Enhancement of Cisplatin Sensitivity of Cisplatin-Resistant Human Cervical Carcinoma Cells by Bryostatin 1

Sanghamitra Mohanty, Jie Huang, and Alakananda Basu

Abstract

Purpose: Bryostatin 1, a unique protein kinase C (PKC) activator, is already in the clinical trials. An understanding of complex regulation of PKC by bryostatin 1 is essential for effective use of bryostatin 1 in the clinic. We have previously shown that the ability of bryostatin 1 to enhance cisplatin sensitivity correlated with its ability to down-regulate PKCα in HeLa cells. We have investigated how bryostatin 1 influences PKCα regulation in cisplatin-resistant HeLa (HeLa/CP) cells, and if bryostatin 1 could be used to reverse cisplatin resistance.

Experimental Design: Phorbol 12,13-dibutyrate (PDBu), bryostatin 1, and small interfering RNA were used to manipulate PKC level/activation status. Cell death was monitored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Annexin V dye-binding assay, and analysis of hypodiploid peak in a flow cytometer.

Results: Bryostatin 1 elicited a biphasic concentration response on PKCα down-regulation and cisplatin-induced cell death in HeLa/CP cells; the maximum effect was achieved with 1 mmol/L bryostatin 1. Down-regulation of PKCα increased with increasing concentrations of bryostatin 1. PDBu induced down-regulation of PKCα in HeLa and HeLa/CP cells but it had little effect on PKCα down-regulation in HeLa/CP cells. However, both PDBu and bryostatin 1 enhanced the sensitivity of HeLa/CP cells to cisplatin. Knockdown of PKCα by small interfering RNA inhibited cisplatin-induced apoptosis but knockdown of PKCα enhanced cisplatin-induced cell death.

Conclusions: These results suggest that although PKCα acts as a proapoptotic protein, full-length PKCα may inhibit cisplatin-induced cell death. Thus, persistent activation/down-regulation of PKCα by bryostatin 1 was associated with cisplatin sensitization. Furthermore, PKCα acts as an antiapoptotic protein and down-regulation of PKCα by PDBu was associated with cellular sensitization to cisplatin.

Cis-Diamminedichloroplatinum(II) or cisplatin is one of the most effective anticancer drugs used in the treatment of solid tumors, including ovarian, testicular, cervical, and small cell lung cancers (1, 2). The acquisition of resistance by tumor cells to cisplatin is one of the major problems in cisplatin therapy. Although DNA is the primary target of cisplatin, other cellular factors can influence its cytotoxicity. We, and others, have shown that the protein kinase C (PKC) signaling pathway plays an important role in regulating cisplatin sensitivity (3–9).

PKC represents a family of at least 10 isoforms that have been categorized into three groups: conventional or cPKCs (α, β, βII, and γ), novel or nPKCs (δ, ε, η, and θ), and atypical or aPKCs (ζ and η; refs. 10–13). Whereas cPKCs are dependent on Ca2+ and diacylglycerol for activity, nPKCs are Ca2+-independent. aPKCs are insensitive to both Ca2+ and diacylglycerol. Tumor-promoting phorbol esters are potent activators of PKCs and can substitute for diacylglycerol (10). Prolonged cellular exposure to phorbol esters can lead to depletion or down-regulation of conventional and novel PKCs (10, 13, 14).

PKCα has been intimately associated with DNA damage–induced apoptosis (15, 16). There are, however, controversies regarding how PKCα influences apoptosis. PKCα is a substrate for caspase-3 and proteolytic activation of PKCα has been linked to DNA damage–induced apoptosis (15, 16). Several studies suggested that activation of PKCα was associated with cell death (17–20). However, PKCα has been shown to promote cell survival and chemotherapeutic drug resistance in human non–small cell lung cancer cells (21). We have shown that prolonged cellular exposure to PKC activators that led to down-regulation of PKCα enhanced cell death induced by the DNA-damaging agent cisplatin (5, 9). Paradoxically, rotellin, a pharmacologic inhibitor of PKCα, prevented cisplatin-induced apoptosis (8, 9).

