III. In the subgroup of patients who received adjuvant therapy, univariate analysis showed significantly shorter survival of patients with high hypoxia score (n = 27; P = 0.0145). For all of the primary tumors, hypoxia score was an independent prognostic factor (P = 0.045).

Conclusions: A fraction of oligodendrogial neoplasms with 1p aberrations shows evidence of tissue hypoxia, which significantly influences survival of patients receiving adjuvant therapy. Evaluation of tissue hypoxia could become useful for recruitment of patients for individualized therapy strategies, e.g., selection of patients with hypoxic tumors for hyperbaric oxygenation preceding radiotherapy.

INTRODUCTION

Oligodendrogial neoplasms are rare diffusely infiltrating primary brain tumors, standard therapy regimens comprise surgical resection and postoperative adjuvant therapy (1).

DNA- aberrations on chromosome 1p are characteristic features of oligodendrogial neoplasms (2), clinicopathological correlations showed significantly better response to adjuvant chemotherapy as compared with oligodendrogliomas with intact chromosome 1p (3). Stratified protocols on basis of 1p status for adjuvant therapy have been proposed and are evaluated in prospective clinical trials (4). The aim of these trials is to avoid radiotherapy and radiotherapy-induced adverse effects (such as cognitive decline and radionecroses) in patients with 1p deficient tumors. Although genetic differences between tumors are critical for outcome, interactions with the microenvironment provide an additional modifying factor. Because efficacy of radiotherapy is diminished in hypoxic tumor tissues (5, 6), tissue hypoxia may also influence response to adjuvant therapy in oligodendrogial neoplasms in addition to 1p status. However, systematic studies of tissue hypoxia in 1p aberrant oligodendrogial neoplasms are lacking thus far. The aim of this study was to evaluate evidence of tissue hypoxia and its impact on outcome in 1p aberrant oligodendrogial neoplasms.

MATERIALS AND METHODS

Patients. Routinely processed and paraffin-embedded tissue specimens of 44 primary (29 men and 15 women) and of 16 recurrent oligodendrogial tumors were included in this study. At resection of primary tumors, gross total resection of the tumor was possible in 19 cases, whereas only subtotal resection could be done in 23 cases. No information on radicality of resection was available in 16 patients. In 2 cases tissue was obtained at stereotactic biopsy. Histologic typing and grading was done according to WHO criteria (1). All of the speci-
Hypoxia in Oligodendroglial Neoplasms

patients at recurrence was 45.48 months, 13 patients (29.5%) died from their disease. Mean age of patients with primary tumors was 44 years. In addition to surgery, 18 patients received adjuvant radiotherapy, and 9 patients combined radiochemotherapy. Details on applied chemotherapeutic regimens were not available in this long-term retrospective study. No adjuvant therapy was administered to 13 patients, no information was available in 4 patients. Mean follow-up time was 60 months (range 1 to 150 months), during this observation period were considered as censoring events. Univariate analysis of overall survival was done as outlined by Kaplan and Meier. The Cox proportional hazards model was used for multivariate analysis of overall survival. Patient age, adjuvant therapy (yes versus no), hypoxia score, and histologic WHO grading were included into Cox regression. A two-tailed \(P \leq 0.05 \) was considered as significant.

RESULTS

Results of histologic and immunohistochemical analysis, mRNA in situ hybridization, and fluorescent in situ hybridization analysis are summarized in Table 1. Immunostaining of VEGF protein showed antibody binding on endothelial cells of bizarre vascular formations (Fig. 1C), which showed also VEGF-receptor 1 mRNA signals by in situ hybridization (data not shown).

VEGF-mRNA, hypoxia-inducible factor-1α, and carbonic anhydrase-9 expression showed focal accentuations and was found most commonly at the border of necrotic tissue areas (Fig. 1A). Bizarre vascular formations (Fig. 1B) comprising glomeruloid vascular proliferations, vascular garlands, and vascular clusters. On the basis of these definitions, the vascular formations within a tumor were classified as predominantly “classic” or as predominantly “bizarre” according to previously reported criteria (10).

Statistics. Mann-Whitney-test and \(\chi^2 \) test were used as appropriate. Overall survival was defined from the day of initial surgery until death of the patient. Death from another cause than oligodendrogial tumor and survival until the end of the observation period were considered as censoring events. Univariate analysis of overall survival was done as outlined by Kaplan and Meier. The Cox proportional hazards model was used for multivariate analysis of overall survival. Patient age, adjuvant therapy (yes versus no), hypoxia score, and histologic WHO grading were included into Cox regression. A two-tailed \(P \leq 0.05 \) was considered as significant.

