Genetic and Plasma Markers of Venous Thromboembolism in Patients with High Grade Glioma

Francesca L. Sciaccia, Emilio Ciusani, Antonio Silvani, Elena Corsini, Simona Frigerio, Simona Pogliani, Eugenio Parati, Danilo Croci, Amerigo Boiardi, and Andrea Salmaggi
National Neurological Institute C. Besta, Milan, Italy

ABSTRACT

Purpose: Deep venous thrombosis/pulmonary embolism (DVT/PE) is a frequent complication in the course of cancer, particularly in brain tumors. We investigated genetic and plasma factors possibly associated with risk of DVT/PE in patients with high-grade glioma.

Experimental Design: In a case-control study, we studied polymorphisms of the genes coding for factor II (G20210A), factor V (G1691A), methylenetetrahydrofolate-reductase (C677T), tissue-type plasminogen activator (tPA; insertion/deletion), plasminogen activator inhibitor-1 (PAI-1; 4G/5G), and vascular endothelial growth factor (VEGF; C936T). We also measured plasma levels of D-dimer, lipoprotein (lp) (a), homocysteine, VEGF, tPA, and PAI-1, comparing healthy controls with patients with glioma or with patients with neurological nonneoplastic disease (multiple sclerosis).

Results: Genotype frequencies of polymorphisms analyzed were similar in patients with glioma and in healthy matched population. D-dimer, lp (a), homocysteine, VEGF, tPA, and PAI-1 plasma levels were significantly higher in patients with glioma than in healthy controls, whereas patients having neurological nonneoplastic disease had plasma values of these molecules not significantly different from healthy controls. VEGF, tPA, and PAI-1 were also found at high plasma levels in patients carrying genotypes that, in healthy controls, were associated with “low-producing” phenotypes.

Conclusions: Genetic risk factors alone did not explain the high incidence of DVT/PE observed in patients with glioma. Higher plasma levels of molecules influencing the coagulation pathways indicate that the tumor itself might confer an increased risk of DVT/PE; thus, D-dimer, homocysteine, lp (a), VEGF, tPA, and PAI-1 look like good candidates to be evaluated as DVT/PE prognostic factors.

INTRODUCTION

Deep venous thrombosis/pulmonary embolisms (DVT/PE) are common events in patients with brain tumors, affecting a proportion of patients ranging from 11 to 25% (1–3). Events are scattered through the follow-up; however, they involve a majority of patients, suggesting that prothrombotic factors released by the tumor itself may interact with genetic factors predisposing patients to DVT/PE. Because an effective prophylaxis might involve daily s.c. heparin lifelong, identification of a subset of patients at higher risk for DVT/PE could lead to a more tailored preventive treatment in selected individuals. We therefore undertook this study with the aim to identify putative genetic and plasma factors involved in DVT/PE and to differentiate patients with malignant glioma from healthy control patients.

Predisposition to sporadic DVT/PE has been associated with genetic polymorphisms located in the gene F2 (coding for coagulation factor [FII]/prothrombin) and in the gene F5 (coding for coagulation factor FV; Ref. 4). FV activates the FII into thrombin, which regulates the maturation of fibrinogen into fibrin. Polymorphism G1691A of F5 (also called Leiden mutation) confers resistance to inactivation of FV by protein C (4). Polymorphism G20210A of F2 (also called prothrombin mutation) modifies the mRNA processing, causing an increase of mRNA and protein synthesis (4).

Plasma markers that could reveal activation of coagulation/fibrinolysis pathways are increased levels of D-dimer (5), lipoprotein (lp) (a) (6); homocysteine (7), tissue-type plasminogen activator (tPA), and plasminogen activator inhibitor-1 (PAI-1; Ref. 8).