Bryostatin 1, a macrocyclic lactone derived from the marine bryozoan Bugula neritina, belongs to a unique class of PKC activators (22, 23). It binds to and activates PKC, but it can also act as a partial agonist and often antagonizes its own effect or the effects of phorbol esters (23, 24). Unlike phorbol esters, bryostatin 1 lacks tumor-promoting activity and is an important...
candidate for anticancer therapy (24–26). Although bryostatin 1 does not affect proliferation of HeLa cells by itself, it enhances cellular sensitivity to cisplatin significantly at subnanomolar concentrations (6, 9). It, however, elicits a biphasic effect on cisplatin sensitization (6). We have shown that the biphasic concentration response of bryostatin 1 on cisplatin-induced cell death can be explained by PKCδ down-regulation and caspase activation (9).

We have recently shown that the regulation of PKCδ by phorbol 12,13-dibutyrate (PDBu) was affected in HeLa cells that acquired resistance to cisplatin (27). The level of PKCδ was elevated in cisplatin-resistant HeLa (HeLa/CP) cells and the ability of PDBu to induce down-regulation of PKCδ was compromised in HeLa/CP cells compared with drug-sensitive parental cells (27). Because the regulation of PKCδ by bryostatin 1 and PDBu is distinct and bryostatin 1 is already in clinical trials, we have examined how bryostatin 1 influences PKCδ regulation in cisplatin-resistant HeLa cells, and if bryostatin 1 could be used to circumvent cisplatin resistance.

Materials and Methods

Materials. 12-O-Tetradecanoylphorbol 13-acetate and PDBu were purchased from LC Service Corporation (Woburn, MA). Cisplatin and MTT were from Sigma (St. Louis, MO). Small interfering RNAs (siRNA) and polyclonal antibodies to PKCα and PKCζ were from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Polyclonal antibody to PKCδ, and monoclonal antibody to PKCa were from Upstate Biotechnology, Inc. (Lake Placid, NY). Polyclonal antibody to caspase-3 and monoclonal antibody to poly(ADP-ribose) polymerase were from PharMingen (San Diego, CA). Annexin V conjugated to Alexa Fluor 488 and propidium iodide were purchased from Molecular Probes (Eugene, OR). Horseradish peroxidase–conjugated goat anti-mouse and donkey anti-rabbit antibodies were obtained from Jackson ImmunoResearch Lab., Inc. (West Grove, PA). Polyvinylidene difluoride membrane was from Millipore (Bedford, MA) and enhanced chemiluminescence detection kit was from Amersham (Arlington Heights, IL).

Cell culture and transfection. Human cervical carcinoma HeLa cells and its cisplatin-resistant variants (HeLa/CP) were maintained in DMEM supplemented with 10% heat-inactivated fetal bovine serum and 2 mmol/L glutamine, and kept in a humidified incubator at 37°C with 95% air and 5% CO₂. HeLa cells were transfected with full-length PKCδ cloned into pcDNA5 using LipofectAMINE (Invitrogen, Carlsbad, CA) according to the manufacturer’s protocol and selected using genetin.

Assessment of cell viability by MTT Assay. Exponentially growing cells were plated in microtiter plates and incubated at 37°C in 5% CO₂. The following day, cells were pretreated with or without PKC activators as indicated in the text and then exposed to varying concentrations of cisplatin. Cell survival was determined by the MTT assay as described in Materials and Methods. IC₅₀ values were determined from the cell survival curves.

Assessment of apoptosis by flow cytometric analysis. Cells were pretreated with PKC activators for the indicated periods of time and then treated with cisplatin. At the end of the incubation, cells were harvested and washed with PBS. Nuclei were isolated, stained with propidium iodide, and DNA content was analyzed using a flow cytometer (Coulter Epics, Miami, FL; ref. 28).

Annexin V/propidium iodide binding assay. Cells were treated with or without PKC activators and then with cisplatin for 3 hours.
Cisplatin-containing media was removed and cells were incubated in drug-free media. At the end of the incubation, both detached cells and attached cells were collected and washed with PBS. Cells were then stained with Annexin V-Alexa 488 conjugate and propidium iodide according to the manufacturer’s protocol and analyzed using a flow cytometer (Coulter Epics, Miami, FL).

Immunoblot analysis. Cell extracts containing equal amounts of proteins were electrophoresed by SDS-PAGE and transferred electrophoretically to polyvinylidene difluoride membrane. Immunoblot analyses were done as described before (9).

