ABSTRACT

NY-ESO-1 is a 180 amino-acid human tumor antigen expressed by many different tumor types and belongs to the family of “cancer-testis” antigens. In humans, NY-ESO-1 is one of the most immunogenic tumor antigens and NY-ESO-1 peptides have been shown to induce NY-ESO-1-specific CD8\(^{+}\) CTLs capable of altering the natural course of NY-ESO-1-expressing tumors in cancer patients. Here we describe the preclinical immunogenicity and efficacy of NY-ESO-1 protein formulated with the ISCOMATRIX adjuvant (NY-ESO-1 vaccine). In vitro, the NY-ESO-1 vaccine was readily taken up by human monocyte-derived dendritic cells, and on maturation, these human monocyte-derived dendritic cells efficiently cross-presented HLA-A2-restricted epitopes to NY-ESO-1-specific CD8\(^{+}\) T cells. In addition, epitopes of NY-ESO-1 protein were also presented on MHC class II molecules to NY-ESO-1-specific CD4\(^{+}\) T cells. The NY-ESO-1 vaccine induced strong NY-ESO-1-specific IFN-\(\gamma\) and IgG2a responses in C57BL/6 mice. Furthermore, the NY-ESO-1 vaccine induced NY-ESO-1-specific CD8\(^{+}\) CTLs in HLA-A2 transgenic mice that were capable of lysing human HLA-A2\(^{+}\) NY-ESO-1\(^{+}\) tumor cells. Finally, C57BL/6 mice, immunized with the NY-ESO-1 vaccine, were protected against challenge with a B16 melanoma cell line expressing NY-ESO-1. These data illustrate that the NY-ESO-1 vaccine represents a potent therapeutic anticancer vaccine.

INTRODUCTION

The NY-ESO-1 human tumor antigen was recently identified using serological analysis of tumor antigens by recombinant cDNA expression (SEREX) cloning analysis of a human esophageal cancer (1). It is a 22,000 cytoplasmic protein (180 amino acids; Ref. 2) expressed in a number of different tumor types including melanoma (reviewed in Ref. 3). NY-ESO-1 belongs to the “cancer-testis” antigens (3), whose expression is restricted to a proportion of human cancer types as well as to germ cells of the testes and/or ovaries in healthy individuals and the trophoblast (3) but is not found in other normal tissues. In contrast to other known cancer-associated antigens, humoral responses against NY-ESO-1 are frequently observed in patients with NY-ESO-1-expressing tumors (4).

CD8\(^{+}\) T-cell epitopes derived from cancer-testis antigens, have shown considerable promise in cancer immunotherapy (5). At least four CD8\(^{+}\) T-cell epitopes for NY-ESO-1 have now been described for the MHC-class I allele, HLA-A2. These include, SLLMWITQCFL\(_{157-167}\), SLLMWITQC\(_{157-165}\), QLSLLMWIT\(_{155-163}\), and the recently identified cryptic epitope, LMWITQCF\(_{159-167}\). Although SLLMWITQCFL\(_{157-167}\), SLLMWITQC\(_{157-165}\), and LMWITQCF\(_{159-167}\) exhibit good in vitro immunogenicity, the cryptic LMWITQCF\(_{159-167}\) peptide does not appear to be naturally processed (9). Furthermore, QLSLLMWIT\(_{155-163}\) is poorly immunogenic and CD8\(^{+}\) CTLs recognizing this epitope are rarely detected in cancer patients (6–8). Although a poorer binder for HLA-A*0201 than the SLLMWITQCF\(_{157-167}\) and QLSLLMWIT\(_{155-163}\) peptides, the SLLMWITQCFL\(_{157-165}\) peptide is efficiently recognized by CD8\(^{+}\) T cells from HLA-A*0201 melanoma patients (9–11). Furthermore, vaccination of NY-ESO-1\(^{+}\) cancer patients with SLLMWITQCF\(_{157-167}\) and QLSLLMWIT\(_{155-163}\) peptides induced NY-ESO-1-specific CD8\(^{+}\) T cells, some stabilization of disease, and regression of individual metastases in some patients (12). The demonstration that CD8\(^{+}\) T cells can provide potent anticancer activity has resulted in a substantial number of human cancer vaccine trials aiming to induce
anticancer CD8\(^+\) T cells. However, the importance of antitumor CD4\(^+\) T-cell responses for efficient activation and maintenance of anticancer CD8\(^+\) T cells has been established in several studies (13–15). In this regard, an NY-ESO-1 epitope restricted to the MHC class II allele, HLA-DRB1*0401–0402 (found in 43–70% of Caucasians), has been identified (SLLMWITQCFLPVF 157–165) and overlaps the SLLMWITQCFL 157–167 and SLLMWITQC 157–165 epitopes (16). Furthermore, another HLA-DRB1*0401-restricted CD4 epitope has recently been identified and localizes to NY-ESO-1 (17, 18). Thus, the major advantage of using a full-length tumor protein as a vaccine is the possibility of generating multiple MHC class I and II-restricted T-cell responses, rather than with peptide vaccines, which limit CD8\(^+\) T-cell responses to only one of six possible MHC class-I alleles (i.e., HLA-A2).

Currently, there are few vaccine modalities that safely and effectively induce potent CD8\(^+\) T-cell responses in humans with few adjuvants approved for human use. The use of in vitro-generated, autologous dendritic cells (DCs) as cellular adjuvants for vaccine delivery is being widely tested in cancer patients (19, 20). However, considerable research is required to optimize the preparation, antigen loading, and route of delivery of DC-based cancer vaccines to achieve broad clinical utility (20). The ISCOMATRIX adjuvant (an immunostimulatory complex that does not contain antigen) is a cage-like structure, typically 40 nm, composed of saponin, phospholipid, and cholesterol. An ISCOMATRIX vaccine (an immunostimulatory complex that contains antigen) can be generated by associating the antigen with the ISCOMATRIX adjuvant. ISCOMATRIX-based vaccines have been used safely in humans to induce strong antibody responses as well as potent CD4\(^+\) T-helper-cell and CD8\(^+\) CTL responses to several viral and cancer antigens (21–23). ISCOMATRIX vaccines have a number of potential advantages for use in cancer immunotherapy. These include (a) the absence of potential safety issues associated with live vector systems and DNA; (b) the ability for repeated use due to the lack of induction of neutralizing antibody responses; (c) the induction of effective CD8\(^+\) T-cell responses, even in the presence of antibodies specific for the vaccine antigen (24); and (d) the generation of broad MHC class I and II epitopes when used with full-length protein antigen resulting in more robust and sustainable immune responses.

Here we illustrate, in human tissue culture and murine in vivo models, the immunogenicity of a NY-ESO-1 vaccine composed of full-length NY-ESO-1 protein combined with ISCOMATRIX adjuvant. In addition, we show that the NY-ESO-1 vaccine generates both humoral and T-cell responses and, therefore, represents a valuable therapeutic anticancer vaccine.