D-dimer is a product of fibrin degradation; increased D-dimer plasma levels reveal the activation of fibrinolysis. Lp (a) binds to fibrin occupying the plasminogen binding site (9); inhibits tissue factor pathway inhibitor (10), thus removing a block of coagulation cascade; induces PAI-1; and inhibits tPA (11), leading to fibrinolysis inhibition. Homocysteine, which derives from the methionine metabolism, is also a thrombogenic factor; plasma levels higher than normal have been associated with vascular diseases (12). The clotting role of homocysteine could be explained by its capacity to induce FV (13) and tissue factor (14), which binds to FVII, initiating the extrinsic way of coagulation cascade. These procoagulant mechanisms could also be supported by homocysteine inhibition of thrombomodulin (15, 16), the activator of protein C. Finally, homocysteine inhibits tPA binding to endothelial cell, leading to down-regulation of fibrinolysis (17). Homocysteine plasma level is regulated by the activity of the enzyme methylenetetrahydrofolate reductase (MTHFR), which catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a cosubstrate for homocysteine remethylation to methyonine. The gene coding for MTHFR has a biallelic polymorphism, C677T; individuals carrying TT genotype have a thermolabile enzyme with reduced activity, leading to higher plasma levels of homocys-
plasma levels and controls, as follows: with phenotypes (plasma levels) in both patients and healthy patients and in healthy controls. We then correlated genotypes plasma levels of molecules coded by these genes.

To identify risk factors predisposing patients with high-grade glioma to DVT/PE, we analyzed, by case control study, the genetic polymorphisms of F2, F5, MTHFR, VEGF, PAI-1, and PLAT (the gene coding for PAI) and the plasma levels of D-dimer, Ip (a), homocysteine, VEGF, PAI-1, and tPA in patients and in healthy controls. We then correlated genotypes with phenotypes (plasma levels) in both patients and healthy controls, as follows: MTHFR genotypes with homocysteine plasma levels and VEGF, PAI-1, and PLAT genotypes with plasma levels of molecules coded by these genes.

PATIENTS AND METHODS

Patients and Controls. Our cohort of patients with glioma includes 250 patients, 75 with anaplastic astrocytoma and 175 with glioblastoma multiforme. For simplicity, all patients with these high grade gliomas (WHO classification grade III and IV) will be grouped with the acronym AA/GBM (anaplastic astrocytoma/glioblastoma multiforme). Patients were enrolled consecutively over a period of one year and contributed to our study with a venous peripheral blood donation. Plasma values of these patients have been used as a pathological non-neoplastic neurological control group.

Healthy control group (n = 270) includes healthy blood donors and healthy volunteer staff personnel of National Neurological Institute C. Besta.

All individuals included in this study had the same ethnicity (Italian Caucasian). Patients and healthy controls gave informed consent to donate anonymous biological samples for research use. Peripheral blood samples were taken by venipuncture in patients with AA/GBM a median of 4 months (range 1–40 months) after surgery and, in patients with multiple sclerosis, during remission phase of the disease. Patients with glioma were under treatment with IFN-β or azathioprine. Healthy control samples were taken during blood donation or during routine control of health status of the staff of our institute.

Polymorphism Genotyping. Genomic DNA was extracted from 200 µl of whole blood with commercial kit (Euroclonie, Devon, United Kingdom). PCR amplifications were performed using TaqDNA polymerase (Roche Diagnostic GmbH, Mannheim, Germany) with standard procedures and specific primers that amplified the following polymorphisms: F2 G20210A (forward, 5’-ACACATGTGTTCGCTGAA-3’; backward for G allele, 5’-GCACCTGGGACTTGAAGCTC-3’; and backward for A allele, 5’-CCCAGAGAGCTGCCCAT-GAATTTCTGAAAGGTTACTTCA-3’; and forward for G allele, 5’-TGCCCAGTGCTTAACAGACA-3’; backward for A allele, 5’-CAAAAATCTGTTATTCCCTC-3’; and backward for A allele, 5’-GAATTTCTGAAAGGTATTTCAATTACCAAATACCTGTATTCATT-3’; MTHFR C677T (18); VEGF C936T (22); PAI-1 –675 G/G (25); and PLAT intron 8 I/D (26).

