Glucocorticoids Inhibit Cell Death in Ovarian Cancer and Up-regulate Caspase Inhibitor cIAP2

Ingo B. Runnebaum and Ansgar Brünning

Abstract

Purpose: Almost all patients with epithelial ovarian cancer receive chemotherapy and, concurrently, the synthetic steroid hormone dexamethasone to alleviate the side effects. This study aims to test the impact of steroid hormones on the apoptosis of epithelial ovarian cancer cells and to identify its mediators.

Experimental Design: Tumor cell lines from 19 patients with advanced epithelial ovarian cancer were analyzed for glucocorticoid receptor, estrogen receptor, progesterone receptor, and androgen receptor expression. Cells were incubated with corresponding steroid hormones at serum-equivalent doses in hormone-depleted medium. Apoptosis was induced by application of tumor necrosis factor–related apoptosis-inducing ligand or staurosporine and determined by poly(ADP-ribose) polymerase cleavage and cell survival. Microarray with 8K cDNA chips including apoptosis-relevant genes was used to study genes regulated by glucocorticoids.

Results: In cell culture, tumor necrosis factor–related apoptosis-inducing ligand–induced apoptosis in OV-MZ-30 and OV-MZ-31 cells was reduced after treatment with dexamethasone or cortisol, but not with estradiol, progesterone, or androstenedione. Microarray analysis revealed a 7-fold up-regulation of the caspase inhibitor cIAP2 by dexamethasone in OV-MZ-30 and OV-MZ-31 cells. cIAP2 up-regulation by glucocorticoids was confirmed by RT-PCR and Western blot analysis in OV-MZ-30, OV-MZ-31, OV-CAR3, and SK-OV-3 cells. Down-regulation of cIAP2 expression by small interfering RNA sensitized SK-OV-3 cells to apoptosis inducer staurosporine. Under clinical conditions, treatment with dexamethasone was associated with significant up-regulation of cIAP2 in the ascites cells.

Conclusions: Activation of the glucocorticoid receptor in epithelial ovarian cancer cells caused an antiapoptotic effect associated with the enhanced cellular expression level of cIAP2. Dexamethasone pretreatment of epithelial ovarian cancer patients receiving apoptosis-inducing chemotherapy raises questions about a negative effect on antitumor efficacy.

Plasma levels of steroid hormones such as estrogens, androgens, progesterone, and the cellular expression level of the corresponding hormone receptors can be factors promoting the development of several solid tumors including ovarian and breast cancer (1–3). The expression of the estrogen receptor in breast cancer is a well-known example and its pharmacologic inhibition by (selective) antiestrogens is extensively studied for breast cancer treatment as well as for its prevention (4, 5). Less is known about the impact of steroid hormones on the development of ovarian cancer. Contradictory studies on hormone replacement therapy regarding ovarian cancer risk have been presented (6, 7).

Besides sex hormone receptors, the glucocorticoid receptor is another steroid hormone receptor with an effect on cancer cells. The synthetic glucocorticoid dexamethasone has been shown to increase resistance to chemotherapeutic drugs and radiation therapy in cells from solid cancer (8–12). This finding is of particular clinical significance because exogenously applied dexamethasone is a routine pretreatment used to attenuate the side effects of chemotherapy or irradiation, such as nausea and emesis (13, 14). In epithelial ovarian cancer, except from the rare Federation Internationale des Gynaecologistes et Obstétristes stage IA with histopathologic grading G1, all patients receive either an adjuvant or first-line platinum-based chemotherapy, in advanced stages combined with paclitaxel. Patients routinely receive dexamethasone, mostly two oral doses of 20 mg each, 12 and 6 hours before chemotherapy.

The effect of glucocorticoids on apoptosis of epithelial ovarian cancer cells has not been studied yet. Particularly, little is known about the effect of endogenously produced glucocorticoids on apoptosis. Resistance against endogenously produced apoptotic factors is one hallmark of cancer development as cancer cells permanently need to escape apoptosis-inducing agents produced and exhibited by cells of the...
immune system (15). Members of the tumor necrosis factor family, such as CD95L, tumor necrosis factor, or tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) in either secreted or membrane-bound forms are such well-known endogenously produced apoptosis inducers with antitumor effect (16–18).

