Histone deacetylases (HDAC) are enzymes that regulate gene transcription and cell signaling pathways through removal of acetyl groups from histone and nonhistone (e.g., p53, α-tubulin, and HSP90) proteins (1). Numerous changes in the structure or expression of HDACs or histone acetyltransferases resulting in aberrant gene transcription and cell signaling have been identified in cancer cells (1, 2). Further-
The primary objectives of this study were (a) to obtain serum pharmacokinetic data of vorinostat after single-dose and multiple-dose administration in patients with advanced cancer and (b) to obtain single-dose serum pharmacokinetic data of vorinostat in the fasted state and following a standard high-fat meal. A secondary objective was to evaluate the urinary excretion of intact drug and two inactive metabolites (vorinostat glucuronide and 4-anilino-4-oxobutanoic acid), both thought to be important human metabolites, following administration of oral vorinostat. In preclinical studies, these metabolites were not included in subsequent pharmacokinetic analyses. Upon resolution of an adverse experience, treatment with oral vorinostat was allowed to be restarted.

Materials and Methods

This open-label, nonrandomized phase I trial was conducted in accordance with the principles of the Declaration of Helsinki. The study protocol was approved by the Institutional Review Board of the University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, and written informed consent was obtained from all patients before enrollment.

Eligibility criteria. Patients ≥18 years of age with histologically confirmed malignancies (including solid tumors, hematologic malignancies, and lymphoma) that were metastatic or unresectable and for which standard curative or palliative measures did not exist or were no longer effective were eligible for enrollment. Patients must also have had an Eastern Cooperative Oncology Group performance status of ≤2 and a life expectancy of >3 months. Patients must not have had received other experimental HDAC inhibitors, high-dose chemotherapy with stem cell rescue, or radiation to >25% of total bone marrow. Other exclusion criteria included the following: history of unstable anemia, gastrointestinal resection, leukemia or lymphoma with central nervous system or testicular involvement, active central nervous system involvement of disease, uncontrolled intercurrent illness, active hepatitis B or C infection, HIV or known HIV-related malignancy, pregnancy, lactation, abnormal bone marrow function (leukocyte count <3,500/µL, absolute neutrophil count <1,500/µL, or <500/µL), and platelets <100,000/µL (solid tumor) or <50,000/µL (leukemia), hepatic insufficiency (total bilirubin >1.5 times the upper limit of normal, aspartate aminotransferase/alanine aminotransferase >2.5 times the upper limit of normal, prothrombin time/activated partial thromboplastin >1.2 times the upper limit of normal, or renal insufficiency (creatinine >2 times the upper limit of normal or creatinine clearance ≤60 mL/min).

Treatment schema and study design. Single-dose pharmacokinetics were assessed in the fasted state and after a high-fat meal. The standard high-fat meal contained ~900 to 1,000 total calories, including 500 to 600 calories of fat, 150 calories of protein, 250 calories of carbohydrates. Following continuous dosing for 22 days, multiple-dose pharmacokinetics were assessed after administration of a high-fat meal. Patients received a single oral dose of 400 mg vorinostat in the fasted state on the morning of day 1 and following a standard high-fat meal on the mornings of days 5 and 28. Patients received single daily oral doses of 400 mg vorinostat on days 7 through 27 and were advised to take these doses with food. Anti-emetics were not given prophylactically but were permitted for symptomatic relief of nausea and vomiting. Blood and/or urine samples for pharmacokinetic assays were collected before dose and at various times/intervals after dose on days 1, 5, 15, and 28 as described below. Completion of the study was defined as having completed day 28 dosing and pharmacokinetics. If not contraindicated, patients continued to receive vorinostat as part of an extension phase of the parent study or in a separate continuation protocol.

