RNA Interference Demonstrates a Novel Role for Integrin-Linked Kinase as a Determinant of Pancreatic Adenocarcinoma Cell Gemcitabine Chemoresistance

Mark S. Duxbury, Hiromichi Ito, Eric Benoit, Talat Waseem, Stanley W. Ashley, and Edward E. Whang

Abstract

Integrin-linked kinase (ILK) facilitates signal transduction between extracellular events and important intracellular survival pathways involving protein kinase B/Akt. We examined the role of ILK in determining pancreatic adenocarcinoma cellular chemoresistance to the nucleoside analogue gemcitabine. Cellular ILK expression was quantified by Western blot analysis. We examined the effects of overexpression of active ILK and of ILK knockdown induced by RNA interference on gemcitabine chemoresistance. We also examined the effects of modulating ILK expression on gemcitabine-induced caspase 3-mediated apoptosis, phosphorylation status of Akt (Ser473) and glycoconjugate synthase kinase. Overexpression of ILK increased cellular gemcitabine chemoresistance, whereas ILK knockdown induced chemosensitization via increased caspase 3-mediated apoptosis. ILK knockdown attenuated Akt Ser473 and glycoconjugate synthase kinase phosphorylation, whereas overexpression of constitutively active myristoylated Akt was sufficient to induce significant recovery in gemcitabine chemoresistance in the presence of ILK knockdown. Levels of ILK expression affect gemcitabine chemoresistance in pancreatic adenocarcinoma cells. This novel finding suggests that therapies directed against ILK and its downstream signaling targets may have the potential to enhance the efficacy of gemcitabine-based chemotherapy.

Materials and Methods

Cells and cell culture. PANC1, MIAPaCa2, and Capan2 pancreatic ductal adenocarcinoma cells were obtained from American Type Culture Collection (Rockville, MD). Cells were maintained in DMEM containing 10% fetal bovine serum (Life Technologies, Gaithersburg, MD). Cells were incubated in a humidified (37 °C, 5% CO2) incubator and passaged upon reaching 80% confluence.

Integrin-linked kinase (ILK) is an intracellular serine/threonine kinase that interacts with the cytoplasmic domains of integrin β1 and β3 subunits (1). This 59-kDa protein contains a phosphoinositide phospholipid–binding domain, which is flanked by NH2-terminal ankyrin repeat and COOH-terminal kinase domains. ILK kinase activity is stimulated by cellular attachment to extracellular matrix components and by growth factors. These stimuli result in suppression of apoptosis and promotion of cell survival via protein kinase B/Akt signaling events. ILK seems to couple integrin and growth factor receptors to this important cell survival pathway. ILK is also able to induce inhibitory phosphorylation of glycoconjugate synthase kinase 3 (GSK-3), which modulates cyclin D1-mediated cell cycle regulation as well as activities of transcription factors, including activator protein and β-catenin-LeF-1/Tcf (2, 3). Cellular adhesion plays an important role in determining cellular resistance to chemotherapeutic agents in a range of malignancies (4–8), and evidence strongly implicates integrin signaling in adhesion-dependent chemoresistance (9–11). Inhibition of ILK using small-molecule inhibitors and dominant-negative ILK expression constructs has been shown to attenuate the invasiveness of human tumor cells (12), suggesting that this molecule may be therapeutically relevant. However, despite substantial evidence linking downstream targets of ILK to malignant cellular behavior has not been studied.