For a better understanding of the role of steroid hormones and steroid hormone receptors in ovarian cancer, we analyzed the expression of the estrogen receptor, progesterone receptor, androgen receptor, and glucocorticoid receptor in epithelial ovarian cancer cell lines and tested the influence of endogenous and synthetic steroid hormones on ovarian cancer cell survival.

Materials and Methods

Cells and cell culture. The mammary cancer cell line, MCF-7, and the ovarian carcinoma cell lines, SK-OV-3 and OV-CAR-3, are American Type Culture Collection–available cell lines. The other ovarian cancer cell lines, OV-MZ-1a, 2a, 5, 6, 9, 12, 15, 19, 20, 21, 22, 26, 27, 30, 31, 32, and 33 have previously been established as primary cancer cell lines (19) and used at passage numbers between 22 and 61. Cells were cultured in DMEM supplemented with 10% FCS and antibiotics at 37°C in a humidified atmosphere with 5% CO₂. All cell culture reagents were from Invitrogen, Karlsruhe, Germany, except for hormone-depleted (charcoal-stripped) FCS, which was from Biochrom, Berlin, Germany. Cell counting was done with a hemocytometer.

Treatment of cells with steroid hormones. 17-β-Estradiol, progesterone, 4-androstene-3,17-dione, and dexamethasone (9α-fluor-16a-methylprednisolon) were from Sigma, Schnelldorf, Germany, and kept in ethanolic stock solutions. Cell culture experiments were done with DMEM supplemented with 10% hormone-depleted FCS (Biochrom), done in duplicate and repeated at least twice.

Induction and determination of cell death. To induce cell death, OV-MZ-30 cells and OV-MZ-31 cells at a density of 5 × 10⁶ cells/well were treated with 5 ng/mL TRAIL (Peprotech, London, United Kingdom). For a better understanding of the role of steroid hormones and steroid hormone receptors in ovarian cancer, we analyzed the expression of the estrogen receptor, progesterone receptor, androgen receptor, and glucocorticoid receptor in epithelial ovarian cancer cell lines and tested the influence of endogenous and synthetic steroid hormones on ovarian cancer cell survival.

In RT-PCR analysis, MCF-7 cells proved to be positive for estrogen receptor expression (Fig. 1), whereas only 2 (SK-OV-3 and synthetic steroid hormones on ovarian cancer cell survival.

Results

Expression of estrogen, progesterone, androgen, and glucocorticoid receptor in ovarian cancer cells. A panel of 19 human ovarian cancer cell lines was screened by RT-PCR analysis for the expression of estrogen receptor, progesterone receptor, androgen receptor, and glucocorticoid receptor. The established mammary cancer cell line MCF-7, known to be positive for expression of all of these receptors (22), was used for control. In RT-PCR analysis, MCF-7 cells proved to be positive for estrogen receptor expression (Fig. 1), whereas only 2 (SK-OV-3

Fig. 1. Expression of steroid hormone receptors in ovarian cancer cells. RT-PCR analysis for the expression of estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR), glucocorticoid receptor (GR), and β-actin was done on the 19 ovarian cancer cell lines and the breast cancer cell line MCF7.
and OV-MZ-33) out of 19 ovarian cancer cell lines were identified to express the estrogen receptor (Fig. 1). Expression of progesterone, androgen, and glucocorticoid receptor was found at highly differing expression levels in most ovarian cancer cell lines tested (Fig. 1).

Dexamethasone mediates an antiapoptotic effect in ovarian cancer cells. Ovarian cancer cell lines, OV-MZ-30 and OV-MZ-31, were highly sensitive to TRAIL. To test for the influence of steroid hormones on ovarian cancer cell apoptosis, OV-MZ-30 and OV-MZ-31 cells were incubated with either 10 nmol/L estradiol, 30 nmol/L progesterone, 10 nmol/L androstenedione, or 100 nmol/L dexamethasone for activation of the corresponding steroid hormone receptors. Cells were treated with or without 5ng/mL TRAIL and the number of viable cells was counted after an additional 24-hour incubation (Fig. 2A and B). TRAIL treatment induced significant signs of apoptosis (e.g., membrane blebbing; data not shown) eventually leading to cell death and detachment. In OV-MZ-30 and OV-MZ-31 cells pretreated with dexamethasone, a significantly higher number of cells survived application of TRAIL (Fig. 2A and B). No enhanced cell survival after TRAIL application was found in OV-MZ-30 and OV-MZ-31 cells treated with either estradiol, progesterone, or androstenedione (Fig. 2A and B). In OV-MZ-33 or OV-MZ-27 cells lacking glucocorticoid receptor expression (Fig. 1), none of the tested steroid hormones induced changes in TRAIL sensitivity, even in the estrogen receptor–positive OV-MZ-33 cell line (data not shown).

