Endocrine Effects of Tamoxifen Plus Exemestane in Postmenopausal Women with Breast Cancer

Richard R. Love,¹ Paul R. Hutson,³ Thomas C. Havighurst,² and James F. Cleary¹
Departments of ¹Medicine, ²Biostatistics and Medical Informatics, and ³School of Pharmacy, University of Wisconsin, Madison, Wisconsin

ABSTRACT

Purpose: In some specific circumstances, combined hormonal therapies for breast cancer seem to be more effective than single maneuvers. In two laboratory mammary cancer models, the combination of the aromatase inactivator exemestane plus tamoxifen gives a higher response rate than is found with either agent alone.

To evaluate the endocrine effects of the combination of exemestane and tamoxifen, we studied 33 postmenopausal women disease-free following primary treatments for breast cancer who were taking tamoxifen for at least 3 months.

Design: After observation for symptoms on tamoxifen for 4 weeks, blood samples were taken and patients were begun additionally on exemestane 25 mg p.o. qd. Eight weeks later, blood samples were again taken, and exemestane was discontinued.

Results: A decrease in alkaline phosphatase was found with exemestane treatment (P = 0.06), whereas no change in osteocalcin level was observed. A decrease in high-density lipoprotein cholesterol level was found (P = 0.0025), whereas total cholesterol, low-density lipoprotein cholesterol and triglyceride levels showed no changes with exemestane treatment. Estradiol, estrone, and estrone sulfate levels decreased to immeasurable or very low levels with exemestane treatment. A decrease in triglyceride levels showed no changes with exemestane treatment.

Conclusions: Based on the absence of adverse endocrine effects with the addition of exemestane to tamoxifen therapy observed in this study, further clinical evaluation of the efficacy of this combination is warranted.

INTRODUCTION

Whereas hormonal therapies are useful for some patients with metastatic breast cancer and as adjuvant treatment in a majority of patients, these often well-tolerated approaches are limited in their benefits. Patients with metastatic breast cancers progress eventually on hormonal treatment, despite presence of hormonal receptors in primary breast cancers indicating greater likelihood of response to hormonal treatments. Fifteen to 30% of patients given adjuvant hormonal therapies develop recurrent breast cancer from which they die (1). Despite the development of effective new hormonal agents such as aromatase inhibitors or inactivators, there is need for hormonal therapies which give greater response rates and longer times to treatment failure in metastatic disease and greater disease-free and overall survival in adjuvant settings.

Whereas single sequential hormonal maneuvers (oophorectomy, antiestrogen therapies, aromatase inhibitor, or inactivator treatment) have been the hormonal approaches found most effective, recently there are increasing data suggesting that some specific combined hormonal therapies are more effective, specifically oophorectomy (surgical, radiation, or chemotherapeutic with a luteinizing hormone–releasing hormone agonist) plus tamoxifen as adjuvant therapy in premenopausal women with stage I/II hormone receptor–positive disease (2–4). For combinations involving aromatase inhibitors however, to date, data regarding combination therapies have indicated no benefits from this approach.

Laboratory data have provided limited support for combination aromatase inhibitor-antiestrogen therapy. In a MCF-7 nude mouse model, Lu et al. found the combinations of anastrozole and tamoxifen and letrozole and tamoxifen essentially no better than anastrozole or letrozole alone (5). The estrogen agonist effect of tamoxifen was suggested to be responsible for these findings. The translation of findings from this work to the human situation is uncertain, because the doses used in women are greater; and whereas a “tickler” agonist effect of tamoxifen is observed clinically in some women with metastatic breast cancer (tumor flare), such patients often go on to have durable favorable responses. These findings have led to a sequential hormonal treatment adjuvant study of letrozole in women who have completed 5 years of tamoxifen therapy, which showed significant benefit from the follow-up letrozole treatment (6), and more recently, shorter-term tamoxifen therapy of 2 to 3 years followed by exemestane or continuing tamoxifen showed superiority for the sequential tamoxifen/exemestane approach (7). A large adjuvant study of anastrozole, tamoxifen, or the two agents combined has shown superiority of the anastrozole-alone treatment over both tamoxifen and the combination (8).

