Characterization of a R115777-Resistant Human Multiple Myeloma Cell Line with Cross-Resistance to PS-341

Robert Buzzeo,1,2 Steven Enkemann,1 Rama Nimmanapalli,1 Melissa Alsina,1 Mathias G. Lichtenheld,3 William S. Dalton,1 and Darrin M. Beaupre1

Abstract The farnesyl transferase inhibitor R115777 has been found to have clinical activity in diverse hematopoietic tumors. Clinical efficacy, however, does not correlate with Ras mutation status or inhibition of farnesyl transferase. To further elucidate the mechanisms by which R115777 induces apoptosis and to investigate drug resistance, we have identified and characterized a R115777-resistant human myeloma cell line. 8226/R5 cells were found to be at least 50 times more resistant to R115777 compared with the parent cell line 8226/S. K-Ras remained prenylated in both resistant and sensitive cells after R115777 treatment; however, HDJ-2 farnesylation was inhibited in both lines, implying that farnesyl transferase (the drug target) has not been mutated. Whereas many 8226 lines that acquire drug resistance have elevated expression of P-glycoprotein, we found that P-glycoprotein expression is not increased in the 8226/R5 line and intracellular accumulation of R115777 was not reduced. In fact, 8226/R5 cells were insensitive to a diverse group of antitumor agents including PS-341, and multidrug resistance did not correlate with the expression of heat shock proteins. Comparison of gene expression profiles between resistant and sensitive cells revealed expression changes in several genes involved in myeloma survival and drug resistance. Future experiments will attempt to identify genes that are directly linked to the resistant phenotype. Identification of molecules associated with R115777 and PS-341 resistance is clinically relevant because both compounds are being tested in solid tumors and hematopoietic malignancies.

Multiple myeloma is a plasma cell malignancy with no known curative therapy. RAS mutations occur frequently in myeloma (1, 2) and have been linked at least in some studies to a poor prognosis (3–5). Farnesyl transferase inhibitors (FTI) inhibit Ras function by preventing its posttranslational prenylation, a modification done by the enzyme farnesyl transferase (FTase). The FTI R115777 was designed as a highly selective inhibitor of FTase (6) and has been clinically tested in several hematopoietic tumors. This compound has shown activity in acute myelogenous leukemia, chronic myelogenous leukemia, and myelodysplastic syndrome (7–10).

Preclinical studies have reported that FTIs have antitumor activity in myeloma cell lines and primary isolates (11–13). Based on these observations, we have recently completed a phase II clinical trial testing R115777 in patients with relapsed myeloma (14). Forty-three patients with a median of four prior treatment regimens entered our study. R115777 was well tolerated and 64% of patients achieved disease stabilization. Of importance, RAS mutation and inhibition of farnesyl transferase did not correlate with clinical efficacy consistent with our prior observation that R115777 can induce apoptosis via a Ras-independent mechanism (15). In myeloma cells, R115777 activates multiple intrinsic proapoptotic cascades (15). However, the molecules and/or signaling pathways that trigger these events remain elusive.

To further elucidate the mechanisms by which R115777 induces apoptosis and to investigate drug resistance, we have established and characterized a R115777-resistant human multiple myeloma cell line (8226/R5). This line is unlike a previously described R115777-resistant colon cancer line (16) for resistance is unrelated to the prenylation activity of the enzyme FTase. This finding correlates with our observation that 8226/R5 cells are insensitive to a diverse group of antitumor agents, including PS-341. In this study, we investigate and exclude several potential mechanisms of R115777 resistance. Using comparative gene expression profiling (between sensitive and resistant cells), we have identified expression changes in several genes implicated in myeloma survival and drug resistance. Further evaluation of these genes may lead to the identification of novel FTI targets or resistance mechanisms that are clinically relevant.

