Early Detection of Chemoradioresponse in Esophageal Carcinoma by 3’-Deoxy-3’-3H-Fluorothymidine Using Preclinical Tumor Models

Smith Apisarnthanarax,1 Mian M. Alauddin,2 Firas Mourtada,3 Hisanori Ariga,1 Uma Raju,1 Osama Mawlawi,4 Dongmei Han,2 William G. Bornmann,2 Jaffer A. Ajani,5 Luka Milas,1 Juri G. Gelovani,2 and K.S. Clifford Chao1

Abstract

Purpose: Early identification of esophageal cancer patients who are responding or resistant to combined chemoradiotherapy may lead to individualized therapeutic approaches and improved clinical outcomes. We assessed the ability of 3’-deoxy-3’-18F-fluorothymidine positron emission tomography (FLT-PET) to detect early changes in tumor proliferation after chemoradiotherapy in experimental models of esophageal carcinoma.

Experimental Design: The in vitro and ex vivo tumor uptake of [3H]FLT in SEG-1 human esophageal adenocarcinoma cells were studied at various early time points after docetaxel plus irradiation and validated with conventional assessments of cellular proliferation [thymidine (Thd) and Ki-67] and [18F]FLT micro-PET imaging. Imaging-histologic correlation was determined by comparing spatial Ki-67 and [18F]FLT distribution in autoradiographs. Comparison with fluorodeoxyglucose (FDG) was done in all experiments.

Results: In vitro [3H]FLT and [3H]Thd uptake rapidly decreased in SEG-1 cells 24 hours after docetaxel with a maximal reduction of over 5-fold (P = 0.005). The [3H]FLT tumor-to-muscle uptake ratio in xenografts declined by 75% compared with baseline (P < 0.005) by 2 days after chemoradiotherapy, despite the lack of change in tumor size. In contrast, the decline of [3H]FDG uptake was gradual and less pronounced. Tumor uptake of [3H]FLT was more closely correlated with Ki-67 expression (r = 0.89, P < 0.001) than was [3H]FDG (r = 0.39, P = 0.08). Micro-PET images depicted similar trends in reduction of [18F]FLT and [18F]FDG tumor uptake. Autoradiographs displayed spatial correlations between [18F]FLT uptake and histologic Ki-67 distribution in preliminary studies.

Conclusions: FLT-PET is suitable and more specific than FDG-PET for depicting early reductions in tumor proliferation that precede tumor size changes after chemoradiotherapy.

Esophageal cancer is one of the most lethal human malignancies. Achievement of pathologic complete response after neoadjuvant chemoradiotherapy in esophageal cancer patients has been shown to be associated with improved clinical outcomes (1–4). Methods to reliably evaluate and predict the proportion of residual cancer in the esophagus after chemoradiotherapy, however, are currently lacking. The ability to predict which patients will respond to chemoradiotherapy or develop resistance to it before surgery would be invaluable for individualizing therapeutic approaches and avoiding overtreatment and undertreatment. Therefore, the need for a noninvasive tool that accurately predicts response early during the course of preoperative therapy is widely acknowledged.

Conventional anatomic imaging modalities, such as computed tomography and endoscopic ultrasonography, depict cancer response as changes in tumor size and composition, which may occur only after weeks or months following therapy, and are not ideally suitable for early prediction of response in esophageal cancer. Computed tomography is inaccurate and endoscopic ultrasonography is not always feasible in this setting (5). Positron emission tomography (PET), with the glucose analogue [18F]fluorodeoxyglucose (FDG), addresses these inherent limitations in anatomic imaging, but may be limited in distinguishing proliferating tumor cells from inflammatory tissue (6–8). Other radiolabeled molecular markers may improve the specificity and accuracy of early assessment of treatment response.

Because deregulated proliferation is one of the hallmarks of cancer and a high tumor proliferative rate is associated with

Author’s Affiliations: Departments of 1Radiation Oncology, 2Experimental Diagnostic Imaging, 3Radiation Physics, 4Imaging Physics, and 5GI Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas

Received 12/16/05; revised 4/17/06; accepted 5/22/06.

