Targeted Modulation of MGMT: Clinical Implications

Lili Liu and Stanton L. Gerson

Abstract
O6-Methylguanine DNA methyltransferase (MGMT) has been studied for >20 years as a gene that is associated with the mutagenicity and cytotoxicity induced by alkylating carcinogens or alkylating (methylating and chloroethylating) therapeutic agents. Pioneering studies of alkylating agents identified alkylated guanine at the O6 position, the substrate of MGMT, as a potentially promutagenic and lethal toxic DNA lesion. MGMT plays a prominent role in DNA adduct repair that limits the mutagenic and cytotoxic effect of alkylating agents. Because of its role in cancer etiology and chemotherapy resistance, MGMT is of particular interest. In this article, the clinical effect of MGMT expression and targeted modulation of MGMT will be summarized.

Although the exact physiologic function of O6-methylguanine DNA methyltransferase (MGMT) remains to be fully defined, MGMT is known to specifically remove the methyl/alkyl group from the O6-position of guanine and restore the guanine to its normal form without causing DNA strand breaks (Fig. 1). MGMT-mediated repair is unique compared with other DNA repair pathways: (a) it acts alone without relying on any other proteins or cofactors; (b) it transfers the alkyl group to an internal cysteine residue in the protein, acting as both a transferase and an acceptor of the alkyl-group; (c) it inactivates itself after receiving the alkyl-group from guanine, and thus, it is a suicidal protein; (d) it repairs in a stoichiometric fashion. Because one molecule of MGMT removes one alkyl molecule, an excess of DNA adducts at the O6-position could completely deplete MGMT. These properties make MGMT an important drug resistance factor and an ideal target for biochemical modulation of drug resistance (1, 2). A direct relationship between MGMT activity and resistance to alkylating therapeutic agents has been well documented (3, 4).

MGMT expression protects from alkylating agent cytotoxicities. The clinical effectiveness of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and related methylating compounds procarbazine, streptozotocin, or temozolomide is attributed, in part, to the depletion of MGMT activity. BCNU, and O6-methylguanine (O6-meG) formed by BCNU, and O6-methylguanine (O6-meG) formed by the methylating agents. It has been known for several decades that O6-chloroethylguanine lesions induce cell death by forming G-C interstrand cross-links that are able to inhibit DNA replication and transcription, eventually leading to DNA double-strand breaks and apoptosis. O6-meG is a promutagenic and carcinogenic DNA lesion that becomes cytotoxic after persistent O6-meG adducts are recognized by the DNA mismatch repair (MMR) pathway (5). The mispairing of O6-meG with thymine during DNA replication initiates futile cycles of DNA MMR to generate DNA single- and double-strand breaks that activate apoptotic cell death (refs. 6, 7; Fig. 1B).

MGMT expression in tumors. MGMT is ubiquitously expressed in normal human tissues (8) but is overexpressed in all types of human tumors, including colon cancer, glioma, lung cancer, breast cancer, leukemia, lymphomas, and myeloma. Although tumor cells have many mechanisms of resistance to alkylating agents, the expression of MGMT in tumors has a protective effect against cell death induced by alkylating agents, showing a strong correlation between MGMT activity and tumor drug resistance. MGMT expressing tumor cells are 4- to 10-fold more resistant to BCNU, temozolomide, and related compounds (9, 10).

Recent Advances

Silencing of MGMT. Tumor tissues have long been noted to be heterogenous with respect to MGMT expression with a broad range of expression between tumors, a lack of MGMT in patches of tumors, or a deficiency in MGMT in entire tumors. It is possible that epigenetic inactivation of the MGMT gene contributes to this variation. Several studies have reported transcriptional silencing of this gene in up to 30% of certain primary human tumors because of hypermethylation of the CpG island in its promoter region (11–14). Loss of MGMT has been shown to be associated with, and to precede the appearance of, G to A point mutations in the K-ras gene during lung, brain, and colorectal tumorigenesis. MGMT silencing is also often observed in tumors in which a number of other genes are silenced by methylation. The silenced gene lists are not consistent between tumors or tumor types (15, 16). Thus, the epigenetic alteration of MGMT behaves like a carcinogenic marker. MGMT silencing is observed in normal tissues, in premalignant lesions or in peritumor tissue, suggesting that it could be an early abnormality in premalignant processes (13, 17).
Recently, several clinical studies have shown that glioma patients with MGMT promoter methylation responded better to treatment with radiotherapy and either BCNU or temozolomide, and had improved survival compared with chemotherapy alone (18, 19). These observations suggest that the absence of MGMT expression is a positive survival predictive marker in patients with glioma. It would be appealing to consider a prospective clinical trial in which MGMT expression variables were used for personalized drug selection, electing alkylating agents for those tumors with low or absent MGMT expression, and other forms of treatment or inhibition of MGMT (vide infra) for those with MGMT expression. Tumor MGMT promoter methylation is being evaluated as a predictive marker. Because of the difficulty in obtaining these samples, however, measurement of circulating tumor or blood cell MGMT promoter methylation might be an effective surrogate for the status of tumor MGMT.