Plasma Dosages. Peripheral blood samples were taken by venipuncture in vacutainer tubes containing Na-citrate or EDTA as anticoagulant. Citrate blood samples were used for the determination of D-dimer, Ip (a), tPA, and PAI-1. EDTA blood samples were used for the determination of homocysteine and VEGF. The vacutainers used for the determination of homocysteine, D-dimer, Ip (a), tPA, and PAI-1 were immediately placed at 0°C to 4°C and centrifuged at 900 x g within one hour. Vacutainers used for the determination of VEGF were immediately centrifuged.

D-dimer, Ip (a), VEGF, tPA, and PAI-1 values were determined by commercial enzyme immunoassay kits [D-dimer (AGEN Biomedical, Ltd., Acacia Ridge, Australia); Ip (a) and tPA (Byk-Sangtec Diagnostic, Dietzenbach, Germany); VEGF (Pierce Endogen, Rockford, IL); and PAI-1 (Hyphen BioMed, Andréys, France)]. Homocysteine values were determined by fluorescent polarized immunoassay method using AXSYM System Instrument (Abbott Diagnostic Division, Oslo, Norway).

Statistical Analyses. The Hardy-Weinberg equilibrium was verified for all tested populations. Genotype frequencies were compared by 2 x 2 table test. Plasma values were compared using Mann-Whitney test (SAS software).

RESULTS

We analyzed the genotypes distribution of polymorphisms associated with DVT/PE risk in a AA/GBM cohort of patients and in age- and sex-matched healthy controls. The genotype frequencies of the F2 G20210A polymorphism and the F5 G1691A polymorphism were not significantly different in AA/GBM patients compared with healthy controls (F2: A/G 4% in healthy controls and 5% in AA/GBM; G/G 96% in healthy controls and 95% in AA/GBM; F5: A/G 4% in healthy controls and 1% in AA/GBM; G/G 96% in healthy controls and 99% in AA/GBM; χ² values 0.145 for F2 and 3.55 for F5; P not significant). Similarly, the genotype distributions of polymorphisms MTHFR C677T, VEGF C936T, PLAT I/D, and PAI-1 4G/5G were similar between healthy control patients and AA/GBM patients (MTHFR: C/C 32%, C/T 42%, T/T 26% in
Markers of Thromboembolism in Gliomas

Mean levels higher than individuals carrying polymorphic genotype and a high-producing phenotype. Those of healthy controls. Multiple sclerosis patients were not significantly different from controls, whereas plasma levels of these proteins measured in significantly higher in AA/GBM patients than in healthy controls.

<table>
<thead>
<tr>
<th></th>
<th>Healthy controls</th>
<th>Multiple sclerosis</th>
<th>AA/GBM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>(n)</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>d-dimer ng/ml</td>
<td>29.7 ± 6.52</td>
<td>(74)</td>
<td>73.22 ± 60.94</td>
</tr>
<tr>
<td>homocysteine μmol/liter</td>
<td>23.69 ± 23.53</td>
<td>(92)</td>
<td>20.70 ± 26.94</td>
</tr>
<tr>
<td>Homocysteine</td>
<td>10.21 ± 3.82</td>
<td>(160)</td>
<td>9.90 ± 2.9</td>
</tr>
<tr>
<td>VEGF pg/ml</td>
<td>60.95 ± 70.89</td>
<td>(29)</td>
<td>4.91 ± 3.81</td>
</tr>
<tr>
<td>tPA ng/ml</td>
<td>4.15 ± 2.72</td>
<td>(133)</td>
<td>14.17 ± 11.78</td>
</tr>
<tr>
<td>PAI-1 ng/ml</td>
<td>14.08 ± 14.98</td>
<td>(43)</td>
<td>14.37 ± 11.78</td>
</tr>
</tbody>
</table>

Table 1 Plasma levels of d-dimer, lp* (a), homocysteine, VEGF, tPA, and PAI-1 in healthy controls, in pathological controls (patients with multiple sclerosis), and in patients with glioma (AA/GBM)

In columns are indicated also P of each comparison with healthy controls.