MATERIALS AND METHODS

Preparation of Recombinant NY-ESO-1 Protein. The expression plasmid pLICR100kan was transfected into *Escherichia coli* B strain B21, which was fermented to produce NY-ESO-1 as an insoluble inclusion body. Cells were disrupted using high-pressure homogenization, and inclusion bodies were isolated and solubilized using denaturant. The purification of NY-ESO-1 used a three-step column chromatography process of immobilized metal affinity, anion exchange, and hydrophobic interaction chromatography using Chelating Sepharose FF, Q-Sepharose FF, and Phenyl Sepharose FF (Pharmacia Biotech, Upsala, Sweden), respectively.\(^3\)

Preparation of ISCOMATRIX Adjuvant. ISCOMATRIX adjuvant was prepared as described previously (25), but using ultrafiltration instead of dialysis. Briefly, a purified fraction of *Quillaja* saponin (ISCOPREP saponin; CSL Limited, Parkville, VIC, Australia) at 100 mg/ml was added to a solution of 10 mg/ml cholesterol (Sigma, St. Louis, MO) and 10 mg/ml dipalmitoylphosphatidylcholine (Avanti Polar Lipids, Alabaster, AL) dissolved in 20% w/v MEGA-10 (Sigma) and buffered isotonic saline (pH 6.2) to give a final concentration of 4 mg/ml ISCOMATRIX saponin and 0.8 mg/ml of cholesterol and buffered isotonic saline. The solution was then held at 25°C for 60 min and diluted a further 1 in 4 with buffered isotonic saline (pH 6.2). During the subsequent ultrafiltration against 14 volumes of buffered isotonic saline (pH 6.2), ISCOMATRIX adjuvant containing ISCPREP saponin, cholesterol, and buffered isotonic saline was formed.

Preparation and Characterization of NY-ESO-1 Vaccine. NY-ESO-1 vaccine was prepared by mixing recombinant NY-ESO-1 protein (0.4 mg/ml) with ISCOMATRIX adjuvant (0.4 mg/ml ISCOMATRIX) at a 1:1 ratio in 0.5 M phosphate buffer containing 0.75 mM NaCl, 0.25 mM glycine, and 0.2 M urea (pH 6.5). The concentration of ISCOMATRIX saponin was determined by reversed-phase high-performance liquid chromatography, and the concentration of protein was determined by amino acid analysis. Association between NY-ESO-1 and ISCOMATRIX adjuvant was confirmed by flow cytometry using a FACSCalibur equipped with CELLQuest software (Becton Dickinson, San Jose, CA). Briefly, NY-ESO-1 vaccine was double labeled using a FITC-conjugated anti-NY-ESO-1 monoclonal antibody (mAb; ES121; Ref. 26) and a biotinylated-anti-ISCOMATRIX adjuvant mAb (CSL Limited) followed by streptavidin-allophycocyanin (APC) (PharMingen/Becton Dickinson, San Jose, CA). The formulation was also analyzed by scanning electron microscopy, and the particle size was analyzed by dynamic light scattering using a Nicomp 370. The batch-to-batch variability of the NY-ESO-1 vaccine aggregate profile is relatively consistent as assessed by both screening electron microscopy and fluorescence-activated cell sorting (FACS) analysis.

IHC Analysis of NY-ESO-1 Expression in Tumor Cell Lines. Immunohistochemistry (IHC) for NY-ESO-1 expression was performed on human tumor biopsy samples and transfected tumor cell lines using the mouse-antihuman-NY-ESO-1 mAb, E978 (3 μg/ml), as described previously (26). IHC was performed using the Vectastain Elite Universal ABC kit purchased from Vector Laboratories (Burlingame, CA). All of the sections were submitted to 3% H\(_2\)O\(_2\)/PBS for 10 min to block endogeneous peroxidase. Endogeneous biotin activity was quenched by sequential application of egg white and skim milk.

\(^3\) R. Murphy et al., Recombinant NY-ESO-1 cancer antigen: production and purification of a tumour specific antigen under cGMP conditions, submitted for publication.
All of the incubations were performed at room temperature using the Shandon Sequenza immunostainer. 3-Amino-9-ethyl-carbazole (Sigma-Aldrich) was used as the chromogen, and slides were counterstained with Mayer’s hematoxylin (Amber Scientific MH-5L). Application of CrystalMount (Biomedica M03) preceded dehydation and mounting in DePeX (BDH 36125).

Quantitative Real-Time PCR Analysis of NY-ESO-1 Expression on Tumor Cell Lines. To quantify the copy number of NY-ESO-1 mRNA, quantitative real-time PCR was performed using ABI Prism 7700 Sequence Detection System Taqman (Applied Biosystems, Foster City, CA). A multiplex PCR containing 1 μl cDNA was set up with the housekeeping gene β-actin according to the manufacturer’s instructions (Applied Biosystems) to normalize the cDNA samples. Probes and primers for NY-ESO-1 were designed across intron/exon boundaries to avoid amplification of genomic DNA. The primer and probe sequences were as follows: forward, 5′-TGC TGG AGT TCT ACC TCG CCA T-3′; reverse, 5′-TAT GGT GCC GGA CAC AGT GAA-3′; Probe, 6FAM-AGG ATG CCC CAC CGC TTC CC-TAMRA. The conditions used are described by Tagman protocols (Applied Biosystems) with up to 40 cycles of amplification used per sample. Results were analyzed using the SDS program version v1.7. Copy numbers of NY-ESO-1 were calculated from standard curves of the relevant plasmid and were expressed per 10^5 copies of the housekeeping gene β-actin in 100 ng of total RNA.

Generation of NY-ESO-1-Specific Human CD4+ and CD8+ T-Cell Lines. Short-term and longer-term CD8+ CTL cell lines specific for the NY-ESO-1 peptide SLLMWITQC157-165 were established from an HLA-A2 patient who had a melanoma that expressed NY-ESO-1 and high-titer anti-NY-ESO-1 antibodies in serum. Similarly, short- and longer-term CD4+ T-cell lines specific for the NY-ESO-1 peptide SLLMWITQCFLPVF157-170 were established from an HLA-DR4 patient. All of the Ludwig Institute clinical trial protocols used in the present study comply with National Health and Medical Research Council guidelines and were approved by the Human Research and Ethics Committee of the Austin and Repatriation Medical Centre (A&RMC). Briefly, 1 × 10^6 irradiated (3000 rad) peripheral blood mononuclear cells (PBMCs) were pulsed with the NY-ESO-1 peptides SLLMWITQC157-165 (HLA-A2-restricted) or SLLMWITQCFLPVF157-170 (HLA-DR4-restricted); 10 μg/ml, 2 h at room temperature, were washed twice in RPMI 1640, and were cocultured with equal numbers of nonirradiated PBMCs in 0.5 ml of Iscove’s modified Dulbecco’s medium supplemented with 5% human serum (CSL Limited) in 48-well plates. At day 3 of the culture, 5 units/ml interleukin (IL)-2 (Peprotech, Rocky Hill, NJ) were added. After 7 days, the T cells were restimulated with irradiated, peptide-pulsed, autologous PBMCs and were maintained in the presence of 25 units/ml IL-2 in 24-well plates. Two days after, the CD8+ T-cell line (1 × 10^6 cells) was restimulated weekly with 1 × 10^6 peptide-pulsed, irradiated (10,000 rad) T2 cells and 2 × 10^6 HLA-A2+, allogeneic, irradiated (10,000 rad) EBV-transformed B cells. Similarly, the CD4+ T-cell lines were restimulated weekly with 1 × 10^6 peptide-pulsed, irradiated (10,000 rad) autologous PBMCs and 2 × 10^6 HLA-DP4+, allogeneic, irradiated (10,000 rad) EBV-transformed B cells. Both CD4+ and CD8+ T cells were used in assays at least 1 week after the last restimulation.