Grant support: NIH/National Cancer Institute grants CA89198 and P50 CA97007.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Requests for reprints: K.S. Clifford Chao, Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030. Phone: 713-563-2300; Fax: 713-563-2368; E-mail: cchao@mdanderson.org.

© 2006 American Association for Cancer Research. doi:10.1158/1078-0432.CCR-05-2720
aggressive biological behavior and poor response to therapy (9, 10), imaging the proliferative state of cancer cells is of great interest. Recently, 3′-deoxy-3′,3′-18F-fluorothymidine ([18F]FLT), a pyrimidine nucleoside analogue, has been validated in several \textit{in vitro} and \textit{in vivo} studies as a promising PET radiopharmaceutical for imaging proliferation and monitoring tumor response (11–19). The basis of FLT-PET as a surrogate measure of cancer cell proliferation is dependent on the monophosphorylation of FLT by the thymidine kinase 1 (TK1) enzyme, which results in intracellular trapping of FLT (20). TK1 is virtually absent in quiescent cells but differentially expressed in the late G1 and S phases of the cell cycle (21, 22).

Although FLT-PET has been used to assess proliferation and response to therapy (11, 12, 15–19), no study to date has examined FLT-PET for monitoring response to chemotherapy in combination with radiation. We hypothesize that FLT-PET depicts early changes in the proliferative state of esophageal cancer after chemoradiotherapy. To test this hypothesis, we developed experimental \textit{in vitro} and murine models of esophageal cancer and used a treatment regimen consisting of docetaxel, a semisynthetic taxane (23), and irradiation. Docetaxel in combination with irradiation has been investigated in preclinical studies (23–28) and used in the clinic to produce an ~25% pathologic complete response rate in esophageal cancer (29–31). The main objective of this study is to determine whether FLT-PET is suitable and more specific than FDG-PET as a surrogate marker of chemoradioresponse for depicting early reductions in tumor proliferation that precede tumor size changes.

### Materials and Methods

\textbf{Radiopharmaceuticals.} Methyl-3H-thymidine ([3H]Thd; specific activity, 65 Ci/mmol), methyl-1H(N)-3′-fluoro-3′-deoxythymidine ([1H][FLT; specific activity, 3.4 Ci/mmol], and 5,6-3H-2-fluoro-2-DDG ([1H][FDG; specific activity, 60 Ci/mmol) were purchased from Sigma-Aldrich (Milwaukee, WI), Moravek Biochemicals (Brea, CA), and American Radiolabeled Chemicals, Inc. (St. Louis, MO), respectively. [18F]FDG was purchased from PET NET-CPI (Knoxville, TN); specific activity was estimated to be >2 Ci/µmol. [18F]FLT was synthesized by radiofluorination of the 3-N-Boc-[4,4′-dimethoxytrityl]-3-O-nosyl-2-deoxy-β-D-lyxofuranosyl-thymine precursor as previously described (32). Analytic HPLC showed the product to be >99% radiochemically pure. Radiochemical yield was 7%, and specific activity was estimated to be >2 Ci/µmol.

\textbf{Cells and cell culture.} SEG-1 cells, derived from a human Barrett’s-associated adenocarcinoma of the distal esophagus (33), were maintained and grown in DMEM/F12 culture medium supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin, and 1% glutamine. Cultures were kept in a humidified 5% CO\textsubscript{2} incubator at 37°C. For cell cycle analysis and radiotracer uptake experiments, 10^\textsuperscript{6} tumor cells. After tumors had grown to a mean diameter of 8 mm as measured in three orthogonal diameters with Vernier calipers, mice were randomized to treatment versus control groups. Mice were treated with either docetaxel alone, radiation alone, docetaxel followed by irradiation, or PBS (n = 8).

\textbf{Chemoradiation treatment of xenografts.} Mice were treated with docetaxel and radiation as described previously (26). Tumors were locally irradiated 24 hours after docetaxel treatment (33 mg/kg i.v. via tail vein) with a single dose of 15 Gy using a small animal 137Cs irradiator. Irradiations were given under ambient air breathing conditions at a dose rate of 5.4 Gy/min. During irradiation, the mice were mechanically immobilized (unanesthetized) on a jig, and the tumor was centered in a 3-cm-diameter circular field. Tumor response to treatment was assessed by tumor growth delay as previously described (26).