Materials and Methods

Cell lines and reagents

The RPMI 8226 human myeloma cell line was obtained from the American Type Culture Collection (Manassas, VA). 8226/LR5 and...
was determined by subtracting background death in untreated samples. Cell death was calculated as the sum of Annexin V-FITC for propidium iodide in experiments where cells were treated with doxorubicin. Cell death was calculated as the sum of Annexin V-FITC and propidium iodide staining as per the recommendation described (11). The presented histograms represent gating on live cells by linear regression analysis using Excel software. Flow cytometric cell division of hsp27, hsp70, hsp90, and glyceraldehyde-3-phosphate dehydrogenase, lysates were harvested using Baverian lysis buffer [150 mM NaCl, 0.02% KCl, 0.14% Na2HPO4, 0.02% KH2PO4 (pH 7.4)] and 2B (C-19; Santa Cruz Biotechnology, Inc., Santa Cruz, CA); anti-HDJ-2 (BD Biosciences, San Diego, CA). Antibodies and Western blotting

Antibodies were purchased from the following vendors: anti–K-Ras-2B (C-19; Santa Cruz Biotechnology, Inc., Santa Cruz, CA); anti-HDI-2 (NeoMarkers, Fremont, CA); anti-hsp90, anti-hsp70, anti-hsp27, and anti–glyceraldehyde-3-phosphate dehydrogenase (Stressgen Biotechnologies, San Diego, CA); and anti–α-tubulin (BD Biosciences, San Diego, CA). Western blotting was done as previously described (11). For the majority of experiments, lysates were harvested using radiomunoprecipitation assay lysis buffer [150 mM NaCl, 1% NP40, 0.5% deoxycholic acid (SC); 0.1% SDS, and 50 mM Tris (pH 8.0)]. For evaluation of hsp27, hsp70, hsp90, and glyceraldehyde-3-phosphate dehydrogenase, lysates were harvested using Baverian lysis buffer [150 mM NaCl, 1% Triton X-100, 30 mM Tris (pH 7.5), and 10% glycerin].

Analysis of cell growth, cell cycle arrest, and cell death

Degree of resistance was determined using the tetrazolium salt 3,4,5-dimethylazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT; Sigma) reduction assay. 8226/S and 8226/R5 cells were plated into 96-well microtiter plates at a density of 5 × 104 cells/mL in 200 μL of supplemented media. Cells were exposed to a broad range of drug concentrations (R115777 and PS-341) in replicates of four. After a 72-hour (R115777) or 48-hour (PS-341) incubation period at 37°C, 50 μL of 2 mg/mL MTT was added to each well and cells were incubated for an additional 4 hours. Plates were centrifuged for 5 minutes at 1,200 rpm in a Sorvall RT6000D table top centrifuge (Sorvall, Asheville, NC), supernatants were removed, and water-insoluble product was dissolved in 100 μL of 100% DMSO (Sigma). Plates were shaken for 30 seconds and absorbance read at 540 nm on a Wallac Victor-2 1420 Multilabel Counter (Perkin-Elmer, Torrance, CA). The number of surviving cells was expressed as a percentage: absorbance of the experimental sample/absorbance of the control × 100. The IC50 of the drug was calculated by linear regression analysis using Excel software. Flow cytometric cell cycle analysis was done after propidium iodide staining as previously described (11). The present histograms represent gating on live cells only. Apoptosis and cell death were evaluated by flow cytometry after Annexin V-FITC and propidium iodide staining as per the recommendation of the manufacturer (BioVision Research Products, Mountain View, CA). TO-PRO-3 (Molecular Probes, Eugene, OR) was substituted for propidium iodide in experiments where cells were treated with doxorubicin. Cell death was calculated as the sum of Annexin V-FITC and propidium iodide or TO-PRO-3–positive cells. Specific cell death was determined by subtracting background death in untreated samples.

Determination of P-glycoprotein expression

8226/S, 8226/Dox40, and 8226/R5 cells were washed in PBS [0.8% NaCl, 0.02% KCl, 0.14% Na2HPO4, 0.02% KH2PO4 (pH 7.4)] and resuspended in 200 μL of ice-cold PBS containing 0.5 μg/mL anti–P-glycoprotein-FITC antibody (BD Biosciences) or 0.5 μg/mL isotype control antibody anti-dansyl IgG2a–FITC (BD Biosciences). Samples were incubated on ice for 1 hour in the dark, washed twice in PBS, and analyzed by flow cytometry.