Table 1 Primary versus recurrent tumors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Primary tumors (n = 44)</th>
<th>Recurrent tumors (n = 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histological typing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligodendroglioma</td>
<td>30 (68.2%)</td>
<td>12 (75%)</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>14 (31.8%)</td>
<td>4 (25%)</td>
</tr>
<tr>
<td>Histological grading (WHO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade II</td>
<td>34 (77.3%)</td>
<td>8 (50%)</td>
</tr>
<tr>
<td>Grade III</td>
<td>10 (22.7%)</td>
<td>8 (50%)</td>
</tr>
<tr>
<td>Chromosome 1p status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deletion</td>
<td>36 (81.8%)</td>
<td>14 (87.5%)</td>
</tr>
<tr>
<td>Imbalance</td>
<td>8 (18.2%)</td>
<td>2 (12.5%)</td>
</tr>
<tr>
<td>Vascular pattern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classic*</td>
<td>23 (52.3%)</td>
<td>3 (18.8%)</td>
</tr>
<tr>
<td>Bizarre*</td>
<td>21 (47.7%)</td>
<td>13 (81.2%)</td>
</tr>
<tr>
<td>Expression of proteins/mRNA†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIF-1α expression*</td>
<td>17 (38.6%)</td>
<td>13 (81.3%)</td>
</tr>
<tr>
<td>VEGF-mRNA expression</td>
<td>15 (34.1%)</td>
<td>9 (56.3%)</td>
</tr>
<tr>
<td>CA IX-expression*</td>
<td>19 (43.1%)</td>
<td>13 (81.3%)</td>
</tr>
<tr>
<td>Hypoxia score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low*</td>
<td>28 (63.6%)</td>
<td>2 (12.5%)</td>
</tr>
<tr>
<td>High*</td>
<td>16 (36.4%)</td>
<td>14 (87.5%)</td>
</tr>
</tbody>
</table>

Abbreviations: HIF-1α, hypoxia-inducible factor 1α; CA IX, carbonic anhydrase-9.

* Significant difference between primary and recurrent tumors (\(\chi^2 \) test or Mann-Whitney test).

† “yes” or “no” principle.
of adjuvant therapy with prolonged survival in univariate analysis ($P = 0.0033$, log-rank test).

Although expression of VEGF-mRNA, carbonic anhydrase-9, or hypoxia-inducible factor 1α showed no significant influence on survival of all of the patients in un- and multivariate analysis, expression of each of these factors was associated with shorter overall survival in the subgroup of patients who received adjuvant therapy ($n = 27$) in univariate analysis ($P = 0.0191$, $P = 0.0352$, $P = 0.0086$, respectively, log-rank test).

A trend toward diminished survival in patients with tumors with high hypoxia score was found in Kaplan-Meier analysis (Fig. 1J), which missed significance ($P = 0.172$, log-rank test) in univariate but reached significance in multivariate analysis (see below). In the subgroup of patients who received no adjuvant therapy ($n = 13$), high hypoxia score (4 of 13 patients) had no influence on patient survival ($P = 0.1942$, log-rank test). In contrast, we observed in the group with adjuvant therapy ($n = 27$) a significantly shorter survival of patients whose tumors had a high hypoxia score (11 of 27 patients; $P = 0.0145$, log-rank test; Fig. 1J). There was no significant difference in survival time between the group of patients who received no adjuvant therapy ($n = 13$) and the group of patients who received adjuvant radiotherapy only and whose tumors had a high hypoxia score ($n = 6$; $P = 0.6494$, log-rank test). In contrast, we found a significantly shorter survival time in patients without adjuvant therapy ($n = 13$) than in patients who received com-

Fig. 1 A, classical angiogenic pattern—microvascular sprouting. This vascular pattern is characterized by an evenly distributed delicate capillary network (anti-CD34; ×100). B, bizarre angiogenic pattern with clustered, glomeruloid, and garland-like vascular formations (anti-CD34; ×100). C, anti-VEGF binding on endothelial cells of bizarre vascular formations (×200). D, VEGF-mRNA expression at the border of a necrotic tissue area assessed by *in situ* hybridization (×100). E, widespread expression of hypoxia-inducible factor 1α with patchy accentuations (anti-hypoxia-inducible factor-1α; ×40). F, prominent expression of carbonic anhydrase-9 at the border of a necrotic tissue area (anticarbonic anhydrase-9; ×200). G, chromosome 1p deletion status with a 2:1 ratio of paracentromeric bright, large signals versus subtelomeric dim, small signals (×3,000). H, chromosome 1p imbalance status with a 4:2 ratio of paracentromeric bright, large signals versus subtelomeric dim, small signals (×3,000). I, Kaplan-Meier curves of overall survival of all of the patients ($n = 44$) showing a clear trend toward diminished survival of patients with high tissue hypoxia score (log rank test, $P = 0.172$; Cox regression, $P = 0.045$). J, Kaplan-Meier curves of overall survival of patients who received adjuvant therapy ($n = 27$). Patients with high hypoxia score show significantly shorter postoperative survival times (log-rank test, $P = 0.0145$).
Hypoxia in Oligodendroglial Neoplasms

Table 2 Multivariate analysis of cumulative overall survival of 44 patients with primary oligodendroglial tumors (Cox regression)

<table>
<thead>
<tr>
<th>Factor</th>
<th>P</th>
<th>Relative risk</th>
<th>95% interval of confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjuvant therapy (yes versus no)</td>
<td>0.004</td>
<td>0.023</td>
<td>0.002-69.049</td>
</tr>
<tr>
<td>Hypoxia score (low versus high)</td>
<td>0.045</td>
<td>9.53</td>
<td>1.053-86.253</td>
</tr>
<tr>
<td>Histological grading</td>
<td>0.155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient age</td>
<td>0.707</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjuvant therapy and hypoxia score were independent prognostic factors of overall survival in multivariate analysis (Table 2).