\textbf{Immunohistochemical staining for proliferation.} Excised tumors were fixed in 10% neutral buffered formalin and embedded in paraffin blocks, from which 4-µm sections were cut for H&E and immunohistochemical staining. A section from each specimen was labeled using the monoclonal antibody B56 (BD Pharmingen, San Diego, CA), which recognizes the nuclear proliferation associated Ki-67 antigen (35), and visualized using the Vectastain ABC kit with 3,3-diaminobenzidine (Vector Laboratories, CA) and hematoxylin counterstain. Ki-67 expression was quantified according to previously described methods with modifications (36). The fraction of Ki-67-labeled tumor cells was assessed by microscopic examination of stained sections at ×400 magnification. Five fields of non necrotic areas were randomly selected in each specimen, and in each field, the numbers of Ki-67-labeled cells were recorded as numbers per 200 to 300 nuclei scored and expressed as labeling index percentages (LIs).
Radiotracer uptake in tumor tissue. In SEG-1-bearing mice, tumor uptake of [3H]FLT or [3H]FDG was assessed at 1, 2, and 4 days after chemoradiotherapy (n = 5). A bolus injection of [3H]FLT or [3H]FDG was administered to the mice i.v. via the lateral tail vein at a dose of 1 μCi in 200 μL. The mice were sacrificed 60 minutes after radiotracer injection by cervical dislocation. Muscle and tumor tissue were rapidly harvested, weighed, and solubilized with Solvable (Perkin-Elmer, Boston, MA). Radioactivity in the samples was measured using a Tri-Carb 2100TR liquid scintillation counter (Packard), and the results were expressed as percentage injected dose per gram of tissue (%ID/g). Uptake of [3H]FLT was compared with LI Ki-67 within the same tumors.

Micro-PET imaging and analysis. Untreated and chemoradiotherapy-treated mice were imaged on a micro-PET R4 scanner (Concorde Microsystems, Knoxville, TN). The animals (n = 2) were first anesthetized and injected with 7 MBq (200 μCi) of either [18F]FLT or [18F]FDG. Sixty minutes after injection, the animals were positioned in the field of view of the scanner and imaged for 15 minutes. Care was taken to reproduce the animal positioning between the [18F]FLT and [18F]FDG imaging sessions. The acquired list data was then histogrammed into a single frame using Fourier rebinning, and the images were reconstructed into a 128 x 128 x 63 (0.72 x 0.72 x 1.3 mm) matrix using ordered subset expectation maximization. All corrections for attenuation, scatter, dead time, and randoms were applied to generate quantifiable images. Regions of interest were then drawn over the tumor and muscle tissue without including their respective visible boundaries and an average value within the regions of interest was calculated. A ratio of tumor-to-muscle (T/M) was calculated to eliminate the dependency on the injected activity. This ratio was evaluated before and after treatment as an indicator of treatment response.

Imaging-histologic correlation with autoradiography. Autoradiography was done only on tumors from mice injected with [18F]FLT. Upon completion of the micro-PET imaging studies, tumors were removed from mice and immediately frozen and processed. Sliced 8-μm sections were fixed in cold acetone, dried, and exposed to a multipurpose storage phosphor screen (Amersham Biosciences, Piscataway, NJ) overnight. A Typhoon 9400 storage phosphor screen imager (Amersham Biosciences) was used to generate digital autoradiographs and detect the distribution of radionuclide activity localized in each section. After complete radioactive decay of [18F]FLT, these same sections were processed for Ki-67 immunohistochemical staining as previously described (31, 32). Spatial correlations between regions of high, intermediate, and low intensity [18F]FLT uptake and Ki-67 expression were examined.

Statistical analysis. Statistical comparisons between controls and treated groups were calculated using the two-sided Student’s t test for changes in tumor size and LI Ki-67. Single-factor ANOVA was used to compare in vitro and in vivo radiotracer uptake before and after treatment. Correlations between histologic and radiotracer uptake findings were tested using linear regression analysis. All quantitative data were reported as mean ± SE unless otherwise specified. P < 0.05 was considered to be statistically significant.