R115777 accumulation and efflux

To quantitate cellular accumulation of [14C]R115777, 8226/S and 8226/R5 cells were washed once in PBS and 1 × 106 cells were resuspended in 1 mL supplemented media containing 5 μM/L R115777 (1:2.5 dilution of [14C]R115777 to cold R115777). Cells were incubated at 37°C for increasing time periods and were then washed three times in 10 mL ice-cold PBS. Cell pellets were resuspended in 1 mL PBS and transferred to scintillation vials containing 10 mL Scintisafe 30% scintillation fluid (Fisher Scientific, Pittsburgh, PA). Samples were analyzed on a L56500 multipurpose scintillation counter (Beckman Coulter, Fullerton, CA). Because drug accumulation occurred rapidly, cells were incubated in 5 μM/L R115777 at decreasing dilutions (1:10, 1:2.5, 1:1) of [14C]R115777 for 1 hour and samples were processed and analyzed as described above to confirm a dose-dependent accumulation of [14C]R115777 in each cell line. For efflux experiments, 8226/S and 8226/R5 cells were washed once in PBS and 1 × 106 cells were resuspended in 1 mL supplemented media containing 5 μM/L R115777 (1:2.5 dilution of [14C]R115777 to cold R115777). Cells were incubated for 1 hour at 37°C and then washed thrice in 10 mL PBS and placed in R115777–free supplemented media for an additional hour. Samples were processed and analyzed as above to confirm a dose-dependent efflux of [14C]R115777. Experiments with 8226/S and 8226/R5 lines were done in parallel.

Microarray analysis

Probe arrays. The oligonucleotide probe arrays were the Affymetrix U133A human arrays. These arrays consist of 22,215 probe sets, which target known and suspected genes as well as a number of suspected splice variants. The U133A chips detect an estimated 15,000 well-characterized human genes.

Sample processing for microarray analysis. Five micrograms of total RNA derived from 8226/S, 8226/LR5, and 8226/R5 cells served as the mRNA source for microarray analysis. The polyadenylate RNA was specifically converted to cDNA and then amplified and labeled with biotin following the procedure initially described by Van Gelder et al. (19). Hybridization with the biotin-labeled RNA, staining, and scanning of the chips followed the proscribed procedure outlined in the Affymetrix technical manual and has been previously described (20).

Data analysis. Scanned output files were visually inspected for hybridization artifacts and then analyzed using Affymetrix Microarray Suite 5.1 software. Signal intensity was scaled to an average intensity of 500 before comparison analysis. The MAS 5.1 software uses a statistical algorithm to assess increases or decreases in mRNA abundance in a direct comparison between two samples (20, 21). This analysis is based on the behavior of 11 different oligonucleotide probes designed to detect the same gene. The software generates a P value for the likelihood that any perceived difference was due to chance. The P values for all probe sets were exported to a text file and all pairwise comparisons were then aligned in Excel. For the comprehensive analysis, P < 0.05 was identified as changed (increased or decreased) for each individual comparison. Two independent samples from 8226/S, 8226/LR5, and 8226/R5 cells were collected. The samples generated from the resistant cell line were compared with the sensitive lines in all possible combinations. Genes were ultimately selected if they were identified as increased in all eight comparisons or decreased in all eight comparisons.
Statistical analysis

Unless otherwise stated, statistical data are expressed as mean ± SD using descriptive statistics.

Results

8226/R5 cells are resistant to R115777-induced growth arrest and cell death. Continuous culture of 8226/S cells with increasing concentrations of R115777 established the 8226/R5 line. In cytotoxicity assays, 8226/R5 cells were at least 50 times more resistant to R115777 compared with parental 8226/S cells (Fig. 1A). The IC₅₀ for the 8226/S line was 0.1 µmol/L and that for the 8226/R5 line was 5.4 µmol/L. Cell cycle analysis revealed that R115777 induced G₁ growth arrest in 8226/S cells and this effect was largely abolished in the 8226/R5 line (Fig. 1B). 8226/R5 cells were also protected from apoptosis at concentrations of R115777 as high as 20 µmol/L (Fig. 1C; data not shown). The observed resistance was stable.

![Image](https://example.com/image1.png)

Fig. 1. 8226/R5 cells are highly resistant to R115777. *A*, degree of resistance was determined using the MTT reduction assay. 8226/S and 8226/R5 cells were treated with increasing concentrations of R115777 for 72 hours. Percentage surviving cells was calculated relative to cells treated with control media only (see Materials and Methods). IC₅₀ determinations were done by linear regression. *B*, cell cycle analysis after R115777 treatment. Sensitive and resistant 8226 lines were treated with increasing concentrations of R115777 for 24 hours. Cell cycle arrest was determined by flow cytometry after Annexin V-FITC and propidium iodide staining. Specific cell death was calculated by subtracting background death in untreated samples. The presented data is representative of three independent experiments.