Human IFN-γ Enzyme-Linked Immunospot-Forming Assay. Millipore multiscrreen plates (Millipore, Molsheim, France) were coated with anti-IFN-γ antibody [5 μg/ml in 0.1 μl NalHCO3 buffer (pH 8.3), 2 h at room temperature] and were blocked for 1 h with PBS supplemented with 10% FCS. Peptide-sensitized (10 μg/ml, 2 h at room temperature and washed) T2 cells or melanoma target cells (5,000/well) were cocultured with 1.5 × 10^3 CD8+ T cells specific for the NY-ESO-1 SLLMWITQC157-165 peptide. T2 cells, pulsed with an irrelevant HLA-A2-restricted peptide (MAGE-3: FLWGPRLAV271-279), were used as a negative control. The LAR (Ludwig Austin Repatriation) series of melanoma cell lines were derived at the Ludwig Institute from patients’ biopsy samples, and consent was obtained from each patient before establishment. After overnight culture, cells were lysed with H2O for 30 min; and horse-radish-peroxidase-labeled anti-IFN-γ antibody was added for 2 h (10 μg/ml PBS, 3% FCS, and 0.05% Tween 20). After washing, spots were developed with 3-amino-9-ethyl-carbazole in acetate buffer for 8 min. The plates were washed with H2O and air-dried. IFN-γ spots were counted using a video camera (TK-1280E, Zeiss, Göttingen, Germany) and the VideoPro software (Olympus, Mount Waverly, Australia).

Uptake of NY-ESO-1 Vaccine by MoDCs and Induction of Maturation. Monocyte-derived DCs (MoDCs) were generated by affino-saturating CD14+ monocytes from healthy donor PBMCs by buffy packs (Red Cross Blood Bank, Melbourne, VIC, Australia) using the MACS CD14 isolation kit (Miltenyi Biotech, Sunnyvale, CA). The monocytes (5 × 10^7/well) were cultured in 1 ml of RPMI 1640 supplemented with 10% FCS, granulocyte macrophage colony-stimulating factor (40 ng/ml; Schering-Plough, Sydney, NSW, Australia) and IL-4 (500 units/ml; Schering-Plough, Kenilworth, NJ) in 24-well plates. On day 7, MoDCs represented >90% of cultured cells as determined by CD1a and HLA-DR expression using FACS analysis. At day 7, all of the wells were pooled and the cell concentration readjusted to 1 × 10^5 cells/ml. DCs were incubated with NY-ESO-1 vaccine (10 μg/ml ISCOMPREP saponin) for 1 h at 37°C, were washed thoroughly, and were recultured prior to analysis for uptake. Uptake of NY-ESO-1 vaccine by MoDCs was assessed by flow cytometry using a FITC-conjugated anti-NY-ESO-1 mAb (clone ES121) and a biotinylated-anti-ISCOMATRIX adjuvant mAb (clone 703B) followed by streptavidin-APC (PharMingen/Becton Dickinson, San Jose, CA). Isotype-matched control antibodies were used to ensure specificity of antibody binding. In a separate series of experiments, one-half of the NY-ESO-1 vaccine-pulsed MoDC cultures were matured overnight (18 h) with various classes of stimuli. These included pro-inflammatory mediators: tumor necrosis factor (TNF)-α (10 ng/ml; R&D systems, Minneapolis, MN); IFN-α2a (1000 units/ml; Roferon-A, Roche Products Pty., Sydney, NSW, Australia); prostaglandin E2 (PGE2) (1 μM final concentration; ICN Biomedicals, Aurora, OH); or CD40L-trimer (1 μg/ml, gift from Immunix Corp, an Amgen subsidiary, Seattle, WA); or intact E. coli (grown at log phase and used at 5.2 × 10^6 E. coli/ml). The nonmatured MoDCs were kept in their culture medium before analysis for phenotypic maturation. Flow cytometric analysis of MoDCs was performed using the following mAbs: FITC-
conjugated IgG1 isotype control; phycocerythrin-conjugated IgG1 isotype control; anti-CD80-Phycocerythrin; anti-HLA-DR-Arc; anti-HLA-A,B,C-FTTC; anti-CD86-APC, (PharMingen/Beckton Dickinson); anti-CD83-Phycocerythrin (Immunootech, Beckman Coulter, Gladsveld, Australia).

Presentation of NY-ESO-1157-170 Peptide to NY-ESO-1-Specific CD8 T Cells or NY-ESO-1156-165 Peptide to CD8 T Cells by MoDCs Pulsed with the NY-ESO-1 Vaccine. In separate experiments, MoDCs were pulsed with NY-ESO-1 vaccine (20 µg/ml ISCOMREV saponin), was washed thoroughly, and then were matured overnight by culturing in fresh medium containing granulocye/macrophage colony-stimulating factor (40 ng/ml), IL-4 (500 units/ml), TNF-α (10 ng/ml), IFN-α2a (1000 units/ml), and PGE2 (1 µM/ml). These MoDCs were then cocultured with either an NY-ESO-1 SLLM-WITQCFLPVF157-170-specific CD8 T-cell line (HLA-DR-restricted) or an NY-ESO-1 SLLMWITQC156-165-specific CD8 T-cell line (HLA-A2-restricted) for 4 h, and peptide-induced secretion of IFN-γ by CD8+ or CD8+ T cells was assessed by intracellular cytokine secretion assay using FACS. For the CD8+ T-cell assays, several controls were included during the analysis. Cytokine-matured MoDCs (not pulsed with NY-ESO-1 vaccine) were pulsed with either NY-ESO-1 SLLM-WITQC157-165 peptide (positive control) or the MAGE-3-HLA-A2-restricted peptide (FLWGRALV271-279; negative control) and were cocultured with the NY-ESO-1 SLLMWITQC157-165-specific CD8+ CTL cell line in parallel. As additional controls, transporter associated with antigen processing (TAP)-deficient, HLA-A2+ T2 cells were pulsed with NY-ESO-1 vaccine and used as APC to eliminate the possibility that NY-ESO-1 vaccine contained or generated free NY-ESO-1 SLLMWITQC156-165 peptides during the assay period.

Mice. Female BALB/c and C57BL/6 mice were purchased from Animal Resource Centre (Perth, Australia) and were used at 8–12 weeks of age. Transgenic HHD mice have a transgene composed of the α1 and α2 domains of HLA-A2 linked to the α3 trans-membrane and cytoplasmic domains of H-2Dd, with the α1 domain linked to human β2-microglobulin. This transgene was introduced into murine β2-microglobulin and H-2Dd double knockout mice; thus, the only MHC expressed by the HHD mouse was the modified HLA-A2 molecule (27). HHD mice were bred at the Queensland Institute for Medical Research and were used at 8–12 weeks of age.

