Abstract

Purpose: CYP1B1 and CYP1A1 expression is up-regulated by activation of the aryl hydrocarbon receptor (AhR) through binding of ligands such as cigarette smoke components. We examined the association between AhR, CYP1B1, and CYP1A1 expression in noninvasive bronchioloalveolar carcinomas (BAC) and lung adenocarcinomas and investigated the effects of AhR overexpression on cell physiology.

Experimental Design: AhR, CYP1B1, and CYP1A1 expression was examined in 107 lung adenocarcinomas and 57 BAC by immunohistochemistry. AhR expression in lung adenocarcinoma H1355 cells was stably reduced by RNA interference (RNAi). AhR, CYP1B1, and CYP1A1 expression was examined using real-time reverse transcription-PCR. Cell physiology was evaluated by measuring anchorage-independent growth and intracellular reactive oxygen species.

Results: Expression of AhR and CYP1A1 was associated in smoking adenocarcinoma patients, whereas expression of AhR and CYP1B1 was associated regardless of smoking status. The level of CYP1B1, but not CYP1A1, was positively associated with AhR overexpression in BAC. 2,3,7,8-Tetrachlorobenzop-dioxin-induced CYP1A1/1B1 expression was reduced in AhR RNAi clones. In the absence of 2,3,7,8-tetrachlorobenzop-dioxin, CYP1B1 mRNA levels were reduced in AhR RNAi clones, whereas CYP1A1 mRNA levels were barely detectable. Furthermore, anchorage-independent growth and intracellular oxidative stress were significantly reduced in AhR RNAi cells.

Conclusions: In the absence of exogenous AhR ligands (such as cigarette smoke components), AhR overexpression up-regulated the expression of CYP1B1 in the early stage of lung adenocarcinoma. Elevated AhR expression in lung adenocarcinoma cells could increase intracellular oxidative stress and promote cell growth, implying that disrupting AhR expression might prevent the early development of lung adenocarcinomas.

Lung cancer is the most common cause of cancer incidence and mortality worldwide (1). The incidence of lung adenocarcinomas has been increasing worldwide, whereas the prevalence of cigarette smoking is declining (2). Thus, early prevention and treatment are important issues for lung adenocarcinoma. Identifying molecular changes in the early stages of lung adenocarcinoma will greatly facilitate these aims.

Cytochrome P450 1B1 (CYP1B1) belongs to the cytochrome P450 family 1 and is a major member of the extrahepatic xenobiotic-metabolizing CYP enzyme family (3). CYP1B1 has been shown to activate several human promutagens and procarcinogens (4), including 17β-estradiol, which is converted by CYP1B1 into a carcinogenic metabolite, 4-hydroxyestradiol (3). Several studies have shown that CYP1B1 is overexpressed in malignant cells in the kidney, breast, brain, and lung, but has only limited expression in the corresponding normal cells (5). Furthermore, CYP1B1 overexpression occurs in colorectal adenomas (6) and premalignant prostate tumors (7). Up-regulation of CYP1B1 in premalignant and malignant lesions might imply that CYP1B1 is involved in the early development of cancer. If this is the case, differential expression of CYP1B1 between...
adenocarcinoma tissues, CYP1A1 expression and a history of cell physiology of lung adenocarcinoma cells. In human lung as well as to elucidate the function of AhR overexpression in the early stage of adenocarcinoma (20). The objectives of this study were to evaluate this hypothesis by comparing AhR, CYP1B1, expression up-regulates CYP1B1 expression. Bronchioloalveolar tumors, we hypothesized that AhR overexpression occurs in the to initiate and/or augment certain pathologic changes. It is possible that high expression levels of normal AhR may also disturb the homeostasis of certain biological functions such as stomach tumors and inflammatory skin lesions (18, 19). Loss-of-function studies for AhR indicate that AhR might have physiologic functions (17). Expressing a constitutively active form of AhR by deleting a motif induces several adverse effects, including cytochrome P450 1A1 (CYP1A1) and CYP1B1 (10, 11). Exposure to cigarette smoke, which contains various polycyclic aromatic hydrocarbons, was shown to increase CYP1A1 and CYP1B1 expression in normal lung tissues and cells (12, 13). Previously, we reported that AhR is overexpressed in lung adenocarcinoma, which correlates with CYP1B1 expression (14, 15). However, more than 50% of lung adenocarcinoma patients in Taiwan are nonsmokers (16). To understand the mechanism of elevated CYP1B1 expression in lung adenocarcinoma cells, it is necessary to clarify the role of exposure to AhR ligands, such as cigarette smoke components, in CYP1B1 expression in lung adenocarcinoma.