Exemestane is a steroidal aromatase inactivator (AI) for which the laboratory and developing clinical treatment results data seem different in potentially significant ways from data for anastrozole and letrozole. Exemestane does not bind to steroidal receptors. In a DMBA carcinogen rat mammary cancer model, exemestane and tamoxifen combined were found to give a significantly higher response rate in established tumors than the rates for tamoxifen or exemestane alone, and the combination was more effective as a preventive intervention than either agent alone (9). In a recent limited report using an MCF-7 nude mouse
model, the same group which reported absence of additive effect or synergism with anastrozole or letrozole and tamoxifen, found that exemestane and tamoxifen were additive in their tumor growth suppressant effects (10).

In women with metastatic breast cancer, exemestane is associated with higher response rates than tamoxifen (11); gives responses in cases where aminoglutethimide, anastrozole, or letrozole have failed (12); and is superior to megestrol in median survival (13). Such a benefit was not found in a letrozole/megestrol study (14), whereas a similar benefit was suggested in a pooled analysis of two phase III studies of anastrozole (15). Exemestane gives responses in patients with visceral disease who have failed antiestrogens (16). The intratumoral aromatase inactivator effects of exemestane are suggested to be potentially more significant than the estrogen lowering effects (17, 18).

In a recently reported pilot study, Rivera et al. found that the addition of tamoxifen treatment to exemestane in women with metastatic breast cancer was associated with no significant change in the pharmacokinetics of exemestane and nonsignificant differences in three estrogen markers (19).

In summary, these data suggest that exemestane is a particularly active aromatase-targeting agent, and that the combination of exemestane and tamoxifen could be more active than exemestane or tamoxifen alone, and in contrast to the combination of anastrozole or letrozole and tamoxifen, a combination without pharmacokinetic or pharmacodynamic interactions. Evaluating this combination in the metastatic, but without pharmacokinetic or pharmacodynamic interactions. Evaluating this combination in the metastatic, but...
statistically significant changes in osteocalcin, total, low-density lipoprotein cholesterol, or triglyceride levels. Estradiol, estrone, and estrone sulfate levels decreased >90%, consistent with magnitudes of effects expected with exemestane. For 30 subjects completing 8 weeks of combined therapy, symptom checklist data showed no significant changes in frequencies of common drug-associated side effects such as vasomotor symptoms. Similarly, the FACT B quality-of-life questionnaire data showed no significant changes.

DISCUSSION

The current study is the same in design (nonrandomized, longitudinal) as a series of studies investigating AI or inactivator/ selective estrogen receptor modulator/tamoxifen combinations (19, 25–27). Whereas there has been some loss of data for each of the individual variables investigated, these losses are small and are unlikely to have compromised the broad conclusions. This report complements that of Rivera et al., which addressed, in particular, pharmacokinetic changes and symptoms in patients on exemestane who had tamoxifen added to their treatment (19). In the current and referenced studies of AI/selective estrogen receptor modulator combinations, the sample sizes have been too small to allow definitive conclusions about symptomatic effects.

The principal findings reported here are encouraging with respect to the exemestane/tamoxifen combination. We found a suggestion that adding exemestane to tamoxifen led to further decreases in bone resorption markers. Tamoxifen alone decreases bone resorption and loss of bone mineral density, and limited data have suggested a similar effect of exemestane alone as well (20, 28). In the current study however, only osteocalcin and all alkaline phosphatase were evaluated; assessment of other markers such as bone-specific alkaline phosphatase may have provided a clearer or more nuanced picture of the effects of this exemestane/tamoxifen combination in bone. However, we found a decrease in cardiovascular disease protective HDL cholesterol levels but no other evidence of impact of the exemestane/tamoxifen combination on the hepatic-mediated lipid-lowering effects of tamoxifen alone and no evidence of an adverse symptom profile with this combination (21). Finally, we found no evidence that the presence of tamoxifen altered exemestane’s profound estrogen-lowering capacity, which data support similar findings by Rivera et al. (19).