![Image](https://example.com/image2.png)

Fig. 2. Resistance in 8226/R5 cells is not linked to prenylation. *A*, 8226/R5 cells are resistant to the F1ase-specific inhibitor FTI-277. 8226/S and 8226/R5 cells were treated with increasing concentrations of FTI-277 for 72 hours. Cell death was determined by flow cytometry after Annexin V-FITC and propidium iodide staining. Specific cell death was calculated by subtracting background death in untreated samples. *B*, 8226/R5 cells are resistant to periphrisic acid, an inhibitor of both F1ase and G1ase I. Sensitive and resistant cells were treated with increasing concentrations of periphrisic acid for 72 hours. Samples were analyzed as in (A). *C*, K-Ras remains prenylated in sensitive and resistant cells after R115777 treatment. 8226/S and 8226/R5 cells were treated with control media or 5 µmol/L R115777 for 72 hours. Cell lysates were harvested and evaluated by Western blotting using the indicated antibodies. *D*, HDJ-2 farnesylation is inhibited in both 8226/S and 8226/R5 cell lines. Sensitive and resistant cells were treated and analyzed as in (C) using the indicated antibodies. u, unprocessed form; p, processed form. (A) and (B) are representative of three independent experiments; (C) and (D) are representative of two independent experiments.
because cells cultured in R11577-free conditioned media for several months continued to display the resistant phenotype.

Relative to doxorubicin- (8226/Dox 40) and melphalan-resistant (8226/LR5) isogenic lines, 8226/R5 cells were the most resistant to R11577 (Fig. 1C).

Resistance to R11577 does not correlate with K-Ras prenylation or farnesyl transferase activity. To determine whether 8226/R5 cells were cross-resistant to other compounds that inhibit prenylation, cells were exposed to inhibitors of FTase and geranylgeranyl transferase I (GGTase I). Similar to our results with R115777, 8226/R5 cells were resistant to the specific FTase inhibitor FTI 277 (22) when compared with parental 8226/S cells (Fig. 2A). In addition, resistance was maintained in the presence of pericil acid, a compound that inhibits both FTase and GGTase I (Fig. 2B; ref. 23). 8226/S cells are known to express K-Ras and harbor a codon 12 K-RAS mutation. Similar to our prior observation in U266 cells (15), K-Ras remained prenylated in both sensitive and resistant cells after R115777 treatment (Fig. 2C). Moreover, farnesylation of HDJ-2 (a protein that can be farnesylated but not geranylgeranylated) was inhibited in both lines (Fig. 2D). These results indicate that R115777 resistance does not correlate with the prenylation status of K-Ras or HDJ-2. Furthermore, the fact that HDJ-2 farnesylation can be inhibited in 8226/R5 cells implies that mutation of FTase (the drug target) is not responsible for the development of resistance.

Resistance is not related to decreased accumulation of R115777. Many 8226 lines that acquire drug resistance have elevated expression of P-glycoprotein. An example of this is the 8226/Dox 40 cell line that expresses high levels of membrane P-glycoprotein that participates in the doxorubicin-resistant phenotype (18). As expected, 8226/Dox 40 cells were found to have a marked increase in surface P-glycoprotein expression when compared with parent 8226/S cells (Fig. 3A). 8226/R5 cells, however, had membrane levels that were similar to that noted for the 8226/S line (Fig. 3A). Because increased expression or activity of other membrane pumps may also produce a resistant phenotype, we investigated the influx and efflux of R115777 in both 8226/S and 8226/R5 cells. Influx of R115777 occurred rapidly in both lines and reached steady state within 15 minutes of incubation with radiolabeled R115777 (Fig. 3B). A dose-dependent increase in R115777 uptake was also observed (Fig. 3C) and both time- and concentration-dependent experiments revealed that R115777 uptake was increased in 8226/R5 cells compared with the parental line. With regard to R115777 efflux, intracellular...
R115777 decreased rapidly (within 15 minutes) in both sensitive and resistant cells in time course experiments. 8226/R5 cells display multidrug resistance (A-E). 8226/S and 8226/R5 lines were treated with the indicated compounds for 48 hours (A and B) or 24 hours (C-E). Cell death was determined by flow cytometry after Annexin V-FITC and propidium iodide staining. Specific cell death was calculated by subtracting background death in untreated samples. The presented data is representative of three independent experiments.