Loss-of-function studies for AhR indicate that AhR might have physiologic functions (17). Expressing a constitutively active form of AhR by deleting a motif induces several adverse effects, such as stomach tumors and inflammatory skin lesions (18, 19). It is possible that high expression levels of normal AhR may also disturb the homeostasis of certain biological functions to initiate and/or augment certain pathologic changes. Because a high level of CYP1B1 was detected in premalignant tumors, we hypothesized that AhR overexpression occurs in the early stages of lung adenocarcinoma and that this overexpression up-regulates CYP1B1 expression. Bronchioloalveolar carcinomas (BAC) are noninvasive and considered to be an early stage of adenocarcinoma (20). The objectives of this study were to evaluate this hypothesis by comparing AhR, CYP1B1, and CYP1A1 expression in BAC and lung adenocarcinoma, as well as to elucidate the function of AhR overexpression in the cell physiology of lung adenocarcinoma cells. In human lung adenocarcinoma tissues, CYP1A1 expression and a history of cigarette smoking were used as indicators for AhR ligand exposure. To study the role of AhR in CYP1A1 and CYP1B1 expression, AhR expression was modulated by RNA interference (RNAi) techniques in lung adenocarcinoma cells. Data generated from this study provide evidence that AhR and CYP1B1 are potential targets for chemoprevention or therapy of lung adenocarcinoma.

Materials and Methods

Subjects. One hundred seven lung tissue specimens were collected from the Department of Pathology, Chung Shan Medical University Hospital and Veterans General Hospital-Kaohsiung, Taiwan, between 1998 and 2004. The Chung Shan Institutional Review Board approved this study protocol and informed consent forms were obtained from all patients from whom specimens were collected. These specimens were obtained from lung cancer patients by wedge resection, lobectomy, or pneumonectomy. Formalin fixation, paraffin embedding, and routine staining with H&E, morphology was diagnosed according to the WHO classification (21). All cases were categorized as adenocarcinoma and by histologic subtype, including 22% acinar, 3% papillary, 4% solid, and 71% mixed subtype. Pure BAC specimens were not included in this study. Among these adenocarcinoma, 57 cases showed BAC mixed with invasive adenocarcinoma. A total of 58 males and 49 females were recruited. Smoking status as either smoker or nonsmoker was determined. A nonsmoker was defined as a subject who had never smoked. Individuals who currently or had smoked, regardless of smoking history, were counted as smokers. The majority (73 of 103, 71%) of patients were nonsmokers; smoking history was not available for four patients.

Immunohistochemistry. Immunohistochemistry was done as previously described (15). Briefly, the primary antibodies included anti-AhR (1:90 dilution; Biomol, Plymouth Meeting, PA), anti-CYP1B1 (1:1500 dilution; clone WB-1B1, Gentest Corp., Woburn, MA), and anti-CYP1A1 (1:100 dilution; clone H-70, Santa Cruz Biotechnology, Santa Cruz, CA). After incubation with the primary antibodies overnight at 4°C, a streptavidin-biotin peroxidase method was carried out according to the manufacturer’s instructions (Universal LSAB2 kit, DakoCytomation, Glostrup, Denmark). Finally, these sections were counterstained with hematoxylin.

Evaluation of protein expression of AhR, CYP1B1, and CYP1A1 in lung tissue. Immunoreactivities of AhR, CYP1B1, and CYP1A1 were evaluated via immunostaining of the lung tumor and bronchiolar cells (Fig. 1) in the tissues examined. Because AhR is abundant in the basal cells of hyperplastic prostates (14) and CYP1B1 is constitutively expressed in the smooth muscle cells of the vascular and bronchiolar walls (15), vascular or bronchiolar walls in lung tissues and adenocarcinoma were compared as control.

