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Abstract Patterns of cell deathhave beendivided into apoptosis,which is actively executedby specificpro-
teases, the caspases, and accidental necrosis. However, there is nowaccumulating evidence indi-
cating that celldeathcanoccur inaprogrammedfashionbut incomplete absenceandindependent
of caspase activation. Alternative models of programmed cell death (PCD) have therefore been
proposed, includingautophagy, paraptosis,mitotic catastrophe, and the descriptivemodelof apo-
ptosis-like and necrosis-like PCD. Caspase-independent cell death pathways are important safe-
guard mechanisms to protect the organism against unwanted and potential harmful cells when
caspase-mediated routes fail but can also be triggered in response to cytotoxic agents or other
death stimuli. As in apoptosis, the mitochondrion can play a key role but also other organelles
such as lysosomes and the endoplasmic reticulum have an important function in the release and
activation of death factors such as cathepsins, calpains, and other proteases. Here we review the
various models of PCDand their death pathways at molecular and organelle level and discuss the
relevance of the growing knowledge of caspase-independent cell death pathways for cancer.

Balance between cell division and cell death is of utmost
importance for the development and maintenance of multicel-
lular organisms. Disorders of either process have pathologic
consequences and can lead to disturbed embryogenesis,
neurodegenerative diseases, or the development of cancer.
Therefore, the equilibrium between life and death is tightly
controlled and faulty elements can effectively be eliminated by
a process called ‘‘programmed cell death’’ (PCD; ref. 1). In the
past decades, PCD was held synonymous with apoptosis , a death
process characterized by morphologic changes such as shrink-
age of the cell, condensation of chromatin, and disintegration
of the cell into small fragments (so-called ‘‘apoptotic bodies’’)
that can be removed by phagocytosis (2). The apoptotic cascade
can be initiated via two major pathways, involving either the
release of cytochrome c from the mitochondria (mitochondria
pathway), or activation of death receptors in response to ligand
binding (death receptor pathway; ref. 3, 4). Upon triggering of
either pathway, a specific family of cysteine proteases, the
caspases, is activated to execute the cell’s fate in a programmed
fashion, leading to the typical morphologic changes (5).
Whereas apoptosis is an inherent, controlled cellular death
program, the conceptual counterpart, necrosis , is a more chaotic
way of dying, which results from circumstances outside the cell,
and is characterized by cellular edema and disruption of the
plasma membrane, leading to release of the cellular compo-
nents and inflammatory tissue response (2, 6).

In recent years, it has become evident that the classic
dichotomy of apoptosis versus necrosis is a simplification of
the highly sophisticated processes which guard the organism
against unwanted and potentially harmful cells. Although
caspases may be indispensable for the typical apoptotic
morphology, the process of caspase activation is not the sole
determinant of life and death decisions in PCD (7–11). One
of the first clear demonstrations of caspase-independent PCD
was given by Xiang et al., who showed that inhibition of
caspase activities in the human leukemic cell line Jurkat did
not inhibit Bax-induced cell death itself but only changed the
apoptotic morphology of the dying cells (12). Indeed, more
evidence is now accumulating that PCD can occur in complete
absence of caspases, and other, noncaspase proteases have
been described to be able to execute PCD (13–19). In
addition, Cauwels et al. have shown that caspase inhibition
did not alleviate but rather exacerbated tumor necrosis factor
(TNF)-a–induced toxicity in mice, indicating that caspase-
independent PCD is not restricted to in vitro models (20, 21).
The various forms of caspase-independent cell death cannot
readily be classified as ‘‘apoptosis’’ or ‘‘necrosis,’’ and
alternative types of PCD have been described (7, 8, 10, 13,
22–24). They do not occur only under physiologic circum-
stances but can also be induced by for instance TNF-a or
chemotherapeutic drugs (25). In this review, we focus on the
various types of PCD and their death pathways at molecular
and organelle level and discuss several stimuli that can lead to
caspase-independent cell death.

Classification of Programmed Cell Death

The various types of PCD have in common that they are
executed by active cellular processes that can be intercepted by
interfering with intracellular signaling. This distinguishes them
from accidental necrosis (22). Because it has become clear that
inhibition of caspase activation does not necessarily protect
against cell death stimuli but rather can reveal or even enhance
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underlying caspase-independent death programs, several mod-
els have been proposed (Fig. 1).