The association of the I allele with high-tPA plasma levels was significant in healthy controls (D/D mean levels, 4.32 ± 1.54 ng/ml, versus I+ mean levels, 10.45 ± 3.46 ng/ml, P = 0.020) but not in AA/GBM cohort (D/D mean levels, 7.12 ± 3.91 ng/ml, versus I+ mean levels, 7.17 ± 4.00 ng/ml, P = 0.861); patients carrying D/D genotype had high-tPA plasma levels as well as those carrying the other genotypes (Fig. 3).

Mean plasma levels of PAI-1 were higher in healthy controls carrying the 4G allele (15.64 ± 15.90 ng/ml) compared with 5G/5G healthy individuals (8.9 ± 10.45 ng/ml), although this difference was not significant (4G+ versus 5G/5G in healthy controls, P = 0.201; normal range 4–43 ng/ml, occasionally up to 50 ng/ml). In AA/GBM patient, individuals carrying 5G/5G genotype had PAI-1 plasma levels (24.16 ± 16.40) as high as those of 4G+ group (29.42 ± 15.81; 4G+ versus 5G/5G in AA/GBM patients, P = 0.443; Fig. 4).

healthy controls; C/C 27%, C/T 51%, T/T 22% in AA/GBM; VEGF: C/C 74%, C/T 24%, T/T 2% in healthy controls; C/C 75%, C/T 23%, T/T 2% in AA/GBM; PLAT: D/D 26%, I/D 43%, I/I 31% in healthy controls; D/D 26%, I/D 47%, I/I 28% in AA/GBM; PAI-1: 4G/4G 22%, 4G/5G 57%, 5G/5G 20% in healthy controls; 4G/4G 16%, 4G/5G 55%, 5G/5G 29% in AA/GBM; chi-squared values were 2.24 for MTHFR, 0.41 for VEGF, 2.59 for PLAT, and 4.68 for PAI-1 (P not significant).

We then measured plasma levels of factors possibly associated with DVT/PE risk in the whole AA/GBM cohort and in age- and sex-matched healthy controls. Inflammatory status up-regulates plasma pro-coagulant factors and inhibits fibrinolytic activity (27). As inflammatory non-neoplastic condition, we measured plasma factors also in a group of patients affected by an autoimmune inflammatory disease of the central nervous system (multiple sclerosis). As shown in Table 1, d-dimer, lp, homocysteine, VEGF, tPA, and PAI-1 plasma levels were significantly higher in AA/GBM patients than in healthy controls, whereas plasma levels of these proteins measured in multiple sclerosis patients were not significantly different from those of healthy controls.

We observed a wide range of variability of plasma values of the molecules measured in the normal population and, furthermore, in the patient groups. One possible explanation of plasma level variability is the association between a particular polymorphic genotype and a high-producing phenotype.

Individuals having MTHFR TT genotype had homocysteine mean levels higher than individuals carrying C+ genotypes (C/C or C/T) both in healthy controls (T/T: 12.88 ± 4.93 μmol/liter; C+: 10.60 ± 2.60 μmol/liter; P = 0.015) and in AA/GBM patients (T/T: 31.74 ± 32.26 μmol/liter; C+: 13.56 ± 7.86 μmol/liter; P = 0.034; Fig. 1).

Mean plasma levels of VEGF were higher in C/C (76.59 ± 87.43 pg/ml) compared with C/T (44.20 ± 44.81 pg/ml) healthy controls, although this difference did not reach statistical significance (C/C versus C/T in controls, P = 0.275), probably because normal VEGF plasma values varied over a wide range (0–86.5 pg/ml) and could be occasionally higher than 150 pg/ml. The association of C/T genotype with a low-producing phenotype was not evident in the AA/GBM patient group; mean levels of VEGF were 112.49 ± 70.50 pg/ml in C/C patients and 93.76 ± 81.83 in C/T patients (C/C versus C/T in patients, P = 0.429; Fig. 2).