Immunization and CD8+ T-cell Assays Using HHD Mice. Five mice/group were immunized s.c. with 100 µl into the scruff of the neck with the NY-ESO-1 vaccine (5 µg of both NY-ESO-1 and ISCOMREV saponin), or with NY-ESO-1 protein (5 µg of protein) or with the ISCOMATRIX adjuvant (5 µg of ISCOMREV saponin). Three weeks after immunization, splenocytes isolated from individual mice were separately restimulated with peptide-pulsed (10 µg/ml, 37°C, 1 h, two washes) and irradiated (3000 rad) lipopolysaccharide blasts (effector:stimulator ratio, 3:1), as described previously (28). On day 6, cultures were used as effectors in standard enzyme-linked immunospot assays (29) and/or 51Cr-release assays using EL4 HHD target cells (28) sensitized with NY-ESO-1 peptides. Some cultures were subject to two additional rounds of weekly restimulation with SLLMWITQ157-165-sensitized irradiated (8000 rad) HHD EL4 cells (effector:stimulator ratio, 15:1) before use as effectors against human melanoma cell line targets. The human tumor cell lines were SK-Mel-37 (30), A11–1c, A05, A09-M, A02-Mb, and A12-M, which were derived from patients enrolled in a therapeutic clinical trial (31).

Antibody and IFN-γ Responses in BALB/C Mice. Mice were immunized s.c. with 100 µl into the scruff of the neck, twice, 3 weeks apart, with the NY-ESO-1 vaccine (5 µg of NY-ESO-1 and ISCOMREV saponin), or with NY-ESO-1 protein (5 µg of protein), or with the ISCOMATRIX adjuvant (5 µg of ISCOMREV saponin). Immediately before, and 7 days after, the second immunization, serum was collected for antibody determination, and spleen cells were collected for the measurement of IFN-γ secretion. Antibody to recombinant NY-ESO-1 was assayed by a standard indirect enzyme immunosay. Plates were coated by overnight incubation with 10 µg/ml NY-ESO-1 protein followed by blocking in PBS containing 1% casein. Sera were tested at 5-fold dilutions starting from 1:100. The plates were incubated with horseradish peroxidase-conjugated antimouse IgG (KPL, Gaithersburg, MD) followed by the addition of tetramethylbenzidine substrate solution (KPL). The reaction was stopped by the addition of H2SO4, and the absorbance was read at 450 nm. Titers were determined from a standard curve generated on each plate using four-parameter fit calculations (KCI; Bio-Tek Instruments, Winooski, VT).

Spleen-cell-derived IFN-γ was assayed in supernatants from in vitro-stimulated splenocyte cultures from immunized BALB/c mice (n = 3/group). Splenocytes (0.5 × 106/ml) were cultured in 96-well plates (Costar, Cambridge, MA), together with 2.5 µg/ml of recombinant NY-ESO-1 protein for 72 h at 37°C and 5% CO2 in RPMI 1640 supplemented with 5% v/v inactivated FCS (CSL Limited), 5 × 10–5M 2-mercaptoethanol (Life Technologies, Inc., Rockville, MD), and 40 µg/ml gentamicin (CSL Limited Australia). Plates were coated by overnight incubation with rat-antimouse IFN-γ (Endogen, Woburn, MA) and blocked with 1% casein in PBS. Cell culture supernatants were tested in triplicate at a 1:10 dilution using recombinant purified IFN-γ (Sigma) as a standard. The plates were then incubated with biotinylated rat antimouse IFN-γ followed by streptavidin-horseradish peroxidase (Amersham Pharmacia Biotech Ltd, Little Chalfont, Bucks, United Kingdom) and were developed with tetramethylbenzidine substrate (KPL). The reaction was stopped by the addition of H2SO4, and the absorbance at 450 nm was determined. IFN-γ concentrations were determined from a standard curve generated on each plate using four-parameter-fit calculations (KCI; Bio-Tek Instruments).

B16-NY-ESO-1 Tumor Challenge. B16 melanoma cells were transfected using electroporation with the mammalian expression plasmid, pCDNA3, encoding the cDNA for NY-ESO-1 (Invitrogen, Carlsbad, CA). Selection with G418 (800 µg/ml) and limit-dilution cloning yielded a clone expressing NY-ESO-1 (B16-NY-ESO-1) as determined by IHC and quantitative real-time PCR. C57BL/6 mice (n = 6/group) were vaccinated twice (at 0 and 4 weeks) with the NY-ESO-1 vaccine, or with the ISCOMATRIX adjuvant alone as a control. Four weeks after the second immunization, mice were challenged with B16-NY-ESO-1. The tumor cells (1 × 105) were injected s.c. on the back, and tumor volume was measured over time. Mice were euthanized when tumors reached >180 mm2.
RESULTS

Characterization of the NY-ESO-1 Vaccine Formulation. Efficient induction of CD8+ T-cell responses by ISCOMATRIX adjuvant is believed to require association of the antigen and the adjuvant. As a result, a number of strategies to achieve this have been developed (29). In this case, simple mixing of ISCOMATRIX adjuvant with recombinant NY-ESO-1 protein appeared to be sufficient to ensure adequate association between the vaccine components, presumably because the positively charged NH2 terminus of the NY-ESO-1 protein (1) could interact with the negatively charged ISCOMATRIX adjuvant via electrostatic interactions. Association for the two components (i.e., NY-ESO-1 and ISCOMATRIX adjuvant) could be demonstrated by FACS analysis, with 94% of FACS-detectable vaccine material stained positive for both NY-ESO-1 (anti-NY-ESO-1 mAb, ES121) and ISCOMATRIX adjuvant via electrostatic interactions. Association for the two components (i.e., NY-ESO-1 and ISCOMATRIX adjuvant) could be demonstrated by FACS analysis, with 94% of FACS-detectable vaccine material stained positive for both NY-ESO-1 (anti-NY-ESO-1 mAb, ES121) and ISCOMATRIX adjuvant (anti-ISCOMATRIX adjuvant mAb, 706B; Fig. 1A). ISCOMATRIX adjuvant is typically 40 nm in size and, thus, not readily detectable by FACS. However, as shown in Fig. 1B, the majority of the NY-ESO-1 vaccine formulation was composed of large aggregates of NY-ESO-1 vaccine that were ~1–2 μm in size. There were also some larger aggregates present but they represented a minority of the NY-ESO-1 vaccine and likely act in the same manner as the smaller aggregates. These data illustrate that NY-ESO-1 had effectively associated with ISCOMATRIX adjuvant and resulted in the formation of aggregates.