8226/R5 cells display a multidrug-resistant phenotype and resistance is not associated with increased expression of heat shock proteins. 8226/R5 cells were treated with control media or 5 μmol/L R115777 for 72 hours. Cell lysates were harvested and analyzed by Western blotting using the indicated antibodies (see Materials and Methods). The presented data is representative of two independent experiments.

Discussion

FTIs were designed as specific inhibitors of Ras intended to interfere with a crucial posttranslational processing step. Ras requires the addition of a 15-carbon farnesyl group to its carboxyl-terminal cysteine, which permits its localization to the plasma membrane (a requirement for function). This requires the addition of a 15-carbon farnesyl group to its carboxyl-terminal cysteine, which permits its localization to the plasma membrane (a requirement for function).
modification is done by the enzyme FTase, the purported target of R115777. It has been well established that alternate prenylation of Ras may occur in the presence of FTIs (28). This has been most notably described for K-Ras but also applies to the N-Ras protein. These reports are consistent with our prior observation in U266 cells (N-Ras–expressing line; ref. 15) and our present finding that K-Ras remains prenylated in 8226/S cells after R115777 treatment. These results suggest a Ras-independent mechanism of cell death. This is further supported by the clinical observation that responses to PS-341 do not correlate with Ras mutation status or inhibition of farnesyl transferase measured ex vivo (7, 10, 14).

We hypothesized that the isolation of a R115777-resistant human myeloma cell line (8226/R5) might provide insight concerning the potential targets of R115777 or identify novel mechanisms of FTI resistance. R115777 resistance was not associated with an increase in the surface expression of P-glycoprotein nor was it associated with decreased influx or increased efflux of R115777. In addition, the expression of heat shock proteins (hsp27, hsp70, hsp90) did not correlate with the drug-resistant phenotype. We therefore undertook molecular profiling of sensitive and resistant 8226 lines and identified expression changes in several genes implicated in cell survival and drug resistance. They included genes involved in cell signaling, cholesterol biosynthesis, and protein degradation. It remains possible that molecules associated with one of these genes is a major target of R115777 and/or directly participates in FTI resistance.

Our microarray data identified increased expression of several proteins associated with Jak-Stat signaling, including Jak2. In primary isolates, constitutive Stat3 activation has been observed in the majority of patients with multiple myeloma (29, 30). Stat3 homodimers and Stat1:Stat3 heterodimers seem to be the predominant DNA-binding forms (29). It has been reported that inhibition of Stat3 can sensitize resistant myeloma cells to chemotherapy mediated apoptosis (31). These results imply that Jak-Stat signaling may contribute to the drug-resistant phenotype. Stat3 activity has been linked to up-regulation of Bcl-XL (29) and consistent with this, Bcl-XL expression was increased in 8226/R5 cells. Elevated expression of Bcl-XL has been observed in several hematopoietic tumors, including blast crisis chronic myelogenous leukemia and non-Hodgkin’s lymphoma (32), and one study suggested that it was an indicator of chemoresistance in multiple myeloma (33). We have previously reported that R115777 can partially overcome drug resistance in U266 cells that maintain high levels of stable Bcl-XL expression (15). These findings imply that R115777 resistance may only in part be regulated by increased Jak-Stat signaling or Bcl-XL expression in 8226/R5 cells.

Our comparative gene expression profiling also identified other genes potentially involved in R115777 resistance. Phosphatidylinositol 3-kinase 3-kinase is a heterodimer consisting of p85 and p110 subunits (34, 35). The p110 α isoform is preferentially expressed in cells of hematopoietic origin (36, 37) and elevated expression of the catalytic α polypeptide was observed in the 8226/R5 line. An important downstream target of phosphatidylinositol 3-kinase is Akt/protein kinase B, a protein that is known to play a role in myeloma survival and drug resistance (38–40). Interestingly, it has been reported that FTI-induced apoptosis can be prevented by a constitutively activated form of Akt-2 (41). Therefore, it remains possible that phosphatidylinositol 3-kinase/Akt signaling also contributes to R115777 resistance and the multidrug-resistant phenotype. Because the p110 α subunit is mainly expressed in hematopoietic cells, it potentially represents a novel therapeutic target particularly for resistant tumors of hematopoietic origin.