The association of the I allele with high-tPA plasma levels was significant in healthy controls (D/D mean levels, 4.32 ± 1.54 ng/ml, versus I+ mean levels, 10.45 ± 3.46 ng/ml, P = 0.020) but not in AA/GBM cohort (D/D mean levels, 7.12 ± 3.91 ng/ml, versus I+ mean levels, 7.17 ± 4.00 ng/ml, P = 0.861); patients carrying D/D genotype had high-tPA plasma levels as well as those carrying the other genotypes (Fig. 3).

Mean plasma levels of PAI-1 were higher in healthy controls carrying the 4G allele (15.64 ± 15.90 ng/ml) compared with 5G/5G healthy individuals (8.9 ± 10.45 ng/ml), although this difference was not significant (4G+ versus 5G/5G in healthy controls, P = 0.201; normal range 4–43 ng/ml, occasionally up to 50 ng/ml). In AA/GBM patient, individuals carrying 5G/5G genotype had PAI-1 plasma levels (24.16 ± 16.40) as high as those of 4G+ group (29.42 ± 15.81; 4G+ versus 5G/5G in AA/GBM patients, P = 0.443; Fig. 4).

Fig 1 Plasma levels of homocysteine in healthy controls and patients carrying different MTHFR C677T genotypes. C/C and C/T individuals had similar mean values of homocysteine, and thus they have been included in a unique group (C+). Mean values were as follows: in healthy controls, C+ (n = 48) 10.60 ± 2.60 μmol/liter and T/T (n = 21) 12.88 ± 4.93 μmol/liter, and in anaplastic astrocytoma/glioblastoma multiforme (AA/GBM) patients, C+ (n = 40) 13.56 ± 7.86 μmol/liter and T/T (n = 8) 31.74 ± 32.26 μmol/liter. Comparisons between C+ and T/T individuals showed significant differences in both healthy controls and AA/GBM groups.
Patients with glioma had a risk compared with healthy controls. Thus, these genetic risk factors alone did not explain the high frequency of DVT/PE occurrence in patients with glioma.

Increased plasma levels of d-dimer, homocysteine, VEGF, tPA, and PAI-1 characterized the AA/GBM cohort when compared with healthy controls. All these molecules are involved in the coagulation cascade; although d-dimer is a marker of fibrinolytic activity, all of the other molecules are able to modulate the coagulation process, potentially leading to or revealing a prothrombotic status. Increased levels of VEGF, PAI-1, and IPA could be caused by the production and release of these molecules by the tumor cells (20). In fact, we found these molecules at high levels even in patients carrying a genotype associated with a low-producing phenotype; the presence of the tumor could overcome the genetic background. On the contrary, homocysteine levels correlated with the genotype carriage, being higher in individuals carrying MTHFR TT genotypes, both in patients and healthy controls. Patients, anyway, had homocysteine values significantly higher than healthy controls; homocysteine levels are strongly influenced by environmental factors, particularly diet and chemotherapy (29–33), and thus the higher values observed in patients compared with controls could partly be attributable to the tumor itself but possibly also to the lifestyle and drug treatment of patients with tumor. Plasma lp (a) (3) shows that wide quantitative variation among individuals and diet or drugs could only slightly modulate lp (a) plasma levels (34–37). Lp (a) could play a crucial role in modulating the coagulation status of patients with tumor; it may influence coagulation cascade, and thus regulation of lp (a) levels in patients with glioma deserves further investigation.

The results of our study exclude the existence of major follow-up study in which these altered parameters should be monitored and related to DVT/PE events in the course of the disease. Alleles associated with risk of DVT/PE, F2 20210A and F5 1691A, and polymorphisms of genes coding for proteins involved in coagulation pathways (MTHFR, VEGF, PLAT, and PAI-1) were not differently distributed in AA/GBM patients compared with healthy controls. Thus, these genetic risk factors alone did not explain the high frequency of DVT/PE occurrence in patients with glioma.