Results

Cellular uptake of radiotracers in vitro after chemoradiotherapy. Figure 1 shows the cellular uptake of [3H]Thd, [3H]FLT, and [3H]FDG in SEG-1 cells after treatment with docetaxel and radiation. The data were compared with untreated cell uptake in percentage. Although baseline cellular uptake of [3H]FLT was 5.6-fold lower than that of [3H]Thd (3.92 ± 0.18 versus 21.80 ± 0.22 cell/medium dpm, respectively), the dynamics of [3H]FLT uptake after treatment (Fig. 1B) closely resembled that of [3H]Thd uptake (Fig. 1A). Similar to [3H]Thd, docetaxel initially increased [3H]FLT uptake from a baseline of 3.92 ± 0.18 to a peak of 6.34 ± 0.08 at 12 hours (+62%, P = 0.008).

Fig. 1. Cellular uptake of [3H]Thd, [3H]FLT, and [3H]FDG in SEG-1 cells and cell cycle analysis after docetaxel and radiation in vitro. Plated SEG-1 cells were treated with 10 nmol/L docetaxel (0 hour) followed by 15 Gy irradiation (XRT; 24 hours). A, [3H]Thd cellular uptake served as the gold standard measure of proliferative activity. B, [3H]FLT and [3H]FDG cellular uptake. C, flow cytometric analysis of cell cycle distributions. Experiments were done in triplicates and repeated. Points, mean; bars, SE. P values were derived by ANOVA.
The uptake subsequently declined rapidly to 2.92 ± 0.16 (−26%, P = 0.005) at 24 hours and continued to steadily decrease to 0.68 ± 0.06 at 72 hours after docetaxel treatment (24 hours after irradiation) compared with baseline uptake (−83%, P = 0.006).

The cellular uptake dynamics of \(^{3}H\)FDG after treatment was characterized by a delayed and less pronounced decrease compared with \(^{3}H\)Thd and \(^{3}H\)FLT (Fig. 1B). A statistically significant reduction in \(^{3}H\)FDG uptake was not observed until 36 hours after docetaxel (12 hours after irradiation). \(^{3}H\)FDG uptake declined by 31% compared with baseline (P = 0.01) at 36 hours and continued to gradually decrease an additional 10% compared with baseline (P = 0.004) at 72 hours after docetaxel (48 hours after irradiation).

**Cell cycle analysis.** To examine the effects of docetaxel and irradiation on cell cycle distribution, flow cytometric analysis was done on SEG-1 cells in vitro after treatment (Fig. 1C). The percentage of cells in G2-M phase was elevated from a baseline of 20.61% to 61.88% at 48 hours after docetaxel treatment (24 hours after irradiation), whereas cells in G0-G1 phase were markedly reduced to 8.09% from a baseline of 39.43%. The effect of docetaxel and irradiation on S-phase cells was similar to the alterations in \(^{3}H\)Thd and \(^{3}H\)FLT cellular uptake. The percentage of cells in S phase initially increased to 47.46% at 12 hours after docetaxel from a baseline of 39.96% and subsequently declined to 30.03% at 48 hours after docetaxel treatment (24 hours after irradiation).

**Effect of chemoradiotherapy on xenograft tumor size and proliferation.** The antitumor effect of docetaxel and radiation on SEG-1 tumor-bearing mice, assessed by tumor growth delay, is shown in Fig. 2A. Although the untreated group tumors continued to increase in size during the first few days after treatment, the tumors in the docetaxel plus irradiation group maintained stable sizes: 0 days (pretreatment), 7.98 ± 0.05 mm; 2 days, 8.12 ± 0.08 mm; and 4 days, 7.96 ± 0.12 mm. A significant reduction in tumor size was observed as early as 4 hours after treatment compared with pretreatment tumors washigh at 92.10 ± 1.49%. A statistically significant decrease in tumor proliferation by 11% (P = 0.02) was observed as early as 4 hours after treatment compared with pretreatment LIKi-67 (data not shown). LIKi-67 in treated tumors continued to decline rapidly by 87% to 12.43 ± 1.05% at 96 hours compared with untreated tumors (P < 0.001).