Knockdown of PKC isoenzymes. Control siRNA or siRNA targeted against PKCα or PKCγ were introduced into HeLa cells using LipofectAMINE 2000 (Invitrogen) and manufacturer’s protocol. Briefly, cells were seeded 1 day before transfection. LipofectAMINE 2000 and siRNA diluted in Opti-MEM were mixed gently at a ratio of 300 ng LipofectAMINE 2000, 2,000-133 ng siRNA and incubated at room temperature for 15 to 20 minutes. Culture medium was replaced with Opti-MEM and 100 μL of siRNA/LipofectAMINE 2000 complexes were added to cells. After 4 to 6 hours, fresh culture medium was added to cells: 48 hours following siRNA transfection, cells were treated with cisplatin.

Results

Differential effects of protein kinase C activators on protein kinase Cδ down-regulation. We have recently shown that the ability of PDBu to down-regulate PKCδ was compromised in HeLa cells that acquired resistance to cisplatin (HeLa/CP; ref. 27). In the present study, we compared the effects of several PKC activators that differ structurally and functionally on the down-regulation of PKCδ in HeLa and HeLa/CP cells. Figure 1 shows that prolonged cellular exposure to PKC activators, including 12-O-tetradecanoylphorbol 13-acetate, PDBu, bryostatin 1, and indolactam V led to down-regulation of PKCδ in HeLa cells. In contrast, with the exception of bryostatin 1, PKC activators failed to induce substantial down-regulation of PKCδ in HeLa/CP cells. The ability of these PKC activators to induce down-regulation of PKCα and PKCγ was comparable in HeLa and HeLa/CP cells, suggesting that there was no general alteration in the degradative pathway. None of the PKC activators had any effect on the down-regulation of phorbol ester–insensitive atypical PKCζ. Thus, the level of PKCζ also served as control for equal loading.

Because bryostatin 1 exhibits biphasic down-regulation of PKCδ in HeLa cells (9), we examined the effect of increasing concentrations of bryostatin 1 on PKCδ down-regulation in HeLa/CP cells. Figure 2 shows that bryostatin 1 induced biphasic down-regulation of PKCδ in both HeLa and HeLa/CP cells. The maximum down-regulation was achieved by 1 nmol/L bryostatin 1 and higher concentrations of bryostatin 1 were less effective than 1 nmol/L bryostatin 1 in inducing down-regulation of PKCδ. In contrast, down-regulation of PKCα by bryostatin 1 increased with increasing concentrations of bryostatin 1, such that 1 nmol/L bryostatin 1 had little effect on PKCα down-regulation, whereas 1 μmol/L bryostatin 1 caused complete down-regulation of PKCα in both HeLa and HeLa/CP cells.

Comparison of the effects of phorbol 12,13-dibutyrate and bryostatin 1 on the sensitization of HeLa and HeLa/CP cells to cisplatin. We have previously shown that bryostatin 1 elicits a biphasic concentration response on cisplatin-induced cell death in HeLa cells (6). To examine if PKCδ down-regulation by bryostatin 1 was associated with cellular sensitization to cisplatin in HeLa/CP cells, we determined the concentration response of bryostatin on cellular sensitivity to cisplatin. The IC50 of cisplatin at different concentrations of bryostatin 1 was determined from the MTT assay. As shown in Fig. 3, the IC50 of cisplatin decreased with increasing concentrations of bryostatin 1 up to 1 nmol/L, and then the ability of bryostatin 1 to enhance cisplatin sensitivity decreased gradually such that 1 μmol/L bryostatin 1 was much less effective than 1 nmol/L bryostatin 1 in enhancing cellular sensitivity to cisplatin. We also assessed cell death by monitoring the appearance of a hypodiploid peak in a flow cytometer. As evident in Fig. 4, bryostatin 1 induced a similar biphasic response in enhancing cisplatin-induced cell death. Whereas treatment of HeLa/CP cells with 30 μmol/L cisplatin resulted in the appearance of 36% cells in the sub-G1 phase, pretreatment of HeLa/CP cells with 1 nmol/L bryostatin 1 prior to cisplatin treatment increased cell death to 56%. However, 1 μmol/L bryostatin 1 had little effect on cisplatin-induced cell death. Thus, cisplatin sensitization by different concentrations of bryostatin 1 correlated with PKCδ down-regulation.