Increased plasma levels of d-dimer, homocysteine, VEGF, tPA, and PAI-1 characterized the AA/GBM cohort when compared with healthy controls. All these molecules are involved in the coagulation cascade; although d-dimer is a marker of fibrinolytic activity, all of the other molecules are able to modulate the coagulation process, potentially leading to or revealing a prothrombotic status. Increased levels of VEGF, PAI-1, and IPA could be caused by the production and release of these molecules by the tumor cells (20). In fact, we found these molecules at high levels even in patients carrying a genotype associated with a low-producing phenotype; the presence of the tumor could overcome the genetic background. On the contrary, homocysteine levels correlated with the genotype carriage, being higher in individuals carrying MTHFR TT genotypes, both in patients and healthy controls. Patients, anyway, had homocysteine values significantly higher than healthy controls; homocysteine levels are strongly influenced by environmental factors, particularly diet and chemotherapy (29–33), and thus the higher values observed in patients compared with controls could partly be attributable to the tumor itself but possibly also to the lifestyle and drug treatment of patients with tumor. Plasma lp (a) (3) shows that wide quantitative variation among individuals and diet or drugs could only slightly modulate lp (a) plasma levels (34–37). Lp (a) could play a crucial role in modulating the coagulation status of patients with tumor; it may influence coagulation cascade, and thus regulation of lp (a) levels in patients with glioma deserves further investigation.

The results of our study exclude the existence of major
differences in the genetic polymorphisms concerning the ana-
ylyzed molecules in a malignant glioma patient population,
strongly suggesting the overwhelming role of the release of
these factors (possibly within the tumor) in obtaining plasma
concentrations higher than in controls. In patients with glioma,
the molecules that we investigated could act in concert and
interact modifying the coagulation pathways. Glioma cells ex-
press VEGF, tPA, and PAI-1 during the tumor growth (20). The
increase of VEGF, which in glioblastoma multiforme is sus-
tained also by amplification of epidermal growth factor receptor
(38), induces tPA and thus maturation of plasminogen into
plasmin (39); in parallel, the inhibitor of tPA (PAI-1) is induced
in concert with tPA (21); up-regulation of PAI-1 leads to a
prothrombotic status by inhibition of plasminogen activation
and, consequently, by reduction of fibrinolytic activity. The
balance between PAI-1 and tPA activity could determine the pro-
- or the antithrombotic status. This balance could be influ-
enced by Lp (a), which reduce the secretion of tPA (11) and
enhance the production of PAI-1 (40). Lp (a) binds to fibrin
acting as a plasminogen competitor and further down-regulating
fibrinolysis (9). Moreover, Lp (a) down-regulates tissue factor
pathway inhibitor (10), whereas homocysteine up-regulates tis-
ue factor (14); both mechanisms activate the extrinsic way of
coagulation. Homocysteine could also induces FV (13) and
sustain its activation by inhibiting thrombomodulin (15, 16).
Because we found high levels of t- dimer, Lp (a), homocys-
teine, VEGF, tPA, and PAI-1 in patients with glioma, we can
suppose that, in these patients, the coagulation status may be
modified by the tumor. A longitudinal study is in progress, with
the aim to assess whether elevated plasma levels of these mol-
ecules are to some extent related to an increased frequency of
DVT/PE events and tumor growth or to a relapse during the
follow-up of patients treated by surgery followed by chemo-
radiotherapy.

ACKNOWLEDGMENTS
We thank Drs. Clara Milanese and Loredana La Mantia of the
Multiple Sclerosis Center of the National Neurological Institute C. Besta
(Milan, Italy), and Drs. Elena Fonti and Franco Azzario of the Trans-
fusion Center of Niguarda Hospital (Milan, Italy). A special thanks to
the National Neurological Institute C. Besta staff that donated blood
samples for this study.