Treatment with vorinostat was allowed to be held for grade 3/4 drug-related adverse experiences (except grade 3 anemia or grade 3 thrombocytopenia without bleeding) and/or grade 3/4 non–drug-related adverse experiences at the investigator’s discretion. Patients who required any dose interruption or reduction, or discontinuation during the first 28 days of drug administration were not included in subsequent pharmacokinetic analyses. Upon resolution of an adverse experience, treatment with oral vorinostat was allowed to be restarted.
at either the original dose (400 mg, once daily) or a reduced dose of 300 mg once daily. A second reduction to 300 mg once daily for 5 days out of 7 was also allowed. The maximal number of dose reductions allowed per patient was two. Patients could continue on treatment until disease progression, intolerable toxicity, withdrawal of consent, or for other reasons related to the patient’s best interest, or at the investigator’s discretion.

Evaluation. Safety and tolerability were assessed by measurements of vital signs, performance status, 12-lead electrocardiograms, and routine laboratory safety tests (complete blood count, serum chemistries, coagulation profiles, and urinalyses). Electrocardiogram QTc interval changes were assessed by comparing pretreatment baseline values with those during treatment (at 2, 6, and 24 hours after dose on day 1; 2 hours after dose on day 5; before dose on day 15; and 2 and 24 hours after dose on day 28). All clinical adverse experiences were evaluated by the investigator with respect to intensity (National Cancer Institute Common Terminology Criteria, version 3.0), seriousness, action taken, and relationship to vorinostat.

The primary serum pharmacokinetic variables of vorinostat that were calculated included area under the curve (AUC), maximum concentration \(C_{\text{max}} \), and its time of occurrence \(T_{\text{max}} \), apparent terminal half-life \(t_{1/2,h} \), and accumulation ratio, as appropriate. The software package WinNonlin Enterprise version 5.0.1 was used for the calculations. The apparent terminal \(t_{1/2,h} \) was estimated from the best-fit variables of a single exponential to the log-linear portion of the serum concentration/time curve using unweighted linear regression. AUC\(_{0-24\ h}\) was calculated using the linear up/log down method up to the last measured concentration and the additional area estimated from that concentration and the value of apparent terminal \(t_{1/2,h} \) estimated for that administration. AUC\(_{0-24\ h}\) was calculated using the linear up/log down method. \(C_{\text{max}} \) and \(T_{\text{max}} \) were obtained by inspection of the concentration/time data. The accumulation ratio following multiple dosing was calculated from the ratio of AUC\(_{0-24\ h}\) values from the last dose of multiple dosing in the fed state to the single dose in the fed state. The geometric mean ratio of the AUC during a dosing interval at steady state (following the last daily dose) in the fed state to AUC\(_{0-24\ h}\) following a single dose in the fed state was calculated for vorinostat to assess pharmacokinetic linearity.

Urinary concentrations of vorinostat, O-glucuronide of vorinostat, and 4-anilino-4-oxobutanoic acid from individual collection intervals were used to calculate the total recovery of vorinostat and these two metabolites in urine, expressed as percentage of the dose.

Statistical analysis. The individual values of vorinostat AUC and \(C_{\text{max}} \) were natural log-transformed and evaluated in mixed effect models, which contained day as a fixed effect and subject as a random effect. The day effect had three levels (days 1, 5, and 28), corresponding to single dose fasted, single dose fed, and multiple dose fed treatments, respectively. For AUC\(_{0-24\ h}\) analysis, only day 1 and 5 data were included in the model because day 28 data were not available. For AUC\(_{0-24\ h}\) and \(C_{\text{max}} \) analyses, all data (days 1, 5, and 28) were included in the model. For the linearity ratio of AUC\(_{0-24\ h}\) multiple dose fed/AUC\(_{0-8}\) single dose fed, AUC\(_{0-8}\) on day 1 and day 5 and AUC\(_{0-24\ h}\) on day 28 data were included.

Two-sided 95% confidence intervals for the true means of log AUC and log \(C_{\text{max}} \) were calculated using the least-squares means and the mean square error from the mixed models. These limits were exponentiated to obtain the corresponding 95% confidence intervals for the true geometric means for AUC and \(C_{\text{max}} \).
log AUC and log C_{max} were exponentiated to obtain the estimated geometric means. Similarly, the two-sided 90% confidence intervals for the true geometric mean ratios (AUC$_{0-8}$ single dose fed/AUC$_{0-8}$ single dose fasted, AUC$_{0-24}$ h multiple dose fed/AUC$_{0-24}$ h single dose fed, C_{max} single dose fed/C_{max} single dose fasted). The least-squares means for the differences in log AUC or log C_{max} were exponentiated to obtain the estimated geometric mean ratios. Ps were also obtained from the models.