Antiapoptotic effect of endogenous steroid hormones. The serum equivalent of low-dose dexamethasone, when applied in clinical protocols, is in the range of 10 to 200 nmol/L (8). Whereas dexamethasone is a synthetic drug applied during cancer treatment, the human body produces a panoply of endogenous glucocorticoid hormones, varying in concentration and composition depending on age, sex, circadian rhythm, and external factors. We tested the effect of the main endogenous glucocorticoid hormones on TRAIL-mediated apoptosis by applying concentrations similar to mean plasma levels described (ref. 23; 18.5 nmol/L corticosterone, 24.5 nmol/L cortisone, 195.5 nmol/L hydrocortisone/cortisol). To consider the known variations that can occur in the serum levels of these hormones, a 5-fold higher concentration of these hormones was additionally included. Among the endogenous glucocorticoids tested, a significant inhibitory effect at serum-equivalent levels against TRAIL-mediated apoptosis was observed mainly for hydrocortisone (cortisol)-treated OV-MZ-31 cells (Fig. 2C). Results were similar for OV-MZ-30 cells (data not shown). The previously pronounced antiapoptotic effect of serum-equivalent doses of hydrocortisone prompted us to test for the effects of further applications of dexamethasone. Additional application of dexamethasone to OV-MZ-31 cells incubated with endogenous glucocorticoid hormones further enhanced the resistance of OV-MZ-31 cells against TRAIL-induced apoptosis (Fig. 2D). However, a maximum level for cellular
protection by glucocorticoids was observed that could not be further exceeded (Fig. 2D). Testing different concentrations of dexamethasone, the antiapoptotic effect reached its maximum at a concentration of 200 nmol/L of dexamethasone and could not be exceeded even when dexamethasone concentrations were increased up to 1 μmol/L (data not shown).

Microarray analysis revealing cIAP2 as the main antiapoptotic factor modulated by dexamethasone in ovarian cancer cells. To identify genes responsible for the antiapoptotic effect in dexamethasone-treated ovarian cancer cells, microarray analysis of dexamethasone-treated OV-MZ-30 and OV-MZ-31 cells was done. A cDNA library of 7,768 human cDNAs (see Materials and Methods) spotted in duplicate on glass coverslips was tested. Genes found to be up-regulated in duplicate with an arbitrary cutoff level of ≥4-fold are summarized in Table 1 for OV-MZ-30 and for OV-MZ-31 cells. In both OV-MZ-30 and OV-MZ-31 cells, a 7- to 8-fold up-regulation of cIAP2 (synonyms, “inhibitor of apoptosis protein-1”, HIAP1, MIHC) was found. cIAP2 is known to function as a direct inhibitor of caspases 3 and 9 enzyme activity (24). Additional genes found to be significantly and reproducibly up-regulated by dexamethasone in both OV-MZ-30 and OV-MZ-31 cells were metallothioneins and CL100, both proteins known to be regulated by glucocorticoids (25, 26). Up-regulation of cIAP2 by dexamethasone could be confirmed by RT-PCR analysis as shown for OV-MZ-30 and OV-MZ-31 cells (Fig. 3A), as well as for SK-OV-3 cells, tested and included as an additional ovarian cancer cell line (Fig. 3A). Band density quantification analysis calculating cIAP2/β-actin ratios revealed up-regulation of cIAP2 mRNA by 197% in SK-OV-3 cells, by 137% in OV-MZ-30 cells, and by 40% in OV-MZ-31 cells.