Fig. 1. Immunohistochemical analysis of AhR, CYP1A1, and CYP1B1 in lung adenocarcinoma. A, cytoplasmic AhR staining in the basal cells of hyperplastic prostate was used as a positive control. B, AhR expression was detected in the cytoplasm of adenocarcinoma cells at an intensity similar to the positive control. C, adenocarcinoma cells showed positive cytoplasmic CYP1A1 staining as compared with the CYP1A1-negative stroma. D, the cytoplasmic CYP1B1 immunostaining in these adenocarcinoma cells was similar to the adjacent bronchiolar wall; adenocarcinoma cells with this intensity of CYP1B1 immunostaining were defined as high expressers. The bronchiolar epithelial cells also showed high CYP1B1 expression. P, prostate; T, adenocarcinoma; S, stroma; B, bronchiolar wall. Bar, 50 μm.
A total of 500 examined cells was then calculated. All cases showed negative CYP1A1 immunoreactivity. CYP1A1 immunostaining in bronchiolar cells was compared with those in the adjacent stoma that served as low expressers. For CYP1A1 evaluation, immunoreactivity of the tumor or stoma was rated as high expressers. Likewise, those tissues with CYP1B1 immunointensities higher than those in the positive controls, they were rated as high expressers when >10% of the adenocarcinoma cells exhibited cytoplasmic staining intensities that were stronger than those of the adjacent stroma (Fig. 1C). Four cases were missing a smoking history.

Table 1. Association between expression of AhR and CYP1B1 or CYP1A1 in lung adenocarcinoma stratified by smoking history

<table>
<thead>
<tr>
<th>AhR</th>
<th>CYP1B1 expression</th>
<th>CYP1A1 expression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Total (n = 107)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>39</td>
<td>19</td>
</tr>
<tr>
<td>High</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td>Smokers (n = 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>High</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Nonsmokers (n = 73)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>High</td>
<td>12</td>
<td>19</td>
</tr>
</tbody>
</table>

NOTE: AhR, CYP1B1, and CYP1A1 proteins were detected with immunohistochemical methods. Expression levels were calculated as of cases showing cells with cytoplasmic immunostaining scored according to staining intensity. For AhR immunohistochemistry, the specimen was scored as a high expresser when >10% of the adenocarcinoma cells exhibited cytoplasmic staining intensities that were equal to or higher than those of the prostate (positive control, Fig. 1A). For CYP1B1 immunohistochemistry, the specimen was scored as a high expresser when >10% of the adenocarcinoma cells exhibited cytoplasmic staining intensities that were equal to those of adjacent bronchiolar walls (bronchiolar wall, Fig. 1D). For CYP1A1 immunohistochemistry, the specimen was considered to be CYP1A1 positive when >10% of the adenocarcinoma cells exhibited cytoplasmic staining intensities that were stronger than those of the adjacent stroma (Fig. 1C). Four cases were missing a smoking history.

P < 0.05, Fisher’s exact test.
bovine serum and layered onto a 1.5-mL bed of RPMI1640 containing 0.5% agarose and 10% fetal bovine serum in a six-well plate. Plates were incubated at 37°C for 3 weeks. Cell clones >50 μm in diameter were counted.

Reactive oxygen species measurement. Intracellular reactive oxygen species were detected using 2',7'-dichlorofluorescein diacetate as previously described (28). A flow cytometer (Becton, Dickson and Company, San Jose, CA) was used to detect 2',7'-dichlorofluorescein formed by the reaction of 2',7'-dichlorodihydrofluorescein with intracellular peroxides. Relative levels of intracellular reactive oxygen species were determined by measuring the mean value of fluorescence per cell.

Statistical analysis. Trends for the expression levels in bronchiolar epithelium, BAC, and adenocarcinoma were determined by χ² for linear trend tests (Epi Info 2000 software statistical package, Centers for Disease Control and Prevention, Atlanta, GA). Differences in data were considered statistically significant at P < 0.05. Fisher’s exact test was used for the expression of differences between groups (SPSS 8.0 software statistical package, SPSS, Inc., Chicago, IL). Data between groups in cell culture experiments were compared using the Student’s t test.

Results

Association between AhR, CYP1B1, and CYP1A1 expression in human lung adenocarcinoma. Among 107 human lung adenocarcinoma, 49 were AhR high expressers, 52 were CYP1B1 high expressers, and 40 expressed CYP1A1 (Table 1). CYP1B1 and CYP1A1 expression each associated with AhR expression. After stratification by smoking status, the association between AhR and CYP1B1 remained for both smokers and nonsmokers. However, the association between AhR and CYP1A1 was only found in smokers. These results indicate that smoking status influenced the association between AhR and CYP1A1, but not between AhR and CYP1B1.