Because PDBu failed to cause substantial down-regulation of PKCδ in HeLa/CP cells, we compared the ability of PDBu and bryostatin 1 to influence cisplatin sensitivity in HeLa and
HeLa/CP cells. Figure 5 shows that PDBu decreased the IC_{50} of cisplatin from 6.4 to 1.9 μmol/L, whereas bryostatin 1 decreased the IC_{50} of cisplatin from 6.4 to 1.7 μmol/L in HeLa cells. The IC_{50} of CP for HeLa/CP cells was >30 μmol/L. PDBu and bryostatin 1 decreased the IC_{50} of HeLa/CP cells to 16.8 and 14 μmol/L, respectively. This difference was not statistically significant. The concentration response of PDBu shows that the maximum sensitization of HeLa/CP cells to cisplatin was achieved with 100 nmol/L PDBu (Fig. 4). Thus, PDBu was less potent than bryostatin 1. Furthermore, PDBu did not elicit a biphasic concentration response on cisplatin sensitization.

We also monitored apoptotic cell death by the Annexin V dye-binding assay. Cells were costained with the cell-impermeant dye propidium iodide to distinguish apoptotic cells from necrotic cells. When cells undergo apoptosis, phosphatidylserine is flipped from the inner to the outer leaflet of plasma membrane. During the early stage of apoptosis, Annexin V binds to phosphatidylserine on the cell surface. However, during the late stage of apoptosis, Annexin V can enter through the membrane and therefore late-stage apoptosis cannot be distinguished from necrosis. Viable cells are shown at the bottom left quadrant (negative for both Annexin V and propidium iodide). Cells stained with Annexin V conjugate alone (bottom right quadrant) represent apoptotic cells, whereas cells costained with Annexin V conjugate and propidium iodide (top right quadrant) represent late apoptotic and necrotic cells. We have indicated the total percentage of cell death in Fig. 6. Less than 10% cells underwent apoptosis in untreated HeLa and HeLa/CP cells. Because PKC activators enhance cisplatin-induced cell death, we treated HeLa cells with 5 μmol/L cisplatin that by itself had only a modest effect on cell death, and increased apoptotic cell death from 7.8% to 11.4%. PDBu and bryostatin 1 increased cisplatin-induced cell death in HeLa cells to 62% and 68%, respectively. In HeLa/CP cells, 15 μmol/L cisplatin had little effect on cell death and 45 μmol/L cisplatin increased cell death from 4.9% to 26.6%. Although the effect of bryostatin 1 seems to be less when cells were treated with 15 μmol/L cisplatin, both PDBu and bryostatin 1 were almost equally effective in enhancing cisplatin-induced apoptosis when HeLa/CP cells were treated with 45 μmol/L CP. These results suggest that PKCα down-regulation was not essential for cisplatin sensitization by PDBu.

Effect of protein kinase Cδ overexpression on cisplatin sensitization by bryostatin 1. Because down-regulation of PKCδ was associated with cisplatin sensitization by bryostatin 1, we examined the effect of PKCδ overexpression on the sensitization of HeLa cells to cisplatin by bryostatin 1. Figure 7A shows that 1 nmol/L of bryostatin 1 caused substantial down-regulation of PKCδ in HeLa cells but bryostatin 1 had little effect on PKCδ down-regulation in PKCδ-overexpressing HeLa cells (HeLa/PKCδ) cells. Ectopic expression of PKCδ alone decreased cisplatin-induced cell death from 19% to 11%. Pretreatment of HeLa cells with bryostatin 1 enhanced cisplatin-induced cell death in HeLa and HeLa/PKCδ cells to 30% and 19%, respectively. Thus, overexpression of PKCδ inhibited cisplatin-induced cell death.

Effect of protein kinase Cα and protein kinase Cεα knockout on cisplatin sensitization. Because activation of PKC is a prerequisite for its down-regulation, it is difficult to distinguish between persistent activation from down-regulation because residual PKC remains in an active state. To further examine if depletion of PKCα was necessary for cisplatin sensitization, we used siRNA targeted against PKCα mRNA to knock down PKCα. As shown in Fig. 8, we were unable to detect PKCα in HeLa cells transfected with PKCα siRNA. However, cisplatin-induced activation of caspase-3 as determined by the increase in processed caspase-3 and cleavage of poly(ADP-ribose) polymerase was reduced in HeLa cells transfected with PKCα siRNA compared with cells transfected with control siRNA. In contrast, knockdown of PKCα enhanced activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase.