**Ex vivo uptake of \(^{3}H\)FLT and \(^{3}H\)FDG in tumors after chemoradiotherapy and correlation with proliferative markers.** Treatment with docetaxel plus radiation resulted in decreases for both \(^{3}H\)FLT and \(^{3}H\)FDG tumor uptake (Fig. 3). Absolute tumor uptake of \(^{3}H\)FDG after treatment was characterized by a statistically significant steep decline compared with pretreatment tumors at 1 day (−72%, P = 0.006), followed by a continued stable decline (2 days, −75%; 4 days, −76%; P < 0.005). The decrease in \(^{3}H\)FDG tumor uptake after treatment, however, was less pronounced, reaching a statistically insignificant decrease by 15% at 4 days compared with pretreatment tumors. Figure 3A summarizes changes in \(^{3}H\)FLT and \(^{3}H\)FDG tumor uptake; in addition, tumor size and Ki-67 expression changes are charted for correlation of radiotracer uptake with independent measures of tumor response. The \(^{3}H\)FLT/M uptake ratio decreased by 57% at 1 day, 80% at 2 days, and 88% at 4 days in treated tumors compared with that of pretreatment tumors (ANOVA, P < 0.001; Fig. 3B). In contrast, the \(^{3}H\)FDG/M uptake ratio gradually declined and did not reach statistical significance.

To further investigate the specificity of FLT and FDG uptake for changes in tumor proliferation after chemoradiotherapy, we compared the radiotracer uptake for individual tumors with the corresponding changes in LIKi-67 within the same tumors (Fig. 3C-D). A strongly positive correlation was found between \(^{3}H\)FLT uptake in SEG-1 tumors and LIKi-67 (r = 0.89, P < 0.001). \(^{3}H\)FDG tumor uptake, however, weakly correlated with LIKi-67 (r = 0.39, P = 0.08).

**Micro-PET studies.** Figure 4 shows representative coronal and transverse micro-PET images of SEG-1 tumor-bearing mice.
at 1 hour after injection of $[^{18}F]FLT$ and $[^{18}F]FDG$ in untreated and 2 days postchemoradiotherapy animals. The micro-PET imaging data were in agreement with the *ex vivo* radiotracer uptake studies. Both $[^{18}F]FLT$ (T/M uptake ratio 8.79) and $[^{18}F]FDG$ (T/M uptake ratio 5.36) clearly visualized untreated control tumors implanted into the right hind limbs of the mice. Chemoradiotherapy markedly reduced tumor uptake of $[^{18}F]FLT$ after 2 days, decreasing the T/M uptake ratio by ~58%. The decrease in $[^{18}F]FDG$ T/M uptake ratio was less pronounced (~17%) compared with $[^{18}F]FLT$ reduction. The size of treated tumors did not significantly change in these mice, which was consistent with the tumor growth delay studies.

**Imaging-histologic spatial correlation.** Figure 5 shows preliminary data that the spatial distribution of $[^{18}F]FLT$ uptake in untreated and chemoradiotherapy treated tumors correlated well with the spatial distribution of Ki-67 expression. The overall intensity of $[^{18}F]FLT$ uptake in the autoradiographs of treated and 2 days postchemoradiotherapy tumors seemed consistent with the observed micro-PET images. Regions of high-intensity $[^{18}F]FLT$ uptake in the autoradiographs exhibited prominent staining for Ki-67. This positive spatial correlation was also observed in intermediate- and low-intensity areas of $[^{18}F]FLT$ uptake.