One model involves autophagy, which is also called type II
cell death to distinguish it from apoptosis or type I cell death
(23, 26). This process is characterized by sequestration of bulk
cytoplasm and organelles in double or multimembrane
autophagic vesicles and their delivery to and subsequent
degradation by the cell’s own lysosomal system (autophagia is
self-digestion in Greek). It serves to eliminate long-lived
proteins and organelle components and has an important
function in cellular remodeling due to differentiation, stress, or
damage induced by cytokines. Cells that undergo excessive
autophagy are triggered to die in a nonapoptotic manner,
without activation of caspases (reviewed in ref. 27). Interest-
ingly, autophagy may factor into both the promotion and
prevention of cancer, and its role may be altered during tumor
progression (reviewed in ref. 28). The autophagic capacity
observed during experimental animal carcinogenesis has been
shown decreased, indicating that breakdown of the autophagy
process may contribute to the development of cancer (29–31).
This is supported by recent reports on the autophagy gene
Beclin 1 , which show that heterogeneous disruption of this gene
leads to increased tumorigenesis in mice (32, 33). However,
cancer cells may need autophagy to survive nutrient-limiting
and low-oxygen conditions and autophagy may protect cancer
cells against ionizing radiation by removing damaged elements
(34, 35). The precise role of cell death by autophagy in
mammals is, therefore, not yet fully understood (36).

Paraptosis has recently been characterized by cytoplasmatic
vacuolation that begins with progressive swelling of mitochon-
dria and the endoplasmic reticulum (ER). It typically does not
response to caspase inhibitors nor does it involve activation of
caspases, the formation of apoptotic bodies, or other character-
istics of apoptotic morphology (10). Paraptosis has been
described to be mediated by mitogen-activated protein kinases
(37) and can be triggered by the TNF receptor family member
TAJ/TROY (38) and the insulin-like growth factor I receptor (37).

Interestingly, paraptosis but not apoptosis has been shown to be
inhibited by AIP1/Alix, a protein interacting with the cell calcium-
binding death-related protein ALG-2 (37), suggesting that this
type of cell death is fundamentally different from apoptosis.
There are, however, only a few reports on paraptosis, and they do
not make a comparison with other types of PCD such as
autophagy. It remains, therefore, to be established whether
autophagy and paraptosis represent independent types of PCD.

Mitotic catastrophe is another cell death pathway, which is
not typical for apoptosis. It is triggered by mitotic failure caused
by defective cell cycle checkpoints and the (threatening)
development of aneuploid cells that are doomed to die
(reviewed in ref. 24). Mitotic catastrophe can, in particular, be
triggered by microtubule stabilizing or destabilizing agents and
DNA damage (39). This death pathway kills the cell during or
close to the metaphase in a p53-independent manner, or occurs
partially dependent of p53 after failed mitosis by activation of a
polyploidy checkpoint. Mitotic catastrophe has been reported to
be accompanied by mitochondrial membrane permeabilization
and caspase activation (40), but others have argued that it is
fundamentally different from apoptosis, as caspase inhibition or
Bcl-2 overexpression fails to prevent catastrophic mitosis or the
development of giant multinucleated cells (39, 41). Whether
mitotic catastrophe represents a fully caspase-independent type
of PCD is therefore still a matter of debate.

In contrast to the more specific definitions of PCD above, Leist
and Jäättelä proposed a descriptive model, which classifies cell
death into four subclasses, according to their nuclear morphol-
ogy (Fig. 2). Apoptosis is defined by stage II chromatin
condensation into compact figures, which are often globular or
crescent shaped. Slightly different is apoptosis-like PCD, which is
characterized by less-compact chromatin condensation, so-called
stage I chromatin condensation. In contrast, in necrosis-like PCD
no chromatin condensation is observed, but at best, chromatin
clustering to loose speckles, whereas necrosis is characterized by
cytoplasmatic swelling and cell membrane rupture (22).