DISCUSSION

In this study, we provide evidence that expression of hypoxia-related tissue factors correlates with diminished survival of patients with 1p-aberrant oligodendroglial neoplasms. We assessed expression of three different hypoxia-related factors according to a “yes” or “no” principle, and combined expression of 2 or 3 factors was considered as significant evidence for tissue hypoxia, because expression of only one factor may occur also in the absence of tissue hypoxia, e.g., hypoxia-inducible factor-1α expression because of oncogenic activation. In a previous study, we considered hypoxia-inducible factor 1α expression in oligodendroglial tumors primarily because of oncogenic activation. In a previous study, we considered hypoxia-inducible factor 1α expression in oligodendroglial tumors primarily because of oncogenic activation (8), but in the light of our current data, it seems now more likely that hypoxia-inducible factor 1α expression in oligodendroglial neoplasms is mainly induced by tissue hypoxia.

We also studied vascular patterns with anti-CD34 immunostaining and observed a spectrum of vascular formations in oligodendroglial tumors as described previously in glioblastoma (10). Most notably, bizarre vascular patterns, comprising glomeruloid vascular formations and vascular garlands, were observed and significantly more common in recurrent tumors. Furthermore, presence of bizarre vascular formations correlated significantly with high hypoxia score both in primary and recurrent tumors. These observations indicate that formation of bizarre vascular proliferations is linked to tissue hypoxia. Expression of hypoxia-related tissue factors may promote growth of bizarre vascular formations. Existence of such a mechanism is supported by expression of VEGF-receptor 1 in endothelial cells of bizarre vascular formations and concomitant immunohistochemical detection of VEGF protein on these endothelial cells.

However in this type of study, it is not possible to determine whether hypoxia generated the transcription program that induced bizarre vascular formations or whether such structures are particularly poor at delivering blood and hence cause hypoxia.

Survival analysis confirmed adjuvant therapy as a highly significant factor for outcome of patients with 1p-aberrant oligodendroglial neoplasms. In addition, survival analysis showed an inverse correlation of high hypoxia score with patient survival. Although in the whole patient group this correlation was visible in univariate analysis only as a trend, it was significant in the patient group with adjuvant therapy. In the whole collective, hypoxia score was an independent prognostic factor in multivariate analysis. Our data provide indirect evidence that tissue hypoxia influences efficacy of adjuvant therapy. In particular, chemotherapy seems to be decisive for a beneficial therapeutic effect in hypoxic tumors: there was no significant difference in survival time between patients who received no adjuvant therapy and patients who received adjuvant radiotherapy only and whose tumors had a high hypoxia score. In contrast, we found a significantly shorter survival time in patients without adjuvant therapy than in patients who received combined radiochemotherapy and whose tumors had a high hypoxia score. Although it was shown previously that in oligodendrogliomas 1p aberrations themselves seem to be associated with better response to adjuvant therapy compared with tumors with intact 1p (14), our data show that there are also differences within the group of 1p-deficient tumors with regard to response to adjuvant therapy because of the amount of tissue hypoxia.

To make tissue hypoxia scoring on routinely processed tissue samples amenable for clinical use, its correlation with in vivo measured tissue oxygen levels needs to be analyzed, e.g., by the use of Eppendorf electrodes (15–17) or functional imaging techniques (18, 19). If tissue-based hypoxia scoring can be verified as indicator of tissue oxygen levels, it could become useful for recruitment of patients for individualized therapies, e.g., identification of hypoxic tumors for hyperbaric oxygenation preceding radiotherapy (20). As a high percentage of oligodendroglioma recurrences in the 1p aberration setting have a high hypoxia score, it should be considered to include routinely strategies of tissue oxygenation in this patient subpopulation in case of adjuvant treatment.

Research on oligodendroglial tumors is generally complicated because of their rarity. So our results should be confirmed in large-scale, multicenter prospective studies. Additionally, the impact of tissue oxygenation should also be investigated in other adjuvantly treated brain tumor types, as hypoxia-induced resistance to radiotherapy may not be restricted to oligodendroglial tumors with chromosome 1p aberration.

ACKNOWLEDGMENTS

This work was done within the Austrian Neuro-Oncology Network. We thank Drs. Karin Dieckmann, Irene Slave, Thomas Czech, and Hans Lassmann (Medical University Vienna, Vienna, Austria) for helpful discussions and support.

REFERENCES

Expression of Hypoxia-related Tissue Factors Correlates with Diminished Survival of Adjuvantly Treated Patients with Chromosome 1p Aberrant Oligodendroglial Neoplasms and Therapeutic Implications

Peter Birner, Matthias Preusser, Ellen Gelpi, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/10/19/6567

Cited articles
This article cites 18 articles, 2 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/10/19/6567.full.html#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
/content/10/19/6567.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.