Depletion of MGMT. MGMT is an ideal target for modulation of its activity because it is a suicidal protein. O⁶-Benzylguanine (O⁶-BG) was developed based on its restricted mechanism of action (20). O⁶-BG reacts with MGMT by covalent transfer of the benzyl group to the conserved active-site cysteine and restores the guanine to normal. After receiving a methyl-group from O⁶-meG, MGMT is inactivated, and subject to ubiquitin-mediated degradation. A similar suicidal enzyme reaction occurs when MGMT transfers and accepts an alkyl-group from O⁶-benzylguanine (O⁶-BG) or O⁶-(4-bromothenyl)guanine (PaTrin-2), two therapeutic strategies. B, if an O⁶-meG DNA adduct escapes MGMT repair, it would form a base pair with thymine (blue circle) during DNA replication. The mismatched base pair of the persistent O⁶-meG with thymine is recognized by the mismatch repair pathway, resulting in futile cycles of repair leading to cell death. C, N⁷-meG DNA adducts (70% of total DNA adducts formed by temozolomide) are efficiently repaired by the base excision repair (BER) pathway, and normally they contribute little to the cytotoxicity of temozolomide. Methoxyamine binds to AP sites produced by methylpurine glycosylase (MPG), the first step in BER processing. Methoxyamine-bound AP sites are refractory to AP endonuclease (APE, green circle) cleavage, resulting in the blockage of the BER pathway. This leads to strand breaks, disrupted replication, and increased cytotoxicity of temozolomide.
Phase 2 trials are currently under way. In addition to O6-BG, bearing mice tolerated dose escalation of O6-BG and BCNU or temozolomide or BCNU. By this approach, tumor-MGMT activity and methylating agent resistance is complex, sensitivity to methylating agents.

The strategy for genetically altered stem cells in other nonmalignant gliomas or other tumors and, at lower doses, as a selection strategy for improving the therapeutic efficacy of methylating agents toward improving the therapeutic efficacy of methylating agents. Furthermore, inactivation of MGMT by O6-BG fails to potentiate temozolomide-toxicity in MMR-deficient tumor cells. These results indicate that even large numbers of O6-meG DNA adducts are not cytotoxic in the absence of the MMR recognition, although they may be very mutagenic (30, 31). In addition, MGMT mutants acquired in MMR-deficient cell lines selected for resistance to O6-BG and BCNU are resistant to inactivation and sensitization of alkylating agents by O6-BG, indicating that MGMT mutations might emerge in human tumors after drug exposure leading to drug resistance (32, 33). These studies also indicate that the function of MMR is to prevent mutations and to sensitize genetically unstable cells to certain agents. When MMR is inactivated, however, cells exhibit a high mutation rate, and the relationship of drug resistance to alkylating agents with MGMT becomes even more complicated. Thus, MMR-proficient tumors are resistant to methylating agents on the basis of MGMT activity, whereas MMR-deficient tumors are drug-resistant regardless of MGMT activity (34).

Inactivation of MGMT coupled with interruption of base excision repair enhances therapeutic efficacy of alkylating agents. Therapeutic methylating therapeutic agents, such as temozolomide, from O6-meG (~6% of adducts formed), as well as 7-methylguanine (N7-meG; 70% of adducts formed), and 3-methyladenine (N3-mA; 9% of adducts formed). The latter adducts, N7-mG and N3-mA, are removed by the methylpurine glycosylase followed by AP endonuclease, the first two enzymes in the base excision repair (BER) pathway (Fig. 1C). Efficient BER repair minimizes the effect of these lesions in normal and tumor cells. Thus, these abundant N-methylated DNA adducts become highly cytotoxic only when BER is disrupted (35, 36). Most importantly, BER disruption is able to bypass other drug-resistant factors such as MMR defects and high MGMT activity.