REFERENCES
1. Sallah, S., Wan, J. Y., and Nguyen, N. P. Venous thrombosis in
patients with solid tumors: determination of frequency and characteris-
2. Lee, A. Y., and Levine, M. N. Venous thromboembolism and cancer:
thrombosis is increased throughout the course of malignant gli-
4. Lane, D. A., and Grant, P. J. Role of hemostatic gene polymorphisms
5. Vukovich, T. C., Gabriel, A., Schaeffer, B., Veitl, M., Matula, C.,
and Spiss, C. K. Hemostasis activation in patients undergoing brain
6. de la Pena-Diaz, A., Iraguirre-Avila, R., and Angles-Can, E. Lip-
oprotein Lp(a) and atherothrombotic disease. Arch. Med. Res., 31:
7. den Heijer, M., Koster, T., Blom, H. J., Bos, G. M., Briet, E.,
Reitsma, P. H., Vandenbroucke, J. P., and Rosendaal, F. R. Hyperho-
moscysteine as a risk factor for deep- vein thrombosis. N. Engl. J.
8. Flores, J., Garcia-Avella, A., Flores, V. M., Navarro, J. L., Canseco,
F., and Perez-Rodriguez. E. Tissue plasminogen activator plasma levels
as a potential diagnostic aid in acute pulmonary embolism. Arch. Pathol.
E. F. A potential basis for the thrombotic risks associated with lipopro-
10. Caplice, N. M., Panetta, C., Peterson, T. E., Kleppe, L. S., Mueske,
C. S., Kostner, G. M., Broze, G. J., Jr., and Simari, R. D. Lipoprotein (a)
binds and inactivates tissue factor pathway inhibitor: a novel link
11. Levin, E. G., Miles, L. A., Fless, G. M., Scantu, A. M., Baynham, P.,
Curtiss, L. K., and Plow, E. F. Lipoproteins inhibit the secretion of
tissue plasminogen activator from human endothelial cells. Arterioscler.
A quantitative assessment of plasma homocysteine as a risk factor for
vascular disease. Probable benefits of increasing folic acid intakes.
13. Rodgers, G. M., and Conn, M. T. Activation of endogenous factor
V by a homocysteine-induced vascular endothelial cell activator. J. Clin.
expression by homocysteine: a possible mechanism for thombo-
15. Lentz, S. R., and Sadler, J. E. Inhibition of thrombomodulin
surface expression and protein C activation by the thrombogenic
homocysteine inhibits cofactor activity of thrombomodulin and en-
hances thrombomodulin expression in human umbilical vein endothe-
17. Hajjar, K. A. Homocysteine-induced modulation of tissue plasmin-
gen activator binding to its endothelial cell membrane receptor. J. Clin.
polymorphism of the methylenetetrahydrofolate reductase gene and the
risk of venous thromboembolism: meta-analysis of 31 studies. Patho-
20. Sandstrom, M., Johansson, M., Sandstrom, J., Bergenheim, A. T.,
and Henriksson, R. Expression of the proteolytic factors, tPA and tPA-
PAI-1 and VEGF during malignant glioma progression. Int. J. Dev.
enthelial growth factor (VEGF) induces plasminogen activators and
plasminogen activator inhibitor-1 in microvascular endothelial cells.
22. Renner, W., Kotschan, S., Hoffmann, C., Obermayer-Pietsch, B.,
and Rugger, F. A common 936 C/T mutation in the gene for vascular
enthelial growth factor is associated with vascular endothelial growth
23. Burzotta, F., Di Castelnuovo, A., Amore, C., D’Orazio, A., Di
Bitondo, R., Donati, M. B., and Iacoviello, L. A common 936
C/T polymorphism of the VEGF gene is associated with plasma PAI-1
of t-PA is associated with forearm vascular release rate of t-PA. Arte-
Genetic and Plasma Markers of Venous Thromboembolism in Patients with High Grade Glioma

Francesca L. Sciacca, Emilio Ciusani, Antonio Silvani, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/10/4/1312

Cited articles
This article cites 40 articles, 11 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/10/4/1312.full.html#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/10/4/1312.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.