Our analysis also identified increased expression of mevalonate kinase, an enzyme associated with cholesterol biosynthesis. Influx and efflux experiments suggest that R115777 is retained in 8226/R5 cells compared with the parent 8266/S line. This is relevant because an increase in cholesterol-rich microdomains, such as lipid rafts, have been associated with the development of multidrug resistance (42). R115777 is a lipophilic molecule that could potentially be
Table 1. Gene expression changes in 8226/R5 cells

<table>
<thead>
<tr>
<th>Expression increased</th>
<th>Expression decreased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janus kinase 2</td>
<td>Interleukin-6 receptor</td>
</tr>
<tr>
<td>Signal transducer and activator of transcription 1</td>
<td>Insulin-like growth factor 2 receptor</td>
</tr>
<tr>
<td>Bcl-XL</td>
<td>Mcl-1</td>
</tr>
<tr>
<td>Phosphoinositide-3-kinase, catalytic, δ polypeptide</td>
<td>Heat shock protein 27</td>
</tr>
<tr>
<td>Fibroblast growth factor receptor activating protein 1</td>
<td>Retinoblastoma 1</td>
</tr>
<tr>
<td>Fibroblast growth factor 20</td>
<td>Transforming growth factor α</td>
</tr>
<tr>
<td>Mevalonate kinase</td>
<td>Tumor protein p53</td>
</tr>
<tr>
<td>Rap 2A</td>
<td>Farnesyl diphosphate synthetase</td>
</tr>
<tr>
<td>Rab GGTase, β subunit</td>
<td>Ras protein activator like-1</td>
</tr>
<tr>
<td>Rab 4A</td>
<td>Ras and Rab interactor 2</td>
</tr>
<tr>
<td>Ras and Rab interactor 3</td>
<td>Ras 36</td>
</tr>
<tr>
<td>Mitogen-activated protein kinase 1</td>
<td>Rho GTPase-activating protein 6</td>
</tr>
<tr>
<td>Mitogen-activated protein kinase 9</td>
<td>Mitogen-activated protein kinase phosphatase</td>
</tr>
<tr>
<td>Mitogen-activated protein kinase 14</td>
<td>Cyclin D1</td>
</tr>
<tr>
<td>Cyclin D3</td>
<td>Syndecan 1</td>
</tr>
<tr>
<td>Fas apoptotic inhibitory molecule</td>
<td>X-box – binding protein 1</td>
</tr>
<tr>
<td>Calmodulin 3</td>
<td>Actin, β</td>
</tr>
<tr>
<td>Calpain 2</td>
<td>Fibronectin-1</td>
</tr>
<tr>
<td>S100 calcium binding protein A13 and A14</td>
<td>Integrin β3</td>
</tr>
<tr>
<td>Collagen type XXI α</td>
<td>Integrin β7</td>
</tr>
<tr>
<td>Collagen IV, α3</td>
<td>Intercellular adhesion molecule-1</td>
</tr>
<tr>
<td>Paxillin</td>
<td>Ubiquitin-conjugating enzymes</td>
</tr>
<tr>
<td>Integrin α-4</td>
<td>Proteosome subunit B-4 type</td>
</tr>
<tr>
<td>Integrin α-6</td>
<td>Proteosome 26S subunit</td>
</tr>
<tr>
<td>Ubiquitin-specific proteases 15</td>
<td>S100 calcium binding protein (A11 pseudogene)</td>
</tr>
<tr>
<td>Ubiquitin-specific proteases 24</td>
<td>S100 calcium-binding protein (A11 calgizzarin)</td>
</tr>
<tr>
<td>Proteosome inhibitor subunit 1</td>
<td></td>
</tr>
</tbody>
</table>

expression was undetectable. Our microarray analysis revealed decreased expression of the 26S proteosome subunit (the target of PS-341) in 8226/R5 cells when compared with the parental 8226/S line. This perhaps represents a novel mechanism of proteosome inhibitor resistance.

In conclusion, we have identified a myeloma cell line with resistance to both R115777 and PS-341. Further characterization of this line may lead to identification of novel drug targets or resistance mechanisms that are clinically relevant.

References

Characterization of a R115777-Resistant Human Multiple Myeloma Cell Line with Cross-Resistance to PS-341

Robert Buzzeo, Steven Enkemann, Rama Nimmanapalli, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/11/16/6057

Cited articles
This article cites 42 articles, 23 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/11/16/6057.full.html#ref-list-1

Citing articles
This article has been cited by 12 HighWire-hosted articles. Access the articles at:
/content/11/16/6057.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.