Several previous studies have shown considerable efforts toward improving the therapeutic efficacy of methylating agents (37–40) by blocking BER using methoxamine, which binds the aldehyde group at the AP site and prevents AP endonuclease from clipping the backbone and thereby blocking the BER pathway. When combined with temozolomide or BCNU, methoxamine potentiated therapeutic efficacy in colon cancer and malignant glioma xenografts. Importantly, no additive systemic toxicity was noted in mice after receiving treatment with temozolomide or BCNU and methoxamine. Combinations of O6-BG, methoxamine, and a lower dose temozolomide or BCNU (1/3 of effective doses of agent used alone) showed significant antitumor effects without toxic death. Thus, modulation of MGMT, but not BER, requires a MMR-proficient background. The simultaneous targeting of MGMT and BER is a promising strategy to improve the therapeutic efficacy of alkylating agents in both MMR-deficient and MMR-proficient tumors.

It has recently become clear that MGMT may have a more complex function in the cell. The protein is phosphorylated, ubiquitinated, and may function in transcription regulation, cell cycle control, and apoptotic signaling. Whether MGMT inhibition will enhance drug efficacy, be of predictive value in patient chemotherapy selection, and become a target for other anticancer agents remain fruitful areas of discovery.

Translational Implications

Transfer of MGMT gene into bone marrow cells. Alkylating agents represent effective antitumor drugs. Unfortunately, these compounds are highly toxic to both malignant and normal cells. Bone marrow cells are especially sensitive to damage by alkylating agents because of reduced MGMT activity compared with tumor tissues. Thus, toxicity to the bone marrow is dose-limiting in cancer patients. MGMT has emerged as a lead target gene for the protection of bone marrow cells against the cytotoxic effects of many chemotherapeutic alkylating agents. Most gene transfer studies have evaluated two mutant forms of MGMT (G156A and P140K) that are resistant to O6-BG-induced inactivation up to 60-fold to >500-fold, respectively (25, 26). Retroviral and lentiviral gene transfer of mutant MGMT into hematopoietic stem cells followed by transplantation has shown a very high degree of stem cell selection and reconstitution under both ablative and myeloablative conditions in mouse and dog models. Importantly, gene transfer of mutant MGMT into hematopoietic stem cells confers significant levels of drug resistance to the combination of O6-BG and either temozolomide or BCNU. By this approach, tumor-bearing mice tolerated dose escalation of O6-BG and BCNU with considerable moderation of myelosuppressive, resulting in improved tumor response (27). Furthermore, because MGMT overexpression protects from leukemogenesis, it is possible that this approach would lessen the incidence of secondary leukemias after alkylating agent therapy (28). Clinical studies with gene transfer of mutant MGMT in CD34 cells collected from patients are ongoing to determine the gene transfer modeling and clinical applications (29). Potential applications include stem cell selection and protection in patients undergoing dose escalation of temozolomide for gliomas or other tumors and, at lower doses, as a selection strategy for genetically altered stem cells in other nonmalignant diseases.

DNA repair through MGMT and MMR pathways influences cell sensitivity to methylating agents. The relationship between MGMT activity and methylating agent resistance is complex, because O6-meG lesions not repaired by MGMT are processed by MMR (Fig. 1B). O6-meG preferentially pairs with thymine during DNA replicative synthesis and this mispair is bound by the mut S complex of MMR, which may function in transcription regulation, cell cycle control, and apoptotic signaling. Whether MGMT inhibition will enhance drug efficacy, be of predictive value in patient chemotherapy selection, and become a target for other anticancer agents remain fruitful areas of discovery.
References
Targeted Modulation of MGMT: Clinical Implications

Lili Liu and Stanton L. Gerson

Updated version

Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/12/2/328

Cited articles

This article cites 40 articles, 17 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/12/2/328.full#ref-list-1

Citing articles

This article has been cited by 18 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/12/2/328.full#related-urls

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, use this link
http://clincancerres.aacrjournals.org/content/12/2/328.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.