The laboratory data of Rivera et al. showing essentially superimposable plasma concentration time profiles for exemestane alone and exemestane plus tamoxifen are in contrast to the findings of lower letrozole levels and lower anastrozole levels in the presence of tamoxifen (19, 20, 29). The laboratory MCF-7 model data of Brodie et al. further suggest differences of these nonsteroidal and steroidal AI/selective estrogen receptor modulator combinations (10). It has been speculated that the explanation for the absence of additive benefit of anastrozole and tamoxifen together over either alone is a consequence of the agonist effect of tamoxifen in the extremely low-estrogen environment this AI creates (8). If there is a true additive effect of exemestane and tamoxifen as the two available animal data studies suggest, what might explain such differences (9, 10)? There may be differences in rodent metabolism of exemestane and the nonsteroidal AIs. Exemestane or its metabolites may have secondary effects (beyond the estrogen-lowering properties), which act to blunt the posited tickler estrogenic effect of tamoxifen. For example, Rivera et al. suggested an androgenic effect of exemestane as supported by other data (12, 30). Ongoing elegant studies of gene transcription effects of exemestane alone and in combination may provide further insight into the actions of exemestane alone or in the presence of tamoxifen.4

Defining an optimal and efficient approach to further investigate the exemestane/tamoxifen combination in human studies is challenging. A metastatic trial has been proposed by the North Central Cancer Treatment Group. A neoadjuvant study has particular challenges: in particular, in defining the best study end points. Clinical responses in bigger tumors can be difficult to recognize; tumors can become replaced by stroma of similar volume, and when serial tissue biopsies are used to monitor end

Table 1 Clinical chemistry results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment</th>
<th>No. subjects assessed</th>
<th>Mean value</th>
<th>Sign rank for differences in values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline phosphatase (units/L)</td>
<td>Tamoxifen</td>
<td>30</td>
<td>73.4</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen + Exemestane</td>
<td>29</td>
<td>70.4</td>
<td></td>
</tr>
<tr>
<td>Osteocalcin (ng/mL)</td>
<td>Tamoxifen</td>
<td>30</td>
<td>138.4</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen + Exemestane</td>
<td>30</td>
<td>28.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>Tamoxifen</td>
<td>29</td>
<td>195.8</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen + Exemestane</td>
<td>30</td>
<td>189.5</td>
<td></td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>Tamoxifen</td>
<td>29</td>
<td>5.8</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen + Exemestane</td>
<td>29</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>LDL cholesterol (mg/dL)</td>
<td>Tamoxifen</td>
<td>29</td>
<td>104.4</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen + Exemestane</td>
<td>27</td>
<td>106.8</td>
<td></td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>Tamoxifen</td>
<td>29</td>
<td>138.4</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen + Exemestane</td>
<td>29</td>
<td>132.7</td>
<td></td>
</tr>
<tr>
<td>Estradiol (pg/mL)</td>
<td>Tamoxifen</td>
<td>29</td>
<td>5.8</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen + Exemestane</td>
<td>29</td>
<td>28.9</td>
<td></td>
</tr>
<tr>
<td>Estrone (pg/mL)</td>
<td>Tamoxifen</td>
<td>29</td>
<td>28.9</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen + Exemestane</td>
<td>29</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Estrone sulfate (pg/mL)</td>
<td>Tamoxifen</td>
<td>28</td>
<td>364</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Tamoxifen + Exemestane</td>
<td>25</td>
<td>25.1</td>
<td></td>
</tr>
</tbody>
</table>

NOTE. A = all values below lower limit of quantification; B = more than half of values below lower limit of quantification.

points, these can become more difficult to obtain with responses. Finally, the usefulness of a response seen in the neoadjuvant bighorm tumor setting, in predicting response in the micrometastatic setting is questionable (31). Adjuvant hormonal therapy studies are large expensive endeavors because of often expected small differences in treatment; the Tamoxifen and Exemestane Adjuvant Multicenter trial of 5 years of adjuvant exemestane versus tamoxifen seeks to accrue 4,400 women.

In summary, the current report suggests that the pharmacokinetic interaction of tamoxifen and exemestane does not adversely affect bone metabolism markers but lowers HDL cholesterol whereas not changing other hepatic lipid/lipoprotein markers. These findings support timely further investigations of this combination hormonal therapy.

REFERENCES

Endocrine Effects of Tamoxifen Plus Exemestane in Postmenopausal Women with Breast Cancer

Updated version: Access the most recent version of this article at: http://clincancerres.aacrjournals.org/content/11/4/1500

Cited articles: This article cites 28 articles, 12 of which you can access for free at: http://clincancerres.aacrjournals.org/content/11/4/1500.full#ref-list-1

Citing articles: This article has been cited by 2 HighWire-hosted articles. Access the articles at: http://clincancerres.aacrjournals.org/content/11/4/1500.full#related-urls

E-mail alerts: Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions: To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions: To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/11/4/1500. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.