The individual values of T_{max} on days 1, 5, and 28 were given ranks. Ps of the comparisons (single dose fed/single dose fasted and multiple dose fed/single dose fed) were obtained by applying the same mixed effect model used for C_{max} to the ranks of T_{max}. The individual values of apparent $t_{1/2}$ on days 1, 5, and 28 were inverse transformed. Harmonic mean on each day was obtained from data only on that day. Ps for the comparison (single dose fed/single dose fasted) were obtained by applying the same mixed effect model used for C_{max} on the inverse-transformed $t_{1/2}$. No missing values were imputed for the pharmacokinetic analyses.

Results

The study was initiated on November 18, 2004 and completed on July 29, 2005.

Patient disposition. The baseline characteristics of the 23 patients enrolled in this study are shown in Table 1. Seventy-eight percent of the patients had a study diagnosis of stage IV cancer, and only one did not have metastatic disease at baseline. All had received at least two prior systemic anticancer therapies, and almost half had received prior radiation therapy. Fourteen patients completed the study and continued on vorinostat treatment in the continuation phase of this study or in a separate continuation protocol. Nine patients were discontinued from the study before completing day 28 pharmacokinetics for one of the following reasons: progressive disease ($n = 1$), clinical adverse experiences ($n = 7$), and withdrawal of consent ($n = 1$).

Adverse experiences. The most common vorinostat-related adverse experiences included nausea (52%), anorexia (48%), and fatigue (39%; Fig. 1). These experiences were mostly mild to moderate in severity. Anorexia (13%) and thrombocytopenia (13%) were the most commonly reported grade 3 vorinostat-related adverse experiences and typically resolved upon dose reduction, dose interruption, or no action taken with a median time to resolution of 8 days. There were no grade 4 adverse experiences attributed to vorinostat in this study. There were no deaths on study.

Interruptions, discontinuations, and dose reductions due to adverse experiences. Seven patients had treatment with vorinostat interrupted and discontinued from the study due to adverse experiences. Five of these patients had treatment interrupted due to vorinostat-related adverse experiences (grade 3 thrombocytopenia, grade 3 thrombocytopenia and grade 3 asthenia, grade 3 thrombocytopenia and grade 2 increased creatinine, grade 2 thrombocytopenia and grade 3 anorexia, and grade 3 increased blood creatinine). Although two of these interruptions were not necessary per protocol, vorinostat treatment was interrupted in the best interest of these patients. Two patients had treatment interrupted due to non–vorinostat-related adverse experiences (grade 3 nausea and grade 3 vomiting and grade 3 bacteremia).

There were a total of three dose reductions. Two of the seven patients described above had their dose of study drug reduced to 300 mg once daily because of vorinostat-related grade 3 thrombocytopenia, and one patient was dose reduced because of non–vorinostat-related grade 3 bacteremia.

Pharmacokinetics. A summary of the pharmacokinetic variables for vorinostat across all treatments is presented in Table 2. A high-fat meal was associated with a small increase in the extent of vorinostat absorption (AUC$_{0-8}$ increased 38%; $P < 0.001$) and a modest decrease in the rate of vorinostat absorption.
absorption (2.5-hour delay in T_{max}; Fig. 2A). However, these small effects are not expected to be clinically meaningful. C_{max} was not statistically different following vorinostat dosing in the fed and fasted states.

Through concentrations following multiple dosing were below the limit of quantification in most patients, which is consistent with the observed short apparent $t_{1/2}$. Multiple-dose pharmacokinetic data showed that vorinostat plasma concentration time profiles following 22 days of daily dosing were similar to those observed following a single dose. The AUC accumulation ratio (multiple dose AUC$_{0-24 \ h}$/single dose AUC$_{0-24 \ h}$) was 1.21 ($P = 0.019$). No accumulation was expected with once daily dosing; however, it is possible that intrapatient variability contributed to a slightly higher ratio. The T_{max} after single and multiple doses were comparable (Table 2; $P = 0.869$; Fig. 2B).