NY-ESO-1 Vaccine Is Taken Up by Human MoDCs but Does Not Induce DC Maturation. DCs can be efficiently generated from CD14+ blood monocytes (MoDCs) after 6–7 days of culture in granulocyte macrophage colony-stimulating factor and IL-4 (19, 20). These DCs were phenotypically immature, expressing intermediate levels of MHC class II molecules and low levels of CD80, CD83, and CD86 (19, 20). We examined whether immature MoDCs could ingest the NY-ESO-1 vaccine and whether uptake of the NY-ESO-1 vaccine was sufficient to induce the phenotypic maturation of immature MoDCs in vitro. Immature MoDCs were incubated with the NY-ESO-1 vaccine either at 4°C or at 37°C for 1–3 h. The cells were then washed and examined by FACS for surface detection of NY-ESO-1 vaccine using either the anti-NY-ESO-1 mAb (ES121; Fig. 2B) or the anti-ISCOMATRIX mAb (A706; Fig. 2, C–D). In parallel, MoDCs were permeabilized, and surface versus intracellular NY-ESO-1 or ISCOMATRIX adjuvant was examined by FACS (Fig. 2, D and F). Firstly, the isotype-matched control mAb did not stain MoDCs pulsed with NY-ESO-1 vaccine (Fig. 2A). Similarly, neither the anti-NY-ESO-1 mAb (ES121) nor the anti-ISCOMATRIX adjuvant mAb bound unpulsed MoDCs (data not shown). However, the NY-ESO-1 vaccine rapidly (1 h) and efficiently bound to the surface of MoDCs as detected by either anti-NY-ESO-1 mAb (Fig. 2B) or anti-ISCOMATRIX adjuvant mAb (Fig. 2C), with between 36 and 43% of MoDCs binding detectable NY-ESO-1 or ISCOMATRIX adjuvant at the cell surface. Cell surface binding was temperature dependent, because the NY-ESO-1 vaccine was not detected when MoDCs were pulsed with the NY-ESO-1 vaccine at 4°C (data not shown). Intracellular staining after 1 h revealed that the majority of the NY-ESO-1 vaccine was bound to the cell surface; 90% of staining was detected on nonpermeabilized MoDCs (Fig. 2, B and C) with an additional 5–10% staining appearing after cell permeabilization (Fig. 2D). This suggests that, initially, the hydrophobic...
NY-ESO-1 vaccine is predominantly incorporated into the cell surface lipid membrane with only a small proportion of the NY-ESO-1 vaccine internalized. Detection of the NY-ESO-1 vaccine decreased at the cell surface by 3 h (28% at 3 h versus 43% at 1 h; Fig. 2, C and E), with the majority of NY-ESO-1 vaccine detectable intracellularly at this time (42% at 3 h versus 49% at 1 h; Fig. 2, D and F), suggesting progressive internalization of surface-bound NY-ESO-1 vaccine over time.

Interestingly, the NY-ESO-1 vaccine was a poor inducer of MoDC maturation in vitro, only marginally up-regulating HLA-DR and CD86 (2-fold) but not CD80, CD83, or HLA-ABC (Table 1). This was in contrast to known inducers of

Table 1 Induction of phenotypic maturation of monocyte-derived dendritic cells (MoDCs) by various stimuli

<table>
<thead>
<tr>
<th>Stimuli</th>
<th>CD80</th>
<th>CD83</th>
<th>CD86</th>
<th>HLA-DR</th>
<th>HLA-ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM + IL-4ab</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>+NY-ESO-1/IMX</td>
<td>1.1 ± 0.2</td>
<td>1.2 ± 0.3</td>
<td>2.3 ± 0.2</td>
<td>1.1 ± 0.3</td>
<td>2.0 ± 0.5</td>
</tr>
<tr>
<td>+TNF-α</td>
<td>5.6 ± 1.1</td>
<td>15.6 ± 2.0</td>
<td>26.3 ± 2.7</td>
<td>6.9 ± 1.1</td>
<td>5.3 ± 1.5</td>
</tr>
<tr>
<td>+IFN-α2a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+PGE2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+CD40L</td>
<td>6.3 ± 0.9</td>
<td>16.2 ± 1.9</td>
<td>28.2 ± 3.0</td>
<td>6.4 ± 2.1</td>
<td>8.6 ± 2.1</td>
</tr>
<tr>
<td>+Escherichia coli</td>
<td>7.0 ± 0.9</td>
<td>14.8 ± 2.0</td>
<td>27.3 ± 3.2</td>
<td>7.2 ± 1.2</td>
<td>7.6 ± 1.4</td>
</tr>
</tbody>
</table>

a Fold increase in mean fluorescence intensity above that seen with GM + IL-4-generated immature MoDCs (expressed as 1).
b GM + IL-4, granulocyte macrophage colony-stimulating factor and interleukin 4; IMX, ISCOMATRIX adjuvant; TNF, tumor necrosis factor; PGE2, prostaglandin E2.
MoDCs Pulsed with the NY-ESO-1 Vaccine Cross-Present the HLA-A2-Restricted Epitope NY-ESO-1-157–165 to Cytotoxic T Cells. The ability of human MoDCs to process captured NY-ESO-1 vaccine into HLA-A2-restricted peptides was next assessed using a short-term CD8+ CTL line specific for the HLA-A2-restricted NY-ESO-1 peptide, SLLMWITQ_{157–165}. Immature HLA-A2+ MoDCs were pulsed with the NY-ESO-1 vaccine for 1 h and were then either cultured for 4 h or 18 h in granulocyte macrophage colony-stimulating factor and IL-4 (immature) or matured with a cocktail of pro-inflammatory mediators (TNF-α, IFN-α, and PGE2) for 4 h or 18 h before coculture with the CD8+ CTL line. As specificity controls, immature MoDCs or those matured with the above cytokine mixture were pulsed with either the NY-ESO-1 peptide, SLLMWITQ_{157–165}, or with the irrelevant HLA-A2-restricted MAGE-3 peptide, FLWGPRALV_{271–279} (data not shown). Several observations were made. Firstly, in the absence of antigen, immature (Fig. 3A) or matured MoDCs (data not shown) were incapable of inducing IFN-γ secretion in the peptide-specific CD8+ CTL line, as determined by intracellular cytokine staining, but were as efficient as transporter associated with antigen processing (TAP)-deficient T2 cells at presenting pulsed- and processed by human MoDCs but that, contaminating the NY-ESO-1 vaccine preparation (due to degradation products, and so forth), because the HLA-A2+ transporter associated with antigen processing (TAP)-deficient T2 cell line was unable to present detectable SLLMWITQ_{157–165} peptide when pulsed with NY-ESO-1 vaccine (Fig. 3F). Finally, maturation for 4 h was as effective as for 18 h at optimizing the processing of the NY-ESO-1 vaccine into SLLMWITQ_{157–165} peptide for detection by the CD8+ CTL line (Fig. 3G). These data illustrate that the NY-ESO-1 vaccine is effectively taken up and processed by human MoDCs but that, in vitro, these DCs require additional maturation for optimal presentation of MHC/SLLMWITQ_{157–165} peptide complexes to CD8+ CTLs.

MoDCs Pulsed with the NY-ESO-1 Vaccine Present T-Helper-Cell Epitopes from NY-ESO-1 via MHC class II Molecules. The NY-ESO-1 epitope, SLLMWITQ_{157–165} peptide or (FLWGPRALV_{271–279})}, which all up-regulated these maturation markers (Table 1; 32).

Molecules.