We also examined if knockdown of PKCα and PKCδ by siRNA influences cisplatin-induced cell death when HeLa cells are exposed to cisplatin continuously. We treated cells with 2 μmol/L cisplatin because continuous exposure to 10 μmol/L cisplatin caused extensive cell death. Figure 9 shows that 23% of cells underwent apoptosis when HeLa cells were treated with cisplatin. Knockdown of PKCδ decreased cells in the sub-G1 phase to 18%, whereas knockdown of PKCα enhanced the percentage of cells in the sub-G1 phase to 38%. These results show that although depletion of conventional PKCα was associated with cisplatin-induced cell death, depletion of novel PKCδ in fact inhibited cisplatin-induced cell death.

Because the ability of PDBu to down-regulate PKCδ was compromised in cisplatin-resistant HeLa cells yet both...
PDBu and bryostatin 1 sensitized HeLa/CP cells to cisplatin, we examined the consequence of PKCa knockdown on cisplatin-induced cell death in HeLa/CP cells. Figure 10 shows that depletion of PKCa using siRNA, enhanced cisplatin-induced apoptosis as determined by the activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase but depletion of PKCy inhibited cisplatin-induced apoptosis. These results suggest that the ability of PDBu to sensitize HeLa/CP cells to cisplatin could be explained by down-regulation of PKCa.

Discussion

The results of our present study show that PKC activators, such as PDBu and bryostatin 1 not only sensitize HeLa cells to cisplatin, they also enhance the sensitivity of cisplatin-resistant HeLa cells to cisplatin. However, the mechanism by which they regulate cisplatin sensitivity is distinct. Our results suggest that PKCγ can function as both pro- and antiapoptotic protein, and persistent activation or down-regulation of PKCγ by bryostatin 1 correlated with cellular sensitization to cisplatin. However, depletion of PKCγ was not sufficient to explain cisplatin sensitization by PDBu. We showed that PKCa acts as an antiapoptotic protein and depletion of PKCa was associated with cisplatin sensitization by PDBu.

We have previously shown that bryostatin 1 exhibits biphasic down-regulation of PKCγ (9) and down-regulation of PKCγ by bryostatin 1 correlated with sensitization of HeLa cells to cisplatin (6, 9). Paradoxically, PKCγ inhibitor rottlerin blocked cisplatin-induced cell death (8, 9). These observations raised an important question whether activation or down-regulation of PKCγ was associated with cell death. There are several potential mechanisms that regulate cisplatin-induced cell death, including cisplatin uptake, DNA damage and DNA repair. Although PKC activators caused a modest increase in cisplatin uptake, they had no effect on cisplatin efflux (5, 6, 29). Furthermore, bryostatin 1 reversed the increase in cisplatin uptake by PDBu but had no effect on the rate of cisplatin efflux (29). We have, however, shown that PKC acts upstream of caspases to regulate cisplatin-induced caspase activation and the biphasic concentration response of bryostatin 1 on cisplatin-induced cell death could be explained by its effect on cisplatin-induced caspase activation (9). Furthermore, PKCγ inhibitor rottlerin, which was shown to act at a step subsequent to DNA damage but prior to caspase activation, inhibited cisplatin-induced caspase activation (8, 30).

We have shown that down-regulation of PKCγ by bryostatin 1 also correlated with sensitization of cisplatin-resistant HeLa cells to cisplatin. However, although PDBu failed to induce down-regulation of PKCγ in HeLa/CP cells, both activators were equally effective in sensitizing HeLa/CP cells to cisplatin. These results were based on three independent assays—MTT assay, the appearance of a hypodiploid peak in a flow cytometer, and Annexin V dye binding assay. These results suggest that down-regulation of PKCγ was
not sufficient to explain cisplatin sensitization by PKC activators.