Regarding the two inactive metabolites of vorinostat, mean serum exposures (AUC) of the O-glucuronide of vorinostat and 4-anilino-4-oxobutanoic acid metabolites were on average 3- to 4-fold and 10- to 13-fold higher, respectively, than that of vorinostat (Fig. 2C). The apparent terminal half-life of the O-glucuronide of vorinostat metabolite (~1.8 hours) was similar to that of vorinostat, whereas that of the 4-anilino-4-oxobutanoic acid metabolite was much longer (~6 to 9 hours). Consistent with its longer half-life, 4-anilino-4-oxobutanoic acid accumulated to some extent with multiple dosing, whereas the O-glucuronide of vorinostat did not (Fig. 2C).

Recovery of vorinostat unchanged in urine was low (<1% of the dose; Table 3). Recovery of the two inactive vorinostat metabolites in urine was more substantial: ~10% to 18% as the O-glucuronide of vorinostat and ~24% to 36% as 4-anilino-4-oxobutanoic acid. Total recovery of vorinostat and these two inactive metabolites was ~35% to 52% of the dose.

Exploratory analyses. An analysis of electrocardiograms at baseline and at various times during vorinostat treatment suggested that vorinostat did not increase QTc intervals to a clinically meaningful extent. The maximum QTc change from baseline was ≤30 ms in 18 patients and ≥30 to ≤60 ms in 5 patients. None of the 23 patients had a QTc change >60 ms, and there were no QTc prolongation adverse experiences during the study. No patient had a QTc interval of ≥500 ms. Two patients had a maximum QTc interval of ≥480 to <500 ms occur on day 1 at 6 hours after dose; neither patient had cardiac-related adverse experiences.

Another analysis compared the frequency of the most commonly reported grade ≥2 drug-related adverse experiences with vorinostat AUC. The patients with AUC$_{0-\infty}$ below the median at day 5 experienced five grade ≥2 vorinostat-related adverse experiences, whereas those with AUC$_{0-\infty}$ above the median at day 5 experienced 19 grade ≥2 vorinostat-related adverse experiences. Furthermore, five of the six patients with the highest day 5 AUC$_{0-\infty}$ required a dose interruption or reduction due to a drug-related adverse experience that prevented them from completing the study. The most frequent of these experiences were thrombocytopenia and anorexia.

There were no significant associations between AUC or C_{max} and gender, race, age, body surface area, or weight. Therefore, normalization of dosing based on these factors may not be necessary.

Activity. Fourteen patients who completed this study continued on vorinostat treatment in an extension phase of the study or in a separate continuation trial. One of these patients (with stage IV granulosa cell ovarian cancer) achieved a partial response by the Response Evaluation Criteria in Solid Tumors (16) as shown by a substantive reduction in abdominal disease. Response was noted after 11 months of treatment with current treatment duration of ≥18 months (Fig. 3). Before receiving vorinostat, the patient had received bleomycin with cisplatin and etoposide, doxorubicin, tamoxifen, carboplatin, leuprolide, topotecan, paclitaxel, and an experimental medication. Another patient (with stage IV breast cancer) has maintained stable disease for ≥15 months. A third patient (with stage IV non–small cell lung cancer) maintained stable disease for 10.8 months.

Discussion

Consistent with the results of previous trials with oral vorinostat (10, 11, 13, 14), short-term administration of 400 mg vorinostat given once daily was generally well tolerated with the most common vorinostat-related adverse experiences being nausea, anorexia, fatigue, increased blood creatinine, and vomiting. Overall, these experiences were generally mild to moderate in severity. Unlike certain other HDAC inhibitors (17–22), vorinostat was not associated with clinically significant cardiac or neurologic toxicity in this study.