Clinical Cancer Research

Fig. 3 Stimulation of a short-term NY-ESO-1 SLLMWITQ_{157–165}-specific CD8+ T-cell line using immature or matured monocyte-derived dendritic cells (MoDCs) pulsed either with the SLLMWITQ_{157–165} peptide or with the NY-ESO-1/ISCOMATRIX adjuvant (NY-ESO-1/IMX) vaccine. A, unpulsed immature MoDCs cocultured with NY-ESO-1 SLLMWITQ_{157–165}-specific CD8+ CTL line. B, immature MoDCs pulsed with 1 µg/ml SLLMWITQ_{157–165} peptide or C, immature MoDCs pulsed with 10 µg/ml NY-ESO-1/IMX vaccine and cocultured with the NY-ESO-1 SLLMWITQ_{157–165}-specific CD8+ CTL line. D, immature MoDCs pulsed with the NY-ESO-1/IMX vaccine and matured with the cytokine combination of tumor necrosis factor (TNF)-α, IFN-α, and prostaglandin E2, for 4 h (or G, 18 h) before coculture with the NY-ESO-1 SLLMWITQ_{157–165}-specific CD8+ CTL line. E, T2 cells pulsed with 1 µg/ml SLLMWITQ_{157–165} peptide or (F) 10 µg/ml NY-ESO-1/IMX vaccine. G, comparison between maturation of MoDCs for 4 h or 18 h on efficiency of T-cell stimulation.

MoDCs Pulsed with the NY-ESO-1 Vaccine Present T-Helper-Cell Epitopes from NY-ESO-1 via MHC class II Molecules. The NY-ESO-1 epitope, SLLMWITQ_{157–165} peptide or (FLWGPRALV_{271–279})}, which all up-regulated these maturation markers (Table 1; 32).
NY-ESO-1/ISCOMATRIX Anticancer Vaccine

To assess whether the NY-ESO-1 vaccine induced IFN-γ-biased antibody responses, BALB/c mice were vaccinated with either NY-ESO-1 protein alone or the NY-ESO-1 vaccine, and NY-ESO-1-specific antibody responses were examined. Immunization with the NY-ESO-1 vaccine induced significantly higher serum levels of NY-ESO-1-specific IgG1 (8-fold) and dramatically increased IgG2a (300-fold; \(P < 0.01 \)) above that seen in BALB/c mice immunized with NY-ESO-1 protein alone (Fig. 5A). The increased titer of NY-ESO-1-specific IgG2a in mice immunized with NY-ESO-1 vaccine correlated with a 3–8-fold increase in IFN-γ-secreting spleen cells in vitro as compared with mice immunized with NY-ESO-1 protein alone (Fig. 5B). Thus, the high level of NY-ESO-1-specific IgG2a- and IFN-γ-producing spleen cells suggested the efficient induction of IFN-γ-biased immune responses by the NY-ESO-1 vaccine.

IFN-γ-Biased Responses in BALB/c Mice Vaccinated with the NY-ESO-1 Vaccine. The ability of anticancer vaccines to induce IFN-γ-secreting T cells appears to be critical to their effectiveness. Such T cells also increase the levels of the IFN-γ-regulated IgG isotype, IgG2a, in mice. To assess presentation of the HLA-DP4-restricted SLLMWITQCFLPVF\(_{157-170}\) peptide to the 1F10 CD4\(^+\) T-cell line by monocyte-derived dendritic cells (MoDCs) pulsed with the NY-ESO-1/ISCOMATRIX adjuvant (NY-ESO-1/IMX) vaccine. A, unpulsed immature MoDCs cultured with the NY-ESO-1/IMX-restricted 1F10 T cells. B, immature MoDCs pulsed with 1 \(\mu \)g/ml SLLMWITQCFLPVF\(_{157-170}\) peptide. C, immature MoDCs pulsed with 10 \(\mu \)g/ml NY-ESO-1/IMX vaccine and cocultured with 1F10 T cells. D, MoDCs pulsed with the NY-ESO-1/IMX vaccine and matured with the cytokine combination of tumor necrosis factor (TNF)-α, IFN-γ, and prostaglandin E\(_2\) for 18 h before coculture with the NY-ESO-1 vaccine to class II-restricted epitopes from NY-ESO-1 by MoDCs is highly efficient.

IFN-γ-Biased Responses in BALB/c Mice Vaccinated with the NY-ESO-1 Vaccine. The ability of anticancer vaccines to induce IFN-γ-secreting T cells appears to be critical to their effectiveness. Such T cells also increase the levels of the IFN-γ-regulated IgG isotype, IgG2a, in mice. To assess whether the NY-ESO-1 vaccine induced IFN-γ-biased antibody responses, BALB/c mice were vaccinated with either NY-ESO-1 protein alone or the NY-ESO-1 vaccine, and NY-ESO-1-specific antibody responses were examined. Immunization with the NY-ESO-1 vaccine induced significantly higher serum levels of NY-ESO-1-specific IgG1 (8-fold) and dramatically increased IgG2a (300-fold; \(P < 0.01 \)) above that seen in BALB/c mice immunized with NY-ESO-1 protein alone (Fig. 5A). The increased titer of NY-ESO-1-specific IgG2a in mice immunized with NY-ESO-1 vaccine correlated with a 3–8-fold increase in IFN-γ-secreting spleen cells in vitro as compared with mice immunized with NY-ESO-1 protein alone (Fig. 5B). Thus, the high level of NY-ESO-1-specific IgG2a- and IFN-γ-producing spleen cells suggested the efficient induction of IFN-γ-biased immune responses by the NY-ESO-1 vaccine.

IFN-γ-Biased Responses in BALB/c Mice Vaccinated with the NY-ESO-1 Vaccine. The ability of anticancer vaccines to induce IFN-γ-secreting T cells appears to be critical to their effectiveness. Such T cells also increase the levels of the IFN-γ-regulated IgG isotype, IgG2a, in mice. To assess whether the NY-ESO-1 vaccine induced IFN-γ-biased antibody responses, BALB/c mice were vaccinated with either NY-ESO-1 protein alone or the NY-ESO-1 vaccine, and NY-ESO-1-specific antibody responses were examined. Immunization with the NY-ESO-1 vaccine induced significantly higher serum levels of NY-ESO-1-specific IgG1 (8-fold) and dramatically increased IgG2a (300-fold; \(P < 0.01 \)) above that seen in BALB/c mice immunized with NY-ESO-1 protein alone (Fig. 5A). The increased titer of NY-ESO-1-specific IgG2a in mice immunized with NY-ESO-1 vaccine correlated with a 3–8-fold increase in IFN-γ-secreting spleen cells in vitro as compared with mice immunized with NY-ESO-1 protein alone (Fig. 5B). Thus, the high level of NY-ESO-1-specific IgG2a- and IFN-γ-producing spleen cells suggested the efficient induction of IFN-γ-biased immune responses by the NY-ESO-1 vaccine.
HLA-A2 Transgenic (HHD) Mice Treated with the NY-ESO-1 Vaccine Generate NY-ESO-1-Specific CD8+ CTLs in Vivo. To determine whether the NY-ESO-1 vaccine could generate HLA-A2-restricted epitopes in vivo (epitopes relevant to the human system), HHD HLA-A2 transgenic mice were vaccinated with the NY-ESO-1 vaccine. Spleen cells were isolated after 3 weeks and restimulated for 6 days with irradiated lipopolysaccharide blasts pulsed with HLA-A2-restricted, NY-ESO-1-specific peptides. Fig. 6A shows that HHD mice vaccinated with the NY-ESO-1 vaccine generated CD8+ T-cell responses that recognized the NY-ESO-1 peptide SLLM威ITQC157-165 and to a lesser extent the SLLM威ITQFL157-167 peptide, but not the less immunogenic QLSL威IT155-163 peptide (Fig. 6A). The results in the HHD mice parallel the epitope specificity observed in NY-ESO-1-specific CD8+ T cells isolated from HLA-A2+ individuals with NY-ESO-1-expressing tumors. Furthermore, all of the mice (five of five) immunized with the NY-ESO-1 vaccine generated CD8+ T cells capable of killing the SLLM威ITQC157-165-pulsed target cells, whereas mice vaccinated with NY-ESO-1 protein alone failed to generate such CD8+ T cells (Fig. 6B). Furthermore, HHD mice immunized with the NY-ESO-1 vaccine (but not NY-ESO-1 protein alone) generated SLLM威ITQC157-165-specific CD8+ T cells that secreted IFN-γ (Fig. 6C). Together, these data demonstrate that the NY-ESO-1 vaccine was a potent inducer of HLA-A2-restricted CD8+ T-cell responses in mice.