Despite the numerous models proposed to categorize PCD,
exclusive definitions are difficult to make and are probably
artificial due to the overlap and shared signaling pathways
between the different death programs. It has been shown that
apoptotic and necrotic death markers can concomitantly be
present in the same cell after cerebral ischemia, indicating that
more than one death program may be activated at the same
time (42). In addition, a cell may switch back and forth
between different death pathways as shown in neuronal cell
death that exhibited elements of autophagic degeneration upon
oncogenic Ras expression, whereas it had characteristics of
apoptotic cell death upon treatment with TNF-a (43). It has,
therefore, been postulated that the dominant cell death
phenotype is determined by the relative speed of the available
death programs; although characteristics of several death
pathways can be displayed, only the fastest and most effective
death pathway is usually evident (44). In addition, attempts
have been made to order caspase-independent cell death
according to the cellular organelles involved (45). Organelles
such as the mitochondria, lysosomes, or ER and plasma
membrane death receptors can be involved in either of the
subclasses but may play a more prominent role in certain types
of PCD. As reviewed here and summarized in Fig. 3, the signals
from the different cellular organelles are linked and may act
both upstream and downstream of each other.

www.aacrjournals.orgClin Cancer Res 2005;11(9) May1, 2005 3156

Fig. 1. Variousmodels of cell death. Because it has become clear that a cell
cannot only die from apoptosis or necrosis (as definedby Kerr et al.; ref. 2), several
modelshavebeenproposed to define theobservedprocess of caspase-independent
PCD. Paraptosis involves cytoplasmic vacuolation, mitochondrial swelling in the
absence of caspase activationor typical nuclear changes (10), whereasmitotic
catastropheoccurs as a default pathway aftermitotic failure and (threatening)
development of aneuploid cells (24). Slow cell deathhadbeenproposedby
Blagosklonny (7), to describe the delayed type of PCD that occurs if caspases are
inhibitedorabsent. Finally, autophagy is characterizedby sequestrationof cytoplasm
ororganelles in autophagic vesicles and their subsequent degradationby the cell’s
own lysosomal system (26).
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Organelles Involved In Programmed Cell Death

Mitochondria. Release of toxic proteins form the intermem-
brane space of the mitochondria triggered by permeabilization
of the outer mitochondrial membrane constitutes the ‘‘point of
no return’’ in most cases of PCD (Fig. 3). Members of the Blc-2
family control this process tightly (46): upon apoptotic signals,
proapoptotic Bcl-2 proteins such as Bax and Bak are activated,

resulting in outer mitochondrial membrane permeabilization.
In contrast, antiapoptotic Bcl-2 family members, such as Bcl-2
and Bcl-XL, can prevent this occurrence by heterodimerization
with Bax-like proteins. Other proapoptotic Bcl-2 proteins which
contain only the BH3 domain (e.g., Bad, Bid, Bim, Bmf, and
Noxa) act by opposing the inhibitory effect of Bcl-2 or Bcl-XL,
or by activating Bax-like proteins by direct binding. A second
mechanism of permeabilization of the outer mitochondrial
membrane is the opening of a permeability transition pore in
the inner mitochondrial membrane upon a variety of stimuli.
This allows water and small molecules (up to 1.5 kDa) to pass
through, leading to swelling of the intermembrane space and
rupture of the outer mitochondrial membrane (reviewed by
Green (46)).

The first protein shown to be released from the mitochondria
upon apoptotic stimuli is cytochrome c , an essential compo-
nent of the respiratory chain. Upon release in the cytoplasm, it
forms, in the presence of ATP, the so-called ‘‘apoptosome’’
together with Apaf-1 and caspase 9. This triggers the classic
apoptotic cascade, leading to apoptotic cell death. The catalytic
function of cytochrome c is safeguarded by members of the
inhibitor of apoptosis proteins family, which are in turn
controlled by two other mitochondrial proteins, Smac/DIABLO
and OMI/HtrA2 (Fig. 3). In this way, OMI/HtrA2 plays a role in
caspase-dependent cell death, but it can also act as an effector
protein in necrosis-like PCD. This function is independent of its
inhibitor of apoptosis proteins–binding activity but is done by
its protease activity (47–50). It is, however, difficult to make
firm conclusions about to precise contribution of OMI/HtrA2 to
cell death, as down-regulation of OMI/HtrA2 expression
influences both its mitochondrial function and its cytosolic
role in cell death (51). Another mitochondrial protein that
potentially contributes to both caspase-independent and
caspase-dependent cell death is endonuclease G. This protease
is evolutionarily conserved with orthologues known in bacteria
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Fig. 2. Classification of cell death according to the nuclear morphology of
the dying cell. Upon a lethal stimulus, a cell can die in different ways that can be
classified according to their nuclear morphology. In apoptosis , there is chromatin
condensation into compact figures, which are often globular or crescent shaped.
Apoptotic morphology further includes shrinkage of the cell, membrane blebbing,
and the formation of apoptotic bodies. Apoptosis is dependent of caspase 3 and
caspase-activated DNAse. Apoptosis-like PCD is characterized by chromatin
condensation that is less compact but which gives more complex and lumpy shapes
and is caused by apoptosis inducing factor, endonuclease G, cathepsins, or other
proteases. Any degree or combination with other apoptotic features can be found.
In necrosis-like PCD, no chromatin condensation is observed, but at best, chromatin
clustering to loose speckles, whereas necrosis is associated with cytoplasmic
swelling and cell membrane rupture (Modified from Leist andJa« a« ttela« (22)).