AhR, CYP1B1, and CYP1A1 expression trends in adjacent bronchiolar epithelia, mixed BAC, and invasive adenocarcinoma. BAC has been proposed to be a noninvasive neoplasia, eventually progressing to invasive adenocarcinoma. Among 107 adenocarcinoma, 57 cases were adenocarcinoma showing BAC mixed with invasive adenocarcinoma. We used these mixed-type specimens to investigate the association and trends of AhR, CYP1B1, and CYP1A1 expression among adjacent normal bronchiolar epithelia, BAC, and invasive adenocarcinoma. The fraction of cases with high expression levels of AhR and CYP1B1 was greatest (at 56% of the specimens showing high expression) for the invasive adenocarcinoma component of the mixed-type specimens (Table 2). In addition, elevated AhR and CYP1B1 expression was more common in the BAC (noninvasive) than in the adjacent bronchiolar epithelia. The percentage of specimens scored as expressing CYP1A1 in adenocarcinoma was 37%, only slightly higher than the adjacent bronchiolar epithelia. BAC exhibited the lowest CYP1A1 expression at 12%. Accordingly, the expression levels of AhR and CYP1B1, but not CYP1A1, increased in the order of adjacent bronchiolar

<table>
<thead>
<tr>
<th>Mixed adenocarcinoma</th>
<th>Cases* (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High AhR†</td>
<td>High CYP1B1†</td>
<td>Positive CYP1A1†</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>32 (56)</td>
<td>32 (56)</td>
<td>21 (37)</td>
</tr>
<tr>
<td>BAC</td>
<td>27 (47)</td>
<td>29 (51)</td>
<td>7 (12)</td>
</tr>
<tr>
<td>Adjacent bronchiolar epithelium</td>
<td>6 (11)</td>
<td>16 (28)</td>
<td>14 (25)</td>
</tr>
</tbody>
</table>

*Cases represent the number of cases with high AhR, high CYP1B1, or positive CYP1A1 expression in each group. AhR, CYP1B1, and CYP1A1 proteins were detected by immunohistochemical methods. The expression levels were calculated as the percentage of cases showing cells with cytoplasmic staining scored as previously described in Table 1 as well as in Materials and Methods.
†P < 0.05, χ² for trend test.
‡Six specimens of BAC were not done for CYP1A1 immunohistochemistry.
§Five specimens of adjacent bronchiolar epithelium were not done for CYP1B1 immunohistochemistry.
epithelia < BAC < invasive adenocarcinoma (Table 2). These results suggest that AhR and CYP1B1 overexpression might be involved in the development of mixed BAC and adenocarcinoma.

Responsiveness of AhR to the ligand benzo(a)pyrene in lung adenocarcinoma H1355 cells. AhR expression and responsiveness to benzo(a)pyrene, an AhR ligand, were compared in several human lung cancer cell lines to choose an appropriate model cell line for further experimentation. Among the five lung cancer cell lines tested, lung adenocarcinoma H1355 cells expressed the highest level of AhR protein (Fig. 2A). Benzo(a)pyrene consistently induced the highest level of aryl hydrocarbon hydroxylase activity in H1355 cells (Fig. 2B). CYP1B1 protein, present at a detectable level in solvent-treated H1355 cells, was greatly increased in benzo(a)pyrene–treated H1355 cells (Fig. 2C). H1355 cells appeared to express high levels of AhR and were highly responsive to AhR ligands. Therefore, H1355 cells were used for subsequent RNAi experiments.

Isolation of stable AhR RNAi clones in H1355 cells with reduced AhR expression. We introduced a short hairpin RNA for AhR into H1355 cells to knock down AhR levels. To measure the reduction in AhR expression, AhR mRNA and protein levels as well as 2,3,7,8-tetrachlorobenzo-p-dioxin (TCDD)–induced CYP1A1 and CYP1B1 mRNA levels were measured. Three stable AhR RNAi clones were isolated: si1414-1, si1414-6, and si1414-7. HU6-2 clone was the vector control cells. AhR mRNA and protein levels in si1414-6 and si1414-7 cells were considerably reduced to 30% of wild-type and HU6-2 cell levels (Fig. 3A and B). However, AhR mRNA and protein levels in si1414-1 cells were only reduced to 60% of wild-type and HU6-2 cell levels (Fig. 3A and B). Consistent with reduced AhR expression, 2,3,7,8-tetrachlorobenzo-p-dioxin–induced CYP1A1 and CYP1B1 expression was greatly reduced in si1414-6 and si1414-7 cells and moderately reduced in si1414-1 cells (Fig. 3C).