HHD-derived CD8+ T cells from mice immunized with the NY-ESO-1 vaccine (but not those immunized with NY-ESO-1 protein alone) were examined for their capacity to kill human tumor cell lines. These CD8+ T cells efficiently killed the HLA-A2+ NY-ESO-12+ melanoma line SK-Mel-37, but not HLA-A2+ or NY-ESO-1+ tumor lines, or the A02h tumor line (low NY-ESO-1 expression by IHC; Fig. 7). These results demonstrate that...
NY-ESO-1/ISCOMATRIX Anticancer Vaccine

DISCUSSION

Analysis of successful immune responses against viral pathogens can provide a useful framework for designing vaccines for effective T-cell immune responses against cancer. Strategies that can convert innocuous tumor-expressed antigens into ones perceived as life threatening and, therefore, immunogenic, represent one of the many challenges facing cancer vaccine-based immunotherapy. The development of effective cancer vaccines that are not patient specific has been hampered by the paucity of vaccines that are capable of safely and effectively inducing CD8$^+$ T cells in humans. Furthermore, the ability to sustain anticancer CD8$^+$ T cells through repeated immunizations is likely to emerge as an important feature of therapeutic anticancer vaccines (19, 20, 33). Thus, although viral vectors such as replication-defective poxvirus vaccine vectors have been tested with some success (34), these cannot be used repeatedly because of the induction of anti-vector neutralizing antibodies. DNA vaccines are also being developed as anticancer vaccine modalities but, to date, have shown limited potency; and, thus, improvements are likely to be required before this technology becomes effective against cancer (35). Adoptive systems that are capable of inducing CD8$^+$ T-cell responses against tumor antigens provide an attractive alternative strategy.

The cancer-testes antigen NY-ESO-1 represents one of the more promising tumor-associated targets for vaccine-based immunotherapy of cancer. Unlike several other tumor-associated antigens, NY-ESO-1 is relatively immunogenic in cancer patients, with both humoral and T-cell responses generated either spontaneously or after vaccination with peptides (4, 12). The data presented here illustrate that associating the ISCOMATRIX adjuvant with a recombinant NY-ESO-1 protein to form an NY-ESO-1 vaccine results in a potent anticancer vaccine that induces more effective humoral and CD8$^+$ T-cell responses in vivo than does non-adjuvanted NY-ESO-1 protein alone. In mice, the NY-ESO-1 vaccine induced strong IFN-γ-biased responses, resulting in both IgG1 and IgG2a antibodies and in the generation of potent CD8$^+$ T cells capable of killing HLA-A2$^+$ NY-ESO-1-expressing human tumors in vitro, as well as protecting mice against challenge with NY-ESO-1-expressing B16 melanoma cells. The NY-ESO-1 vaccine potently induced CD8$^+$ T-cell responses in HLA-A2-transgenic HHD mice, similar to those seen after immunization with other CD8$^+$ T-cell-inducing vaccine modalities, such as live recombinant vaccinia virus (28, 36). Furthermore, the presence of the ISCOMATRIX adjuvant significantly enhanced the immunogenicity of NY-ESO-1 protein, because NY-ESO-1 protein alone generated relatively poor responses in vivo. The ability of ISCOMATRIX adjuvant to induce antigen-specific CD8$^+$ T-cell responses capable of rejecting antigen-expressing tumors was also demonstrated using the ovalbumin (OVA) antigen model. In that study, the OVA-ISCOMATRIX vaccine induced rejection of OVA-expressing EG7 tumors, OVA-expressing-B16 melanoma, and OVA-expressing Lewis Lung carcinoma in mice (24). Furthermore, in all of these tumor models, only the OVA-expressing tumors, but not the parental tumors implanted in the opposing flank, were rejected, indicating that ISCOMATRIX vaccines induce antigen-specific immunity. Finally, class II MHC$^{-/-}$ mice, immunized with the OVA-ISCOMATRIX vaccine, efficiently generated antitumor CD8$^+$ CTLs in the absence of CD4$^+$ T-cell help (24).

The NY-ESO-1 vaccine was efficiently taken up by immature human MoDCs, and this appeared to be initiated by the binding of the NY-ESO-1 vaccine onto the surface membrane of DCs. It is unclear whether this binding required the use of specific receptor-mediated mechanisms or simply binding via hydrophobic interactions between the DC lipid membrane and the lipids of the ISCOMATRIX adjuvant. Interestingly, surface-associated NY-ESO-1 vaccine steadily decreased over time, with most of the vaccine readily detectable in the cytosol by 3 h, suggesting that surface membrane turnover may represent one mechanism of vaccine incorporation into DCs for processing. NY-ESO-1 vaccine did not induce MoDC maturation, unlike known inducers of MoDC mat-

Fig. 8 The NY-ESO-1/ISCOMATRIX adjuvant (NY-ESO-1/IMX) vaccine protects mice from challenge with B16 melanoma expressing NY-ESO-1. C57BL/6 mice ($n = 6$ group) were vaccinated with the NY-ESO-1/IMX vaccine or with PBS buffer alone (buffer control group) or with IMX adjuvant alone (adjuvant control group) and were then challenged with B16 melanoma cell line transfected with NY-ESO-1. Tumor area was measured at the indicated times, and mice were sacrificed when tumors exceeded 180 mm2.

The generation of NY-ESO-1-specific CD8$^+$ CTL in mice immunized with the NY-ESO-1 vaccine protects them against tumor challenge. The ability of C57BL/6 mice immunized with the NY-ESO-1 vaccine to reject NY-ESO-1-expressing tumors in vivo was next assessed. To address this question, we transfected the aggressively growing, poorly immunogenic melanoma cell line B16 with an NY-ESO-1-containing plasmid and NY-ESO-1-expressing clones identified by IHC and quantitative real-time PCR (data not shown). Fig. 8 demonstrates that B16 melanoma cells expressing NY-ESO-1 grew rapidly in mock buffer-treated and ISCOMATRIX adjuvant-treated control animals, with tumors reaching >120 mm2 by day 22, at which time mice were sacrificed (Fig. 8). In contrast, mice immunized with the NY-ESO-1 vaccine were all tumor free on day 22, and by 120 days, one-half of these mice were still without tumor (Fig. 8). This indicates that vaccination of naïve mice with the NY-ESO-1 vaccine induces a potent NY-ESO-1-specific immune response in vivo sufficient to regress NY-ESO-1-expressing B16 melanoma cells.