Dexamethasone enhanced expression of cIAP2 on the protein level. To test whether enhanced cIAP2 mRNA expression results in enhanced cIAP2 protein expression, we did Western blot analysis of dexamethasone-treated OV-CAR-3, SK-OV-3, OV-MZ-30, and OV-MZ-31 cells (Fig. 3B). An enhanced protein level of cIAP2 could be observed in all tested dexamethasone-treated ovarian cancer cells (Fig. 3B). For quantitation, the expression level of cIAP2 protein as determined by image analysis was related to the corresponding β-actin protein expression level as an internal standard and calculated as cIAP2/β-actin ratios (Fig. 3C). Comparison of cIAP2 mRNA

Table 1. Expression modulation by dexamethasone in OV-MZ 30 and OV-MZ 31 cells (microarray analysis)

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Gene description</th>
<th>Fold regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>K03473</td>
<td>metallothionein (MT) 1f</td>
<td>41.60</td>
</tr>
<tr>
<td>AJ011772</td>
<td>metallothionein (MT) II</td>
<td>38.69</td>
</tr>
<tr>
<td>M10942</td>
<td>metallothionein (MT) 1e</td>
<td>24.70</td>
</tr>
<tr>
<td>AA150767</td>
<td>CL100 protein tyrosine phosphatase</td>
<td>21.16</td>
</tr>
<tr>
<td>U65002</td>
<td>zinc finger protein PLAG1</td>
<td>20.52</td>
</tr>
<tr>
<td>AF056087</td>
<td>secreted frizzled related protein</td>
<td>9.36</td>
</tr>
<tr>
<td>AF070674</td>
<td>cIAP2 (inhibitor of apoptosis protein-1, MIHC, HIAP1)</td>
<td>7.02</td>
</tr>
<tr>
<td>M17706</td>
<td>granulocyte colony stimulating factor</td>
<td>6.65</td>
</tr>
<tr>
<td>AF085351</td>
<td>ELISC-1</td>
<td>5.47</td>
</tr>
<tr>
<td>AF000652</td>
<td>syntenin (sycl)</td>
<td>5.01</td>
</tr>
<tr>
<td>NSB777</td>
<td>c-myb</td>
<td>4.92</td>
</tr>
<tr>
<td>L08246</td>
<td>myeloid cell differentiation protein (MCL1)</td>
<td>4.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Gene description</th>
<th>Fold regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H53584</td>
<td>FK506 binding protein 5</td>
<td>56.00</td>
</tr>
<tr>
<td>T64026</td>
<td>receptor tyrosine kinase (ERBB4)</td>
<td>20.98</td>
</tr>
<tr>
<td>U71321</td>
<td>FK506-binding protein 51</td>
<td>18.10</td>
</tr>
<tr>
<td>AA040274</td>
<td>transforming growth factor β-3</td>
<td>11.80</td>
</tr>
<tr>
<td>X85545</td>
<td>protein kinase PKX1</td>
<td>8.21</td>
</tr>
<tr>
<td>AF070674</td>
<td>cIAP2 (inhibitor of apoptosis protein-1, MIHC, HIAP1)</td>
<td>7.59</td>
</tr>
<tr>
<td>AF045941</td>
<td>sciellin (SCEL)</td>
<td>5.93</td>
</tr>
<tr>
<td>AF101434</td>
<td>Wolf-Hirschhorn syndrome candidate 2 protein</td>
<td>5.90</td>
</tr>
<tr>
<td>AF031167</td>
<td>interleukin 15 precursor</td>
<td>5.61</td>
</tr>
<tr>
<td>D49835</td>
<td>DNA-binding protein</td>
<td>5.38</td>
</tr>
<tr>
<td>AA150767</td>
<td>CL100 protein tyrosine phosphatase</td>
<td>4.80</td>
</tr>
<tr>
<td>X70940</td>
<td>elongation factor α-2</td>
<td>4.66</td>
</tr>
<tr>
<td>M10942</td>
<td>metallothionein (MT) 1e</td>
<td>4.59</td>
</tr>
<tr>
<td>D30783</td>
<td>epiregulin</td>
<td>4.54</td>
</tr>
<tr>
<td>AF095791</td>
<td>TACC2 protein</td>
<td>4.06</td>
</tr>
<tr>
<td>AA150766</td>
<td>HLA-DMB</td>
<td>-8.70</td>
</tr>
</tbody>
</table>
and protein expression levels among the tested ovarian cancer cells in the absence of dexamethasone, or under conditions of dexamethasone treatment (Fig. 3A and B), suggest a close relation between cIAP2 mRNA expression level and protein expression level. Using a polyclonal XIAP antibody, XIAP expression was detectable in OV-CAR-3 cells, but was not detectable or only faintly detectable in the other epithelial ovarian cancer cells (Fig. 3B). Unexpectedly, in OV-CAR-3 cells, XIAP expression seemed to be reduced after dexamethasone treatment (Fig. 3B). Expression of cIAP1 protein could not be detected by Western blot analysis (data not shown).