Effects of AhR RNAi on constitutive CYP1B1 and CYP1A1 expression. Some components of cigarette smoke are AhR agonists, and cigarette smoke has been shown to induce CYP1A1 and CYP1B1 expression in lung cells and tissues (12, 13). However, we observed a positive association between AhR and CYP1B1 expression in nonsmoking patients. Therefore, it was important to evaluate the role of AhR expression in basal expression levels of CYP1B1 and CYP1A1. In the absence of exogenously added AhR ligands, CYP1B1 mRNA and protein levels correlated positively with AhR levels. Both si1414-6 and si1414-7 cells showed reduced CYP1B1 expression of ~30% of control cells, and CYP1B1 expression in si1414-1 cells was reduced to 80% of control cells (Fig. 3B and D). However, constitutive CYP1A1 mRNA levels were extremely low and similar between control cells and AhR RNAi clones (Fig. 3D). These results suggest that AhR expression regulates CYP1B1 expression in lung adenocarcinoma cells when exogenous ligands are absent.

We attempted to identify CYP1A1 and CYP1B1 in lung tissues by Western blotting. CYP1B1 was readily detected.
but CYP1A1 was only weakly detected with the antibody used in our study. Similarly, CYP1A1 was barely detectable in the lung cancer cell lines with Western immunoblotting. Comparing the real-time reverse transcription-PCR data, we believe that the levels of CYP1A1 were much lower than those of expressed CYP1B1. Furthermore, the anti-CYP1A1 used in our study might be less sensitive than anti-CYP1B1.

Roles of AhR expression in the cell physiology of lung adenocarcinoma H1355 cells. Our previous (14) and present studies showed that AhR is overexpressed in lung adenocarcinoma. Some possible roles of AhR in lung adenocarcinoma cells were evaluated by measuring cell growth rate and anchorage-independent growth as well as intracellular reactive oxygen species. We found that cell growth rate was only slightly reduced in AhR RNAi–transfected clones (si1414-6 and si1414-7; Fig. 4A). Correlating with AhR levels, anchorage-independent growth was significantly reduced in si1414-1 cells (with a median level of AhR expression) and greatly reduced in si1414-6 and si1414-7 cells (with low levels of AhR expression; Fig. 4B). Importantly, levels of intracellular reactive oxygen species also strongly correlated with AhR levels in that they were moderately reduced in si1414-1 cells and substantially reduced in si1414-6 and si1414-7 cells (Fig. 4C and D). These results suggest that elevated AhR expression may enhance anchorage-independent growth and increase intracellular reactive oxygen species levels in lung adenocarcinoma.

Discussion

Whereas CYP1B1 is overexpressed in lung adenocarcinoma, its expression in lung is also induced by cigarette smoke. It remains to be clarified whether CYP1B1 overexpression in lung adenocarcinoma is a consequence of cigarette smoking. After controlling for history of cigarette smoking and when compared with CYP1A1 expression, we concluded that CYP1B1 expression was not dependent on cigarette smoking in lung adenocarcinoma. By comparing the AhR expression in lung adenocarcinoma and modulating AhR expression in adenocarcinoma cells, we further showed that AhR overexpression up-regulated CYP1B1 expression in lung adenocarcinoma.

Unlike CYP1B1 overexpression in a variety of cancers, AhR overexpression has only been reported in lung adenocarcinoma (14) and pancreatic cancer (29). We did not observe AhR overexpression when CYP1B1 was overexpressed in colorectal cancer (6). Therefore, AhR overexpression may be characteristic of only a few cancers including lung adenocarcinoma. Some of our data suggest that high levels of AhR in lung adenocarcinoma are not constitutively active but inducible. First, we observed increased immunostaining for AhR in the cytoplasm of tumor cells. Second, AhR expression correlated with CYP1A1 induction, in lung adenocarcinoma cell lines. The effects of AhR overexpression, anchorage-independent growth and reactive oxygen species accumulation, were partially elucidated in this study. It has been shown that reactive oxygen species generation and accumulation are elevated in cancer cells (30), and this may increase cell proliferation. Uncontrolled cell growth or hyperproliferation is an early phenotype of tumor cells. In this study, we found that AhR overexpression occurred in BAC, which is an early stage of adenocarcinoma. These data suggested that AhR
overexpression is involved in the early development of lung adenocarcinoma. Furthermore, AhR overexpression was beneficial to tumor cell growth.

Cytochrome P450 members catalyze the oxidation of endogenous and exogenous lipophilic compounds. Poor coupling of the P450 catalytic cycle yields active oxygen species, such as