**Discussion**

This is the first study to provide preclinical evidence that FLT-PET accurately depicts early changes in tumor proliferation after chemoradiotherapy that precede tumor volume changes in *in vitro* and *in vivo* models of esophageal cancer. Our findings suggest that FLT-PET may be useful as a noninvasive imaging modality to assess early response to chemoradiotherapy in esophageal cancer. The ability of FLT-PET to detect response to chemoradiotherapy within days of treatment (after 48 hours) may allow physicians to overcome the inherent limitations imposed by conventional anatomic imaging and individualize therapeutic approaches according to whether tumors are chemoradioresponsive or chemoradioresistant. Specifically, the early identification of chemoradiotherapy responders and nonresponders would assist in avoiding unnecessary, highly morbid surgical procedures for responders (i.e., esophagectomy) and discontinuing ineffective neoadjuvant treatment regimens and instituting alternative therapies for nonresponders, thereby reducing delays in clinical management and potentially improving clinical outcomes in esophageal cancer.

The combination of docetaxel and radiation resulted in significant reduction of FLT uptake in tumors, which was depicted in our *in vitro* and *ex vivo* uptake and micro-PET imaging studies. When normalized to muscle tissue, FLT uptake in tumors in our *ex vivo* study decreased in a stepwise fashion with a sharp decline as early as 1 day after treatment, followed by a stable decline over the next 3 days. $[^{18}F]FLT$ micro-PET showed the feasibility of imaging these changes. Importantly, these reductions in FLT tumor uptake were not secondary to decreases in tumor volume, because early reduction in FLT uptake occurred during the first few days of cytostatic tumor growth. Similar findings were reported in other FLT-PET preclinical studies that used different anticancer therapies, including chemotherapy (15, 16, 19) and radiation (12, 17). Our data lend further support to the literature showing the ability of FLT-PET to detect therapeutic alterations in tumor biology before changes in tumor size are clinically detectable. It is not clear at this point whether FLT uptake after...
chemoradiotherapy differs from treatment with chemotherapy alone or radiation alone. The intent of the growth delay studies was to show the superior efficacy of combined docetaxel and radiation in our tumor model rather than to compare FLT uptake changes between the different treatment regimens. Future studies examining these differences would be interesting.

We validated the specificity of FLT-PET for depicting changes in tumor proliferation by demonstrating a significantly positive correlation between FLT tumor uptake reduction and conventional assessments of cellular proliferation. The dynamics of this reduction in 

\textit{in vitro}

closely resembles the changes in 

\textit{in vitro}

uptake after treatment, which is consistent with other \textit{in vitro} comparative uptake studies of 

\textit{in vitro}

and 

\textit{in vitro}

(14, 20). Our data, however, are the first to establish that this correlation with \textit{In vitro} remains intact after anticancer treatment. The altered patterns of cell cycle distribution of \textit{in vivo}

SEG-1 cells after doxorubicin (i.e., 

\textit{in vitro}

G2-M cell cycle arrest) were also similar to findings in other published reports using taxanes (24, 25, 37). The reduction in 

\textit{in vitro}

phase cells after doxorubicin further supports the rationale for using FLT-PET to assess proliferative response after chemoradiotherapy, because cellular FLT uptake is dependent on late \n
G1-S phase specific expression of TK1 (21, 22).

It is interesting to note the initial increase in 

\textit{in vitro}

and 

\textit{in vitro}

uptake immediately after doxorubicin that precedes their decline (Fig. 1). The cell cycle data also show a similar increase in \textit{ex vivo}

S-phase cells, which suggests that this finding may be explained by an accumulation of \textit{ex vivo}

S-phase cells as cells progress through the cell cycle beyond the \n
G2-M into \n
S

phase. This \textit{ex vivo}

finding is in contrast to the early decreases in 

\textit{in vitro}

and 

\textit{in vitro}

observed in tumor xenografts after chemoradiotherapy. It must be pointed out, however, that the early decreases in \textit{in vitro}

are observed after the administration of both doxorubicin and irradiation 24 hours later. Although we did not study the proliferative status of xenografts immediately after doxorubicin alone, it is possible that a transient, initial increase in \n
Ki-67 would also have been observed similar to \textit{in vitro}

studies.