Glucocorticoid treatment resulted in reduced PARP cleavage after TRAIL treatment. As cIAP2 is a specific inhibitor of apoptosis-mediating caspase 3 (24), we analyzed the cleavage of the caspase 3 substrate PARP, which is cleaved by caspase 3 from the 115 kDa protein into an inactive 85 kDa fragment by activated caspase 3. No cleavage of PARP could be detected in OV-MZ-30 or OV-MZ-31 cells in the absence of TRAIL (data not shown). TRAIL treatment resulted in the formation of the 85 kDa PARP fragment in OV-MZ-30 or OV-MZ-31 cells (Fig. 4A). Under the influence of dexamethasone, TRAIL-induced cleavage of PARP was observed to be less in both OV-MZ-30 and OV-MZ-31 cells (Fig. 4A).

siRNA-mediated down-regulation of cIAP2 sensitized SK-OV-3 cells to staurosporine-mediated apoptosis. To show that the expression level of cIAP2 is a crucial factor in the apoptotic event of ovarian cancer cells, a siRNA approach was done in order to reduce the cIAP2 expression level of ovarian cancer cells. As the primary ovarian cancer cell lines OV-MZ-30 and OV-MZ-31 did not reveal sufficient clonogenic potential, stable cIAP2 siRNA-expressing cell clones were generated from the widespread and readily clonogenic SK-OV-3 cell line. After electroporation of the pGB cIAP2 siRNA plasmid into SK-OV-3 cells, four stable, neomycin-resistant cell clones were generated (designated, si1-4; Fig. 4B), which was proven to exhibit a significantly lower cIAP2 protein expression level than the parental SK-OV-3 cell line (par., Fig. 4B). As SK-OV-3 cells were resistant to TRAIL treatment even at high concentrations (data not shown), cells were incubated with 500 ng/mL staurosporine, which, in contrast to paclitaxel (taxol), has been shown to induce apoptosis in SK-OV-3 cells via caspase 3 activation (27). Parental SK-OV-3 cells were sensitive to staurosporine treatment as shown in Fig. 4D, still, sensitivity to staurosporine was enhanced in all cell clones with reduced cIAP2 expression level (Fig. 4C). Wilcoxon test analysis (SPSS 12.0, SPSS, Munich, Germany) revealed data to be statistically significant ($P = 0.012$).

Enhanced expression of cIAP2 in the ascites of an ovarian cancer patient treated with dexamethasone. We investigated whether clinically applied doses of dexamethasone could also increase cIAP2 expression in cells taken directly from ascites of an ovarian cancer patient. The chemo-naïve patient tested received dexamethasone for palliation to reduce ascites...

![Fig. 3. RT-PCR and Western blot analysis of cIAP2 mRNA and protein expression in ovarian cancer cells. A, the ovarian cancer cell lines SK-OV-3, OV-MZ-30, and OV-MZ-31 were treated for 16 hours with or without 100 nmol/L dexamethasone as indicated and subjected to semiquantitative RT-PCR analysis for the expression of cIAP2 and β-actin. B, the ovarian cancer cell lines OV-CAR-3, SK-OV-3, OV-MZ-30, and OV-MZ-31 were treated for 24 hours with or without 100 nmol/L dexamethasone as indicated and subjected to Western blot analysis for the expression of cIAP2 and β-actin. C, expression levels of cIAP2 as shown in (B) and that of an identical experiment (not shown) were determined by image analysis (Bio-Rad Quantity One, Bio-Rad, Munich, Germany) and related to the corresponding β-actin expression level as an internal standard (C).](#)
production. Ascites was first collected from the ovarian cancer patient 2 hours before oral administration of dexamethasone (4 mg Fortecortin tablet). Ascites was again collected after 6 and 8 hours following dexamethasone application. Cells from the ascites were collected and prepared for semiquantitative RT-PCR analysis (Fig. 5). RT-PCR analysis of ascites cells revealed a significant up-regulation of cIAP2 after dexamethasone treatment. Up to 8 hours following dexamethasone application, cIAP2 was expressed at a significantly higher level than before dexamethasone treatment (Fig. 5).