There are differences in how phorbol esters and bryostatin 1 influence cisplatin sensitivity. First, bryostatin 1 is highly potent and it sensitizes cells at subnanomolar concentrations; the maximum sensitization was achieved with 1 nmol/L bryostatin 1. In contrast, PDBu was less potent than bryostatin 1 in enhancing cisplatin-induced cell death and the effects of 10 to 1,000 nmol/L PDBu on cisplatin-induced cell death were comparable. Second, unlike PDBu, bryostatin 1 is a partial agonist and it prevents its own effect or the effects of phorbol esters at higher concentrations (6).

The regulation of PKCs by PDBu and bryostatin 1 is also distinct. HeLa cells express several PKC isozymes, including PKCα, -δ, -ε and -ζ. Unlike PDBu, bryostatin 1 induced biphasic down-regulation of PKCδ and maximum down-regulation of PKCδ was achieved at 1 nmol/L. However, bryostatin 1 did not induce biphasic down-regulation of PKCα. In addition, whereas 1 nmol/L bryostatin 1 was most effective in inducing PKCδ down-regulation, it had little effect on PKCα down-regulation. Thus, in HeLa cells, 1 nmol/L bryostatin 1 that caused maximum sensitization to cisplatin predominantly induced down-regulation of PKCδ, whereas 1 μmol/L PDBu caused down-regulation of both PKCα and PKCδ. In HeLa/CP cells, PDBu primarily caused down-regulation of PKCα because it failed to induce substantial down-regulation of PKCδ. Because down-regulation of PKCs is a consequence of their activation, reversal of PKCδ down-regulation at higher concentrations of bryostatin 1 suggests that PKCδ that accumulates at higher concentrations of bryostatin 1 is inactive. In addition, because activation of PKC precedes its down-regulation, the...
injected cell death. Depletion of PKCδ by siRNA not only removes the full-length antipoptotic PKCδ but it also prevents generation of cleaved fragments of PKCδ that act as proapoptotic proteins. This may be why the effect of siRNA depletion of PKCδ on cell death was modest. These results also explain why down-regulation of PKCδ correlates with cisplatin sensitization yet PKCδ inhibitor rottlerin prevents cell death by cisplatin. The biphasic response of PKCδ down-regulation and cisplatin sensitization by bryostatin 1 could be explained by the fact that low concentrations of bryostatin 1 caused activation of PKCδ followed by depletion of inactive PKCδ holoenzyme. Accumulation of inactive PKCδ at higher concentrations of bryostatin 1 may prevent cell death by cisplatin. This is consistent with the results that overexpression of PKCδ caused cisplatin-induced cell death. The inability of exogenously expressed PKCδ to obliterate responsiveness to bryostatin could be explained by the down-regulation of endogenous PKCδ by bryostatin 1. Knockdown of PKCα, however, enhanced cellular sensitivity to cisplatin. We also found that G0 6976, which inhibits conventional PKCα, caused substantial increase in the sensitivity of HeLa/CP cells to cisplatin (data not shown), suggesting that PKCα acts as an antipoptotic protein, and that inhibition of PKCα is associated with cisplatin sensitization. Thus, although PDBu fails to down-regulate PKCδ in HeLa/CP cells, depletion of PKCδ by prolonged cellular exposure to PDBu may relieve its antipoptotic function. Therefore, PKCα may provide a better target in producing cisplatin-induced cell death in HeLa/CP cells.

Bryostatin 1 is already in phase I and II clinical trials, either as a single agent or in combination with chemotherapeutic drugs. Although some studies showed encouraging results, others were not successful (32–35). The regulation of PKC by bryostatin 1 is complex and an understanding of how bryostatin 1 regulates cell death is critical to use it effectively in the clinic. Although phorbol esters cannot be used in the clinical, they provide an important pharmacologic tool to discern the function of PKC. Our results show that PKCδ activators could be used to enhance cellular sensitivity to cisplatin and shed light on the complex regulation of PKC by bryostatin 1.

Acknowledgments

We thank Dr. Usha Sivaprasad for critical reading of the manuscript and Heidi Tu for technical assistance.

References

Enhancement of Cisplatin Sensitivity of Cisplatin-Resistant Human Cervical Carcinoma Cells by Bryostatin 1

Sanghamitra Mohanty, Jie Huang and Alakananda Basu

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/11/18/6730

Cited articles
This article cites 33 articles, 14 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/11/18/6730.full.html#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
/content/11/18/6730.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.