The NY-ESO-1 vaccine is able to induce CD8$^+$ T-cell effectors in vivo capable of lysing NY-ESO-1-expressing human tumor cells.
urination (e.g., pro-inflammatory mediators, CD40L, or intact bacteria). The immature state of vaccine-pulsed MoDC correlated with a low efficiency of cross-presentation of the NY-ESO-1 vaccine onto the MHC class I molecules for recognition by SLLMWITQC\textsubscript{157-165}-specific CD8+ CTLs. However, subsequent maturation of NY-ESO-1 vaccine-pulsed MoDCs (32) resulted in efficient cross-presentation of class I-restricted peptides to antigen-specific CD8+ CTLs. In this regard, Nagata et al. (37) have recently shown that, although MoDCs were inefficient at cross-presenting free NY-ESO-1 protein to peptide-specific CD8+ CTLs, NY-ESO-1-IgG complexes were avidly presented, likely involving the Fc\gamma receptor type II. Two mechanisms could explain their finding: Fc receptor-mediated uptake of antigen is highly efficient; and the cross-linking of Fc receptors on MoDCs is a known inducer of maturation (38). However, the necessity of inducing DC maturation \textit{in vitro} for \textit{in vivo} vaccination is less clear because ISCOMATRIX-based vaccines are likely to create the appropriate environment for DC maturation \textit{in situ} via the induction of cytokines by neighboring cells. In this regard, ISCOMATRIX adjuvant and ISCOMATRIX-based vaccines regulate lymphocyte trafficking into and out of lymphoid organs, resulting in dramatic lymph node activation and the release of cytokines such as IL-6, IL-8, and IFN-\gamma (39, 40). A major distinction must, therefore, be made between the activity of the NY-ESO-1 vaccine when used \textit{in vitro} on purified DCs and the cytokine responses it is likely to initiate when injected \textit{in vivo}.

Unlike with cross-presentation of NY-ESO-1 epitopes to CD8+ T cells, immature as well as mature MoDCs could present MHC class II-restricted epitopes to CD4+ T cells when pulsed with NY-ESO-1 vaccine. This ability was not only independent of the need for MoDC maturation but was also independent of the need for the NY-ESO-1 protein to be associated with ISCOMATRIX adjuvant.6 This highlights that the ISCOMATRIX adjuvant has a unique capacity to efficiently target full-length proteins into the MHC class I pathway for cross-presentation to CD8+ T cells but does not enhance the processing of proteins for MHC class II presentation. The mechanisms by which ISCOMATRIX adjuvant facilitates trafficking of proteins into the class I MHC pathway are currently the scope of investigations by our group. Interestingly, studies in mice using the ovalbumin antigen formulated in classical immune-stimulating complexes (ISCOMs) suggest that the cross-presenting capacity of ISCOMATRIX adjuvant may require DCs and may use mechanisms independent of the proteasome (41, 42).

The HHD mouse system represents an ideal model for evaluating the potency of NY-ESO-1 vaccine formulations, because HLA-A2-restricted NY-ESO-1-specific CD8+ T cells, generated from both human and mouse, recognized the NY-ESO-1 peptides SLLMWITQC\textsubscript{157-165} and SLLMWITQCFL\textsubscript{157-167} but not the upstream QLSLLMWIT\textsubscript{155-163} peptide. Whether SLLMWITQCFL\textsubscript{157-167} simply represents a longer and, therefore, less potent version of the SLLMWITQC\textsubscript{157-165} epitope is unclear. However, a recent report demonstrated that not all CD8+ T-cell lines restimulated with SLLMWITQCFL\textsubscript{157-167} recognize SLLMWITQC\textsubscript{157-165} and have identified the highly immunogenic, cryptic, NY-ESO-1 epitope LMQITCFL\textsubscript{159-167}, which also resides within the SLLMWITQCFL\textsubscript{157-167} sequence (8). Similarly, given the ability of the NY-ESO-1 vaccine to effectively protect C57BL/6 mice from challenge with NY-ESO-1-expressing B16 tumors, there are likely to be several NY-ESO-1-specific CD8+ and CD4+ T-cell epitopes presented on the relevant C57BL/6 MHC class I and class II alleles.

Finally, NY-ESO-1 has recently been found to share 94\% identity at the nucleotide level with another independently identified cancer-testis antigen, LAGE-1. Although the two gene products are frequently coexpressed, a significant proportion of melanoma patients express only one or the other protein. In a recent study of melanoma patients, 45\% of patients had tumors expressing either one or the other antigen in at least one lesion (43). The sequence homology and the fact that SLLMWITQC\textsubscript{157-165}-specific CD8+ T cells also recognize the LAGE-1 epitope indicate that an NY-ESO-1 vaccine could also generate CD8+ T cells capable of killing tumor cells expressing LAGE-1. Thus the NY-ESO-1 vaccine may serve as a bivalent vaccine targeting two independently expressed tumor antigens.

The present study represents a preclinical strategy for evaluating vaccine formulations via the use of both human and murine model systems. The results of the present study show that ISCOMATRIX-based vaccines are ideally suited for cancer immunotherapy and set the stage for evaluating the NY-ESO-1 vaccine formulation in cancer patients. Indeed, the first Phase I trial of the NY-ESO-1 vaccine in NY-ESO-1- cancer patients with minimal residual disease (LUD99–008) has demonstrated the NY-ESO-1 vaccine to be safe and highly immunogenic, paralleling the types of immune responses generated in the mouse models reported here.7 It will be of interest to determine whether the types of immune responses generated in human patients with the NY-ESO-1 vaccine are sufficient to impact disease progression.

ACKNOWLEDGMENTS

We thank Dr. Susan Svobodova for performing the reverse transcription-PCR of the B16 melanoma transfecteds and Sue Sturrock for IHC analysis of these transfecteds. We also thank Christine Millar, Denise Airey, and Cameron Cook for technical assistance, and Ross Hamilton and Mary Walker for scanning electron microscopy.

REFERENCES

4. M. Schnurr et al., Tumor antigen processing and presentation depends critically on dendritic cell type and the mode of antigen delivery, submitted for publication.

6 I. Davis et al., Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T cell responses in humans, submitted for publication.

NY-ESO-1 Protein Formulated in ISCOMATRIX Adjuvant Is a Potent Anticancer Vaccine Inducing Both Humoral and CD8+ T-Cell-Mediated Immunity and Protection against NY-ESO-1+ Tumors

Eugene Maraskovsky, Sigrid Sjölander, Debbie P. Drane, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/10/8/2879

Cited articles
This article cites 41 articles, 20 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/10/8/2879.full.html#ref-list-1

Citing articles
This article has been cited by 14 HighWire-hosted articles. Access the articles at:
/content/10/8/2879.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.