Multiple-dose pharmacokinetic data showed that vorinostat plasma concentration time profiles following 22 days of daily

<table>
<thead>
<tr>
<th>Dose</th>
<th>Diet</th>
<th>N</th>
<th>Analyte</th>
<th>Urinary recovery, mean % dose (SD)</th>
<th>Total recovery (% dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 mg single dose</td>
<td>Fasted</td>
<td>22</td>
<td>Vorinostat</td>
<td>0.2 (0.1)</td>
<td>34.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OG-V</td>
<td>10.7 (5.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4A40A</td>
<td>24.0 (8.6)</td>
<td></td>
</tr>
<tr>
<td>400 mg single dose</td>
<td>Fed</td>
<td>21</td>
<td>Vorinostat</td>
<td>0.3 (0.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OG-V</td>
<td>18.2 (6.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4A40A</td>
<td>31.9 (10.6)</td>
<td></td>
</tr>
<tr>
<td>400 mg once daily × 22 d</td>
<td>Fed</td>
<td>12</td>
<td>Vorinostat</td>
<td>0.4 (0.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OG-V</td>
<td>15.9 (5.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4A40A</td>
<td>36.0 (8.6)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: 4A40A, 4-anilino-4-oxobutanoic acid; OG-V, O-glucuronide of vorinostat.
dosing were similar to those observed following a single dose. Compared with a single dose, there was a slight accumulation of vorinostat after administration of multiple doses (once-daily dosing) with an average AUC₀–₂₄ h accumulation ratio of 1.21. With regard to the effect of taking vorinostat with food, a high-fat meal was associated with a small increase in the extent of absorption of vorinostat (AUC₀–₈ increased 38%) and a modest decrease in the rate of absorption (2.5-hour delay in Tₘₐₓ). Because the small effect of food on the pharmacokinetics of vorinostat is not expected to be clinically meaningful, these data support the schedule of once daily dosing with food, which was a recommended schedule and administration method in other studies (10, 13).

The elimination of vorinostat occurred primarily through metabolism, with <1% of an given dose recovered intact in urine. Two inactive metabolites (O-glucuronide of vorinostat and 4-anilino-4-oxobutanoic acid) circulated to a substantially greater extent than vorinostat and accounted for up to ~50% of the dose of vorinostat recovered in urine.

Pharmacokinetic analyses indicated an ~3- to 4-fold variability in systemic exposure in patients given a 400-mg oral dose of vorinostat in the presence or absence of food. An exploratory analysis comparing vorinostat day 5 AUCₐ₀ₐ₈ with the frequency of specific drug-related grade ≥2 adverse experiences provided some evidence that higher vorinostat exposures were associated with an increased incidence of drug-related adverse experiences. Patients with a day 5 AUCₐ₀ₐ₈ above the median had a nearly four times greater incidence of grade ≥2 adverse experiences than patients whose day 5 AUCₐ₀ₐ₈ fell below the median. Moreover, five of the six patients with the highest day 5 exposures required either a dose interruption or reduction due to drug related adverse experiences and did not complete the study. The three patients with the longest duration of vorinostat treatment had day 5 AUCₐ₀ₐ₈ below the median.

Although antitumor activity was not an end point of the study, there was evidence of anticancer activity of vorinostat shown in one patient with metastatic ovarian cancer who achieved and maintained a partial response and has been receiving vorinostat for >1.5 years. Two other patients, one with stage IV breast cancer and one with stage IV non–small cell lung cancer, have maintained stable disease for >10 months.

In conclusion, a high-fat meal has a small but statistically significant effect on vorinostat pharmacokinetics. However, this effect is not anticipated to be clinically relevant. Additionally, the concentration/time profiles of this drug are qualitatively similar after single and multiple doses. The results of this study support continued investigation of 400 mg vorinostat given daily. The efficacy and safety of oral vorinostat in advanced cancer patients are being further evaluated in ongoing phase II and III trials.

References

15. Du L, Musson DG, Wang AQ. High turbulence liquid chromatography online extraction and tandem mass spectrometry for the simultaneous determination of suberoylanilide hydroxamic acid and its two

A Study to Determine the Effects of Food and Multiple Dosing on the Pharmacokinetics of Vorinostat Given Orally to Patients with Advanced Cancer

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/12/23/7039

Cited articles
This article cites 21 articles, 10 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/12/23/7039.full#ref-list-1

Citing articles
This article has been cited by 23 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/12/23/7039.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.