Fig. 3. Cross-talk between cellular
organelles during cell death. Upon a lethal
stimulus, a cell has access to different death
programs that canbe executed via caspases
(apoptosis) or independent of caspases.
Mitochondria, lysosomes and the ERcan be
involved in various pathways but may play a
more prominent role in certain types of PCD.
As depicted here, the signals from the
different organelles are linked andmay act
both upstream and downstream of each
other. It has therefore been postulated that
the dominant cell death phenotype is
determined by the relative speed of the
available death programs, and only the
fastest and most effective pathway is
usually evident (44). For details see text.
Note: for reasons of legibility, only the most
important molecules and connections are
included in this figure.
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and fungi and is able to induce caspase-independent DNA
fragmentation in isolated nuclei (52). It is likely that endonu-
clease G cooperates with caspase-activated exonucleases and
DNase I to generate internucleosomal DNA fragments under
physiologic conditions (53), and it remains to be established
whether endonuclease G defines a single mitochondrial DNA
fragmentation pathway in mammalian cells (25).

Apoptosis inducing factor (AIF) is a mitochondrial protein that
plays a pivotal role in PCD, as shown by Joza et al., who reported
that targeted disruption of the AIF gene inhibited the first wave
of programmed cell death during embryogenesis (54). AIF was
first described by Susin et al. (55) and is normally retained in the
intermembrane mitochondrial space, where it performs an
oxidoreductase function (56). Similar to the bifunctional role
of cytochrome c, AIF becomes an active cell killer when it is
released to the cytosol; it then translocates to the nucleus and
triggers, possibly together with endonuclease G (57), peripheral
chromatin condensation and high molecular weight (50 kb)
DNA loss (58–60). The lethal effects of AIF are controlled by the
antiapoptotic protein heat shock protein 70 that interacts with
AIF and protects against its apoptogenic effects (61).

Interestingly, the lysosomal protease cathepsin D has been
reported to trigger AIF release independent of the caspase-
cascade (62), and AIF mediated cell death in Apaf 1�/� and
caspase 3�/� cells (63). In addition, the presence of the broad
caspase inhibitor zVAD-fmk did not prevent the mitochondrial-
nuclear translocation of AIF (64) nor did it prevent its lethal
effects (58, 59), indicating that this protein is involved in
caspase-independent, apoptosis-like PCD. This notion is
supported by Yu et al., who showed that AIF release and
subsequent cell death can be triggered independent of caspases
by excessive calcium influx resulting in overactivation of poly
(ADP-ribose) polymerase-1 (60). Furthermore, AIF and not
caspase activation was shown largely responsible for pneumo-
coccus-induced apoptosis in an experimental meningitis model
(65), suggesting that caspase-independent cell death by AIF
plays an important role in pathologic conditions. Others have,
however, showed that mitochondrial release of AIF occurs
downstream of cytochrome c in response to certain stimuli and
may require caspase activation (66, 67). Apparently, AIF can
serve as an additional response mechanism to facilitate the
completion of caspase-dependent apoptosis in certain death
paradigms, whereas it is capable of executing caspase-
independent cell death in other cell types (reviewed in ref. 68).
Indeed, there is now accumulating evidence in vitro as well as
in vivo suggesting that AIF can act as a safeguard death
executioner in cancer cells with faulty caspase activation (69–71).