A unique finding in our study was the spatial correlation between FLT uptake and \n
Ki-67 expression distribution on autoradiography. Previous studies have shown the strong correlation between overall FLT tumor uptake and histologic assessment of cellular proliferation (Table 1). Although preliminary, our finding is the first evidence that this correlation also exists spatially for FLT-PET with reasonably high fidelity, adding to the robustness of FLT as an imaging surrogate of tumor proliferation. Furthermore, imaging-histologic correlation also buttresses the rationale and feasibility of delivering escalated doses of radiation to regions of high tumor proliferative activity in the clinical setting through conformal image-guided radiation therapy. A recent small pilot study that staged 10 esophageal cancer patients with the aid of 

\textit{F}^{18}\textit{F}\textit{FLT} and 

\textit{F}^{18}\textit{F}\textit{FDG} contradicts our results, reporting a negative correlation between 

\textit{F}^{18}\textit{F}\textit{FLT} and \n
\textit{Ki-67} in biopsy specimens (38). The small number of patients and potential for sampling error in biopsy specimens in that study may have contributed to the discrepancy from our findings. Only a study involving more patients and tightly controlled tumor sampling protocols could resolve this discrepancy.

Although studies have shown that changes in 

\textit{F}^{18}\textit{F}\textit{FDG} uptake during neoadjuvant chemoradiotherapy are correlated with patient outcomes in esophageal cancer (2, 39, 40), other studies have suggested that 

\textit{F}^{18}\textit{F}\textit{FDG} may have difficulty in differentiating between complete responses and residual disease or posttreatment inflammation (6–8). Recent animal and preliminary clinical studies have suggested that 

\textit{F}^{18}\textit{F}\textit{FLT} may be an even more sensitive measure than 

\textit{F}^{18}\textit{F}\textit{FDG} for tumor response (12, 15–17, 19, 41–43). For example, Yang et al. (12) recently showed larger early decreases in 

\textit{F}^{18}\textit{F}\textit{FLT} uptake in \n
SCCVI-tumor-bearing mice after irradiation than in 

\textit{F}^{18}\textit{F}\textit{FDG} uptake. Leyton et al. (16) showed that 

\textit{F}^{18}\textit{F}\textit{FLT} was superior in assessing tumor proliferation compared with 

\textit{F}^{18}\textit{F}\textit{FDG} in \n
RIF-1 tumor-bearing mice after cisplatin treatment (\textit{r} = 0.89 versus \textit{r} = 0.55, respectively). Similarly, we showed early decreases in FLT tumor uptake that were more pronounced and specific for tumor proliferation than those of FDG. Furthermore, when normalizing FLT uptake to background (muscle) uptake as was done in other studies (12, 18, 19), FLT displayed a much greater \textit{T/M} signal contrast than FDG. Our data provide additional evidence for the assertion that imaging tumor proliferation with 

\textit{F}^{18}\textit{F}\textit{FLT} is more suitable for monitoring treatment response than imaging tumor glucose metabolism.

It should be noted that in our tumor models, the baseline absolute 

\textit{F}^{18}\textit{F}\textit{FDG} tumor uptake in our \textit{in vitro} and \textit{ex vivo} studies was low compared with absolute 

\textit{F}^{18}\textit{F}\textit{FLT} tumor uptake.

---

**Fig. 4.** 

\textit{F}^{18}\textit{F}\textit{FLT} and 

\textit{F}^{18}\textit{F}\textit{FDG} micro-PET imaging of SEG-1 tumor-bearing mice. Coronal \textit{top row} and axial \textit{bottom row} micro-PET sections of mice 1 hour after injection with 

\textit{F}^{18}\textit{F}\textit{FLT} \textit{left columns} or 

\textit{F}^{18}\textit{F}\textit{FDG} \textit{right columns} before treatment and 2 days after chemoradiation (CRT, \textit{n} = 2 mice/group). Implanted tumors (arrows) are located on the right (\textit{Rt}) hind limbs of mice. Color scale, high \textit{red} and low \textit{purple} radiotracer uptake. Tumor uptake of radiotracers is normalized to muscle radiotracer uptake and expressed as T/M uptake ratio. \textit{Lt}, bladder.
This is in contrast to several other studies comparing $^{18}$FFLT and $^{18}$FDG tumor uptake in which the absolute $^{18}$FDG tumor uptake was $\sim 1.5$ to $5 \times$ greater than that of $^{18}$FLT (15–17, 42). It is possible that some of the $^3$H labeled to FDG in our experiments may have exchanged with water and resulted in decreased $^3$H counts within the cells or tumors at baseline. However, any potential errors arising from this phenomenon would likely have been eliminated by the use of the T/M uptake ratio, as this $^3$H-water exchange would also have occurred in muscle tissue and thus canceled each other. It is also possible that, similar to the low baseline $^{18}$FDG uptake observed in the Waldherr et al. study (19), SEG-1 tumor cells in our study had low FDG uptake as well. However, this is unlikely considering the relatively high tumor uptake of $^{18}$FDG in our micro-PET imaging study.