Pancreatic adenocarcinoma is among the most chemoresistant of malignancies. Even treatment with the current first line chemotherapeutic agent, the nucleoside analogue gemcitabine (2',2'-difluorodeoxycytidine), offers minimal benefit in terms of survival and quality of life (13). Akt plays a central role in the resistance of pancreatic adenocarcinoma cells to apoptotic stimuli, including exposure to gemcitabine (14–16). Increased Akt activity protects cells from apoptosis in a variety of ways, including direct suppression of caspase activation (17, 18). Given the importance of ILK in protein kinase B/Akt signaling, we hypothesized that targeting ILK might represent a novel approach to modulate the chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. In this study, we present the first evidence indicating a novel role for ILK in determining pancreatic adenocarcinoma cellular chemoresistance to gemcitabine.
Expression vectors and transfection. Constitutively active ILK [ILK(S343D)], constitutively active myristoylated Akt, and dominant-negative Akt (K79M) expression constructs were obtained from Upstate (Waltham, MA). Cells were transfected with the appropriate expression construct, or control empty vector (pLUSE), using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) in accordance with the manufacturer’s protocol. Stable clones were selected by continuous treatment with G418 (Life Technologies, 0.8 mg/mL) over 4 weeks. Small interfering RNA. Small interfering RNA (siRNA) targeting the following sequences were synthesized and purified by Qiagen-Xeragon (Germantown, MD): ILK sense 5’-CCUGACGAAAGCUCAGGGAACG-GAA(TT)-3’, ILK antisense 5’-UUIUCGUGACCCUCCUGGAGG(AAAT(TT)-3’, control sense 5’-CCUGACGAAAGCUCAGGGAACG-GAA(TT)-3’, control antisense 5’-UUIUCGUGACCCUCCUGGAGG(AAAT(TT)-3’. The target specificity of these sequences was confirmed by BLAST search (http://www.ncbi.nlm.gov/BLAST). Homologous siRNAs were dissolved in buffer [100 mmol/L potassium acetate, 30 mmol/L HEPES-KOH, 2 mmol/L magnesium acetate (pH 7.4)] to a final concentration of 20 μmol/L, heated to 90°C for 60 seconds and allowed to cool down at 37°C for 60 minutes before use to disrupt any higher order aggregates formed during synthesis. Cells were plated into 35-mm 6-well trays and allowed to adhere for 24 hours. In all, 8 μL siPORT Amine transfection reagent (Ambion, Inc., Austin, TX) per well were added to serum-free medium for a final complexing volume of 200 μL, vortexed, and incubated at room temperature for 15 minutes. The transfection reagent/siRNA complexes were added to the wells containing 800 μL medium with 10% fetal bovine serum and incubated in normal cell culture conditions for 6 hours, after which 1 mL DMEM containing 10% fetal bovine serum was added. Assays were done 48 hours post-transfection.

Cytotoxicity assay. Cytotoxicity was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT, TreviGen, Inc., Gaithersburg, MD) in accordance with the manufacturer’s instructions. Results of the MTT assay have been shown to correlate well with [3H]-thymidine incorporation in pancreatic cancer cell lines (19). Logarithmically growing cells were plated at 5 × 10³ cells per well in 96-well plates, allowed to adhere overnight, and were cultured in the presence or absence of 0 to 10 μmol/L gemcitabine. Gemcitabine-induced cytotoxicity was determined after 24 hours of exposure. Plates were read using a Vmax microplate spectrophotometer (Molecular Devices, Sunnyvale, CA) at a wavelength of 570 nm corrected to 650 nm and normalized to controls. Each independent experiment was done thrice, with 10 determinations for each condition tested. The concentration of gemcitabine required to inhibit proliferation by 50% (IC50) was calculated from these results.

Statistical analysis. Differences between groups were analyzed using Student’s t test, multifactorial ANOVA of initial measurements and Mann Whitney U test, for nonparametric data, as appropriate, using Statistica 5.5 software (StatSoft, Inc., Tulsa, OK). In cases in which averages were normalized to controls, the SDs of each nominator and denominator were taken into account in calculating the final SD. P < 0.05 was considered statistically significant.

Results

Overexpression of active integrin-linked kinase increases pancreatic adenocarcinoma cell gemcitabine chemoresistance. The gemcitabine IC50 values (concentration of gemcitabine required to inhibit cellular proliferation by 50%) of the pancreatic adenocarcinoma cell lines PANC1, MIAPaCa2, and Capan2 have been determined previously and we confirmed
these results (20). The IC₅₀ of gemcitabine for PANC1, MIAPaCa2, and Capan2 are 50, 40, and 12 nmol/L, respectively. Levels of ILK expression in PANC1, MIAPaCa2, and Capan2 cells were compared by Western blotting (Fig. 1). PANC1 and MIAPaCa2, the most chemoresistant cell lines, exhibited greater levels of ILK expression, relative to both parental cells (Capan2) and empty vector transfectants (Capan2-pUSE). Overexpression of ILK by two transfectant clones (Capan2-ILK1 and Capan2-ILK2) was confirmed by Western blot analysis (Fig. 2A). The gemcitabine IC₅₀ values for the parental cell line (Capan2), empty vector transfectants (Capan2-pUSE), Capan2-ILK1, and Capan2-ILK2 were quantified by MTT cytotoxicity assay. Whereas empty vector transfection had no effect on gemcitabine IC₅₀, overexpression of active ILK resulted in a significant increase in chemoresistance to gemcitabine (Fig. 2B).

Integrin-linked kinase overexpression suppresses gemcitabine-induced caspase-mediated apoptosis. Apoptosis was quantified by flow cytometric analysis. Following exposure of ILK transfectant cells to 1 μmol/L gemcitabine for 24 hours, the apoptotic fraction of Capan2-ILK1 and Capan2-ILK2 were, respectively, 40% and 46% lower than that of Capan2-pUSE and Capan2 cells, which showed no significant difference in their apoptotic response to gemcitabine (Fig. 3A).