Lysosomes. In the classic apoptosis-necrosis paradigm, lyso-
somes were solely considered involved in necrotic and
autophagic cell death, and the lysosomal proteases were
believed to take care only of nonspecific protein degradation
within the lysosome. In recent years, however, it has become
evident that the role of lysosomes in cell death is far more
sophisticated. One of the first studies reporting an active role
for lysosomal proteases in cell death was based on the cloning
of ‘‘regression selected genes’’ in rat prostate and mammary
glands after hormone ablation. Increased amounts of the
lysosomal enzyme cathepsin B were found in the basal aspect of
cells in regressing tissue, indicating that cathepsin B is required
for the local degradation of the basement membrane, which is
one of the earliest morphologically recognizable events of

active cell death (72). Active participation of lysosomal
proteases has since then been observed in cell death induced
by several stimuli, including oxidative stress (73–77), TNF-a
(16, 17, 78, 79), bile salt-induced apoptosis (80, 81), and
chemotherapeutic drugs (15, 82).

Studies with the synthetic lysosomotropic detergent MSDH
indicate that the key factor in determining the type of cell death
is the magnitude of lysosomal permeabilization and the
amount of proteolytic enzymes released into the cytosol (83).
Whereas partial, selective permeabilization triggers apoptotic-
like PCD, massive breakdown of lysosomes results in unregu-
lated necrosis (reviewed in ref. 44). Several mechanisms to
achieve the translocation of a balanced amount of lysosomal
proteases to the cytoplasm, without risking a complete
breakdown of the organelle and induction of necrotic cell
death have been proposed. One theory involves accumulation
of the lysosomotropic detergent sphingosine in the lysosomes,
which could facilitate the release of lysosomal enzymes into the
cytoplasm (18). Another possible mechanism is the generation
of reactive oxygen species, which also can induce lysosomal
leakage. Indeed, experimental evidence suggests that reactive
oxygen species–induced lysosomal permeabilization usually
precedes mitochondrial dysfunction (73, 74), thereby creating a
feedback loop in which mitochondrial-reactive oxygen species
can lead to more lysosomal permeabilization (84). An
intriguing hypothesis is the translocation of proapoptotic
members of the Bcl-2 family to the lysosomes, where they
could induce the formation of pores and membrane perme-
abilization, similar to their well-known role in mitochondrial
membrane polymerization (75–77). Recently, it has been
described that heat shock protein 70, which antagonizes the
apoptogenic effects of AIF, promotes cell survival by inhibiting
lysosomal membrane permeabilization (85).

The cysteine protease cathepsin B and L and the aspartatic
protease cathepsin D are the most abundant lysosomal
proteases. Cathepsin B and D are most stable at physiologic,
cytoplasmatic pH and seem to have the most prominent role in
apoptotic and necrotic like PCD (reviewed in ref. 86, 87).
Cathepsin B has been shown to translocate to the nucleus and
thereby contribute to bile salt-induced apoptosis (81). Indeed,
cathepsin B can act as an effector protease, downstream of
caspases in certain cell types (16, 88), and is capable of
executing cell death independent of the apoptotic machinery in
WEHI-S fibrosarcoma and non – small cell lung cancer
(NSCLC) cells (15, 16). Other reports have, however, showed
that lysosomal proteases rather promote cell death more
indirectly by triggering mitochondrial dysfunction and subse-
quent release of mitochondrial proteins (14, 17, 82, 89, 90).
This may occur via the Bcl-2 family protein Bid (19, 91, 92),
which is cleaved and translocated to the mitochondria after
lysosomal disruption by lysosomotropic agents (93). In
addition, cathepsin D can trigger activation of Bax, leading to
selective release of AIF from the mitochondria and PCD in T
lymphocytes (62). Finally, lysosomal proteases have been
reported to directly cleave and activate caspases, thereby
confirming that lysosomal permeabilization often is an early
event in the apoptotic cascade (94–96).

Taken together, it seems that lysosomal proteases trigger PCD
not via a single specific pathway but rather via multiple
pathways that may overlap with the traditional mediators of
apoptosis (Fig. 3). The molecular identity of the mediators and
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the necessity of activation of caspase-dependent pathways
remain to be elucidated in many cases and may vary depending
on the type of cells and the applied death stimulus (97). Many
other molecular pathways mediated by lysosomal enzymes are
likely to be described in the near future.