Discussion

Despite the widespread application of dexamethasone as a supportive drug in ovarian cancer therapy, no studies on the effect of glucocorticoids on apoptosis and apoptotic pathways have yet been published for epithelial ovarian cancer cells. Our study shows that glucocorticoids of either exogenous or endogenous origin cause an antiapoptotic effect in epithelial ovarian cancer cells, accompanied by up-regulation of cIAP2 expression. cIAP2 is a cytosolic caspase inhibitor, interfering with the proteolytic activity of caspases 3 and 9 (28). Caspase 3 is the effector caspase in apoptosis and can be activated by irradiation, chemotherapeutics, or members of the tumor necrosis factor family (18, 29–31). cIAP2 was identified in this study because of its established and well-known function as an antiapoptotic protein. It cannot be excluded that other factors are involved in the antiapoptotic effect of glucocorticoids in ovarian cancer. We observed significant up-regulation of metallothionein proteins by dexamethasone (Table 1). The primary function of metallothioneins as metal ion-binding proteins (25) does not seem to be directly related to apoptosis.

![Fig. 4. Influence of glucocorticoids on TRAIL-induced caspase activity, and effect of siRNA-mediated cIAP2 down-regulation on apoptosis. A, the ovarian cancer cell lines OV-MZ-30 and OV-MZ-31 were incubated for 24 hours with or without 100 nmol/L dexamethasone and treated for 4 hours with 5 ng TRAIL/mL. Cell extracts were subjected to Western blot analysis and tested for the expression of cIAP2, PARP, and β-actin using corresponding antibodies. B, parental SK-OV-3 cells (par.) and four selected cell clones gained by electroporation of cIAP2 siRNA and selected by G418 treatment were analyzed by Western blot analysis for the expression of cIAP2 and β-actin. C, cell clones as shown in (B) were treated with 500 ng staurosporine/mL overnight and the number of viable cells was calculated.](attachment:image.png)
References

Glucocorticoids in Ovarian Cancer

Fig. 5. Enhanced expression of cIAP2 in fortocortin-treated ovarian cancer. A, cells from the ascites of a patient with ovarian cancer were collected and subjected to semiquantitative RT-PCR analysis for cIAP2 and β-actin expression as described. The patient received an oral dose of 4 mg dexamethasone (Fortocortin) at time point 0 hours. Ascites was collected from 0 to 6 hours and 6 to 8 hours after application of dexamethasone. As a control, ascites was collected 2 hours before application of dexamethasone (ascites control). B, results from experiments shown in (A) were densitometrically analyzed by the AIDA image analysis program (Raytest, Straubenhardt, Germany) and calculated as cIAP2/β-actin ratios.

Acknowledgments

We thank Liobea Walz, University Hospital Freiburg, Germany, for excellent technical assistance; Drs. Jochen Wilpert and Johannes Donauer, Core Facility Genomics (Prof. Walz), University Hospital Freiburg, Germany, for support in microarray analysis; and Christiane Rosenbruch for assistance in siRNA studies.

1 Unpublished results.

and cell survival. Still, ribozyme-mediated down-regulation of metallothionein 2a has been shown to induce apoptosis in prostate and ovarian cancer cells (32), and overexpression of metallothioneins was identified as a negative prognostic marker in melanomas (33). We further observed up-regulation of CL100 (MKP-1) and SGK-1 in MDA-MB-231 cells. In that study, microarray analysis for overexpression of CL100 could exert an antiapoptotic effect in breast cancer cells (36). Development of such a molecule against cIAP2 could create a promising drug for application in ovarian cancer.

We conclude that the antiapoptotic effect of glucocorticoids on human epithelial ovarian cancer cells is mediated by up-regulation of several cellular factors including cIAP2 with direct antiapoptotic function, and most likely by additional factors such as CL100 and metallothioneins, with secondary anti-apoptotic function.
Glucocorticoids Inhibit Cell Death in Ovarian Cancer and Up-regulate Caspase Inhibitor cIAP2

Ingo B. Runnebaum and Ansgar Brüning

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/11/17/6325

Cited articles
This article cites 35 articles, 12 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/11/17/6325.full#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/11/17/6325.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.