Caspase 3 activities of cell lysates, obtained following exposure to 1 μmol/L gemcitabine for 24 hours, were quantified by fluorometric assay. Capan2-ILK1 and Capan2-ILK2 transfectants exhibited a 45% and 55% lower level of caspase 3 activation than Capan2-pUSE transfectants, respectively (Fig. 3B).

Integrin-linked kinase knockdown potentiates gemcitabine-induced cytotoxicity. PANC1 cells were chosen to study the effects of ILK knockdown as these cells inherently express a constitutively active ILK (S343D) expression construct. Overexpression of ILK by two transfectant clones (Capan2-ILK1 and Capan2-ILK2) was confirmed by Western blot analysis (Fig. 2A). The gemcitabine IC₅₀ values for the parental cell line (Capan2), empty vector transfectants (Capan2-pUSE), Capan2-ILK1, and Capan2-ILK2 were quantified by MTT cytotoxicity assay. Whereas empty vector transfection had no effect on gemcitabine IC₅₀, overexpression of active ILK resulted in
ILK knockdown resulted in a 51% decrease in the gemcitabine IC_{50} as determined by MTT assay, relative to control siRNA transfectants (Fig. 4B). Both the apoptotic fraction and caspase 3 activation induced by exposure to gemcitabine were significantly increased following transfection of ILK-specific siRNA but not control siRNA (Fig. 4C and D). Furthermore, when the apoptotic fraction was determined following exposure to gemcitabine in the presence of the caspase inhibitor z-VAD-fmk, the increase in apoptotic fraction induced by ILK knockdown was significantly reduced, signifying that increased gemcitabine-induced apoptosis in cells exposed to ILK siRNA is caspase dependent.

Integrin-linked kinase knockdown modulates Akt Ser^{473} and glycogen synthase kinase phosphorylation. ILK facilitates the phosphorylation of Akt at Ser^{473}, which is required for Akt activation (21–23). In addition to modulating activity of Akt, ILK also induces phosphorylation of downstream targets such as glycogen synthase kinase and myosin light chain (22). In view of the important role of Akt in mediating pancreatic adenocarcinoma cellular resistance to gemcitabine (14–16, 24), we examined the effect of ILK knockdown on Akt Ser^{473} phosphorylation, as well as phosphorylation of its downstream target, GSK. We observed a decrease in both Akt Ser^{473} phosphorylation (Fig. 5A) and phosphorylation of GSK (Fig. 5B) in cells transfected with ILK siRNA, which is consistent with a model in which ILK facilitates phosphorylation of Akt and GSK.

Activated Akt rescues cells from chemosensitization to gemcitabine induced by integrin-linked kinase knockdown. Given the effects of ILK knockdown on Akt phosphorylation status, we sought to determine the effects of concomitant overexpression of constitutively active Akt, and ILK knockdown, on gemcitabine-induced cytotoxicity. Cotransfection of a constitutively active myristoylated Akt expression construct at the time of ILK siRNA transfection was sufficient to maintain the gemcitabine IC_{50} of PANC1 cells at levels significantly higher than those of cells in which ILK knockdown was done in isolation (Fig. 6).

Discussion

Cellular adhesion to substrate is protective against a range of chemotherapeutic agents (7–11). ILK plays a critical role in coupling extracellular signaling events to intracellular cell survival pathways. In this study, we have shown for the first time that overexpression of active ILK increases gemcitabine chemoresistance in pancreatic adenocarcinoma cells. This chemoprotective effect occurs in association with suppression of caspase 3 activity. Furthermore, posttranscriptional

Fig. 4. A, knockdown of ILK expression in PANC1 cells was confirmed by Western blot 48 hours following transfection of ILK-specific but not control siRNA. Representative example with mean densitometric values from triplicate blots. *, P < 0.05 versus control siRNA. B, gemcitabine-induced cytotoxicity was significantly enhanced following ILK knockdown. *, P < 0.05 versus control siRNA. Both the apoptotic fraction (C) and caspase 3 activation (D) in response to gemcitabine were significantly increased by exposure to ILK-specific siRNA. Apoptotic fraction of cells treated with ILK-specific siRNA was significantly reduced by exposure to the caspase inhibitor z-VAD-fmk. Columns, mean values from triplicate experiments; bars, ± SD. *, P < 0.05 versus control siRNA.
knockdown of ILK expression by RNAi enhances gemcitabine-induced caspase 3–mediated apoptosis, decreases Akt Ser\(^{473}\) phosphorylation, and suppresses levels of GSK phosphorylation. In addition to its recognized roles in transducing signals resulting from growth factor receptor ligation and extracellular matrix interaction, ILK can act as a determinant of pancreatic adenocarcinoma cellular resistance to gemcitabine.