Endoplasmic reticulum. The ER is an important sensor of
cellular stress that can withhold protein synthesis and
metabolism to restore cellular homeostasis (98). If the damage
to the ER is too extensive, this can initiate PCD via the unfolded
protein response or via release of calcium into the cytoplasm
(reviewed in ref. 99). This leads to activation of caspase 12,
possibly via translocation of the Bcl-2 family member Bim to
the ER (100). Caspase 12 in its inactive state is localized at the
cytosolic face of the ER, but it triggers downstream caspases and
apoptosis when it becomes activated (101, 102). In addition
and independent of caspase 12 activation, ER stress can induce
permeabilization of the mitochondrial membrane and thus
activate the classic apoptotic pathway as well as other
mitochondrial death pathways (25, 103). Bcl-2 family proteins
as well as cytoplasmatic calcium shifts orchestrate the cross talk
between the mitochondria and the ER (104, 105).

In addition, intracellular calcium influx caused by ER stress
induces activation of a family of cytosolic proteases, the calpains
(calcium-activated neutral proteases), which normally reside in
the cytosol as inactive zymogens (106). Calpains have been
shown to act downstream of caspase activation and to
contribute to the degradation phase of campthotecin-induced
apoptosis in HL-60 cells (107, 108). They are kept in control by
their natural inhibitor calpastatin, which is in turn inactivated
by calpain- or caspase-mediated cleavage (109). In addition, Bax
and likely also other yet undefined pathways are involved in the
cross-talk between the calpain and caspase proteolytic system
(110, 111). Indeed, Sanvicens et al. have shown that both
caspases and calpains contribute to oxidative stress-induced
apoptosis in retinal photoreceptor cells (112). Furthermore, a
‘‘calpain-cathepsin cascade’’ has been reported, in which
activated calpains induce release of lysosomal cathepsins and
subsequent cell death (Fig. 3; refs. 113, 114). Interestingly,
vitamin D compounds have been reported to trigger cell death
in MCF-7 cells executed by calpains in complete absence and
independent of caspase activation (115–117), indicating that
the ER may play a key role in certain types of caspase-
independent cell death (Fig. 3). This notion is supported by
several studies demonstrating an active and pivotal role for
calpains in anthracycline-induced toxicity in cardiac myocytes
(118), neuronal (119, 120), and pancreatic cell death (121).

Death StimuliTriggering Alternative Types of
Programmed Cell Death

Caspase-dependent apoptosis plays a pivotal role in embryo-
genic development, but there is now accumulating evidence
indicating that necrotic and apoptotic-like PCD are important
safeguard mechanisms for the developing organism (122). This is
illustrated by knockout studies in caspase 3 or 9�/� mice which
show, despite an altered morphology and temporal delay in
neuronal cell death, equal numbers of neurons that are ultimately
lost during development. Moreover, certain neurologic areas such
as the spinal cord and brainstem seem normal in both knockout
and control animals, suggesting that the involvement of specific
caspases and the occurrence of caspase-independent cell death

may depend on the brain region, cell type, or the death stimulus
(123). Similar results were found in the early motoneuron death
in the chick embryo cervical spinal cord, in which caspase activity
was involved but for which it was not indispensable (124). Many
other physiologic cell deaths do not seem to occur through
classic apoptosis but may primarily be executed by alternative
proteases (122). For instance, studies on maturation of osteo-
blasts in maturing bone (125), differentiation of keratinocytes
(126–128), and differentiation of lens fiber cells (94, 129, 130)
show that there is far more indirect than direct evidence that their
death is apoptotic or caspase dependent.

Triggering of the TNF receptor-1 (TNFR-1) by TNF-a can lead
to classic apoptosis via activation of the initiator protease
caspase 8 in the death receptor pathway (131). Other studies
have raised the possibility that TNF-a may trigger apoptosis via
an additional route, involving constituents of acidic vesicles
that can generate ceramide as a second messenger (132, 133).
Indeed, cathepsin D has been found to mediate PCD in HeLa
cells induced by TNF-a (134). In addition, cathepsin B has been
described to contribute to bile salt and TNF-a–induced
hepatocyte apoptosis (17, 79, 81, 135). The pivotal role of
cathepsin B in hepatocyte apoptosis has further been shown in
cathepsin B knockout mice, which were resistant to TNF-a–
mediated apoptosis (78). In addition, both genetic and
pharmacologic inhibition of cathepsin B reduces hepatic
inflammation and fibrogenesis upon bile duct ligation in mice
(80). Furthermore, it attenuates hepatocyte apoptosis and liver
damage in steatotic mice livers after cold ischemia/warm
reperfusion injury (136). These results suggest that cathepsin
B is indispensable for hepatocyte apoptosis induced by TNF-a
or liver injury and implicate that cathepsin B inhibition may be
of therapeutic interest in liver diseases (137).

Successful treatment with chemotherapeutic drugs is largely
dependent on their ability to trigger cell death in tumor cells
and activation of apoptosis is at least partially involved in this
process (138). The majority of cytotoxic agents trigger the
mitochondria pathway, but the death receptors have also been
reported to be involved in chemotherapy-induced apoptosis
(139, 140). However, recent evidence suggests that there are
forms of chemotherapy-induced cell death that cannot readily
be classified as apoptosis or necrosis but fit more in the
apoptosis-like/necrosis-like PCD model (22, 141, 142). Table 1
gives an overview of caspase-independent cell death induced by
chemotherapeutic agents. For instance, cell death induced by
paclitaxel and the novel microtubule-interacting agents epothi-
lone B and discodermolide in NSCLC cells was not prevented
by the use of the broad-spectrum inhibitor zVAD-fmk nor was
it reduced in Bcl-2 overexpressing or Fas-associated death
domain-dominant negative cells, indicating that this class of
agents primarily induces caspase-independent cell death in
NSCLC cells (143, 144). Interestingly, specific cathepsin B
inhibitors, and not inhibitors of cathepsin D or calpains, did
reduce the lethal effects of these drugs, thereby providing
evidence for a cathepsin B–mediated cell death pathway
induced by microtubule stabilizing agents (15). Other studies
in NSCLC cells suggest that the relative resistance to caspase-
dependent apoptosis that is frequently seen in this cell type can
be circumvented by the triggering of an AIF-mediated, caspase-
independent mechanism (70) and AIF may determine the
chemoresistance of NSCLC cells (145). In addition, paclitaxel
induced caspase-independent apoptosis via AIF in ovarian
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carcinoma cells (146), indicating that the activation of a certain
death pathway may vary upon the cellular system (97).
Although cell death in hematologic malignancies is more often
mediated by the classic apoptotic proteases than in solid
tumors (7, 141), the occurrence of caspase-independent cell
death has been reported in T lymphocytes and acute myeloid
leukemia (147, 148). Taken together, the cellular death
response triggered by cytotoxic agents depends on the type
and dose of chemotherapeutic stress within the cellular context
and may involve classic apoptosis, as well as various types of
apoptotic or necrotic PCD.

Conclusions

Despite the enormous importance of the discovery of
apoptosis as a cell death program indispensable for embryo-
genesis and protection against unbridled cell growth, the
apoptosis-necrosis paradigm is too simple to encompass the

wide spectrum of possibilities we have to eliminate faulty and
potentially harmful cells. Not only caspases, but also calpains,
cathepsins, endonucleases, and other proteases can execute
programmed cell death, and they can be directed by several
cellular organelles, including mitochondria, lysosomes, and the
ER, which can act independently, or collaborate with each
other. Although several models of caspase-independent cell
death have been described, the various death routes may
overlap and several characteristics may be displayed at the same
time. The evolutionary advantage of the existence of multiple
death pathways is obvious: it protects the organism against the
development of malignant diseases as many burdens have to be
overcome before a cell becomes a tumor cell. This may explain
the relative rarity of cancer, in respect to the huge number of
cell divisions and mutations during a human life. The growing
knowledge of caspase-independent cell death pathways is
important for the oncology field, as they could potentially be
manipulated to develop new cancer therapies.
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Table1. Overviewof caspase-independent cell death triggered by cytotoxic agents

Cytotoxic agent System Caspase-independent cell deathmediated by Reference

Camptothecin Hepatocytes Cathepsin D (135)
Cladribine Human leukemic cells AIF (149,150)
Doxorubicin Acute myeloid leukemia cells Not identified (147)

Neuroblastoma [n-type] cells Not identified (151)
Cardiomyocytes Calpains (118)

Paclitaxel NSCLC cells Cathepsin B (15)
Ovarian carcinoma cells AIF (146)

Arsenic trioxide Myeloma cells Not identified (152)
Tcell lymphoma cells Not identified (153)

Staurosporine NSCLC cells AIF (145)
Fibroblasts Cathepsin D (82)
T lymphocytes Cathepsin D, AIF (62)

Flavopiridol Glioma cells AIF (69)
Vitamin D Breast cancer cells Calpains (115,116)
Quinolone antibiotics Several human andmice cells Cathepsin B and D, followedby mitochondrial permeabilization (14)
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