In conclusion, this present study showed that FLT-PET is suitable for depicting early reductions in tumor proliferation (48 hours after chemoradiotherapy) in preclinical models of esophageal cancer after chemoradiotherapy before changes in tumor size are evident. We conclude that FLT-PET is superior to FDG-PET as a noninvasive imaging tool to assess early tumor proliferative responses to chemoradiotherapy. Additional studies are ongoing to further determine whether FLT-PET can distinguish between varying degrees of treatment response and predict for pathologic complete response as well as detect early biological changes during the regrowth phase after ineffective

### Table 1. Correlation between FLT tumor uptake and histologic proliferative markers in published literature

<table>
<thead>
<tr>
<th>Study</th>
<th>Disease site</th>
<th>Proliferation correlation</th>
<th>FDG correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marker</td>
<td>Correlation</td>
<td></td>
</tr>
<tr>
<td>Barthel et al. (15) *</td>
<td>Fibrosarcoma</td>
<td>PCNA</td>
<td>$r = 0.71$</td>
</tr>
<tr>
<td>Waldherr et al. (19) *</td>
<td>SCCa</td>
<td>PCNA</td>
<td>$r = 0.71$</td>
</tr>
<tr>
<td>Leyton et al. (16) *</td>
<td>Fibrosarcoma</td>
<td>PCNA</td>
<td>$r = 0.89$</td>
</tr>
<tr>
<td>Wagner et al. (44) **</td>
<td>Lymphoma</td>
<td>BrdUrd *</td>
<td>$r = 0.63$</td>
</tr>
<tr>
<td>Vesselle et al. (45)</td>
<td>Lung</td>
<td>Ki-67 *</td>
<td>$r = 0.84$</td>
</tr>
<tr>
<td>Buck et al. (42) *</td>
<td>Lung</td>
<td>Ki-67 *</td>
<td>$r = 0.92$</td>
</tr>
<tr>
<td>Francis et al. (43) *</td>
<td>Colon</td>
<td>Ki-67 *</td>
<td>$r = 0.80$</td>
</tr>
<tr>
<td>Cobben et al. (46) *</td>
<td>Sarcoma</td>
<td>Ki-67 *</td>
<td>$r = 0.65$</td>
</tr>
<tr>
<td>van Westreemen et al. (38) *</td>
<td>Esophageal</td>
<td>Ki-67 *</td>
<td>$r = -0.76$</td>
</tr>
</tbody>
</table>

Abbreviations: BrdUrd, bromodeoxyuridine; PCNA, proliferating cell nuclear antigen; SCCa, squamous cell carcinoma.

* Preclinical.

** Clinical.
Early Detection of Chemoradioresponse by FLT-PET

Acknowledgments

We thank Nancy Hunter, Bobby Neal, and David Valdecans for their invaluable assistance in the animal studies; Kuriakose Abraham for his expertise in processing histologic specimens; Dr. Nicholas Terry and Nalini Patel for their help in the immunohistochemistry and flow cytometry studies; and Walter J. Pagel for his assistance in manuscript editing.

References


Early Detection of Chemoradioresponse in Esophageal Carcinoma by 3′-Deoxy-3′-[3H]-Fluorothymidine Using Preclinical Tumor Models

Smith Apisarnthanarax, Mian M. Alauddin, Firas Mourtada, et al.


Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/12/15/4590

Cited articles
This article cites 46 articles, 24 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/12/15/4590.full.html#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
/content/12/15/4590.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.