Increased expression and activity of ILK protects epithelial cells from apoptotic events such as anoikis, permitting anchorage-independent cell cycle progression and conferring greater tumorigenic ability and cellular invasiveness (3, 12, 21, 25). ILK interacts with \(\beta_1\) and \(\beta_3\) integrin subunits and is activated by contact with extracellular matrix components (1, 21). Overexpression of the ILK has been shown to modulate \(\beta\)-catenin subcellular localization and function (3). ILK also facilitates phosphorylation of Akt at Ser\(^{473}\), which is a requirement for Akt activation (21–23). Serine phosphorylation of Akt by ILK results in inhibitory phosphorylation of the downstream target GSK (22), which is associated with greater resistance to cellular insults such as exposure to ionizing irradiation (26, 27). Akt has been recognized to play an important role in pancreatic adenocarcinoma cellular chemoresistance (14–16) and the ability of ILK knockdown to enhance gemcitabine-induced cytotoxicity is consistent with the role of ILK as a regulator of Akt activity. We confirmed that Akt plays a significant role in the changes in gemcitabine chemoresistance induced by ILK knockdown, as cotransfection of a constitutively active myristoylated Akt expression construct was sufficient to preserve gemcitabine chemoresistance significantly above that of cells in which ILK knockdown was done in isolation. Whereas ILK-deficient chondrocytes have been shown to exhibit unaltered Akt and GSK phosphorylation (28, 29), others have shown Akt phosphorylation at Ser\(^{473}\) to be ILK dependent (30). Our results also suggest with an important role for ILK as a regulator of Akt activity.

ILK is implicated in the genesis and progression of a variety of malignancies. However, ILK expression has not been previously studied in pancreatic adenocarcinoma nor has its role in cellular chemoresistance. ILK protein hyperexpression is an early event in colonic polyposis (31) and carcinogenesis (32). ILK biochemical activity and protein expression is increased in polyps from familial adenomatous polyposis patients. Sulindac and aspirin, two agents that have been shown to have therapeutic and chemopreventive effects in colorectal carcinogenesis, target ILK and ILK-mediated signaling events (31). Inhibition of ILK has been reported to result in the transcriptional stimulation of E-cadherin expression and is correlated with inhibition of transcription of snail, a repressor of E-cadherin gene expression (33). ILK also plays a role in vascular endothelial growth factor–mediated tumor angiogenesis via protein kinase B/Akt–dependent signaling (34).

Considerable evidence derived from work done in a variety of malignancies, including pancreatic adenocarcinoma, indicates that Akt is a key regulator of cellular apoptosis (14–16, 18, 35). Activated Akt protects cells from a variety of apoptotic stimuli, including exposure to gemcitabine (14, 15, 18, 35). The caspase cascade of proteolytic enzymes comprises initiator and executioner elements. Following activation, these proteases degrade intracellular targets, resulting in apoptotic cell death. Active Akt has been shown to phosphorylate initiator caspase 9 directly, preventing its activation (17). Inhibition of this initiator caspase may interfere with apoptosome function and impair activation of effector caspase 3. Akt has also been reported to inhibit caspases by post-translational modification of an as yet unidentified cytosolic factor located downstream of cytochrome \(c\) release and upstream of caspase 9 activation (18). The results of this study indicate that modulation of Akt activity

![Fig. 6. Transfection of a constitutively active myristoylated Akt expression construct (myr-Akt) induced significant recovery of the chemoresistant phenotype in PANC1 cells transfected with ILK-specific siRNA. Gemcitabine IC\(_{50}\) values were quantified by MTT cytotoxicity assay. Columns, mean values from triplicate experiments; bars, \(\pm\) SD. *, \(P < 0.05\) versus empty vector (pUSE).](image-url)
through alteration of ILK expression can influence pancreatic adenocarcinoma cellular chemoresistance.

In summary, our study is the first to characterize the role of ILK in mediating pancreatic adenocarcinoma cellular chemoresistance. We have shown that whereas overexpression of ILK protects cells against gemcitabine-induced apoptosis, posttranscriptional silencing of ILK expression induces a significant increase in caspase-mediated apoptosis following exposure to gemcitabine. Our findings suggest that strategies directed against ILK and its downstream signaling targets may represent a novel approach to enhance the efficacy of gemcitabine in pancreatic cancer.

Acknowledgments

We thank the technical assistance of Jan Rounds.

References

RNA Interference Demonstrates a Novel Role for Integrin-Linked Kinase as a Determinant of Pancreatic Adenocarcinoma Cell Gemcitabine Chemoresistance

Mark S. Duxbury, Hiromichi Ito, Eric Benoit, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/11/9/3433

Cited articles
This article cites 34 articles, 14 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/11/9/3433.full.html#ref-list-1

Citing articles
This article has been cited by 8 HighWire-hosted articles. Access the articles at:
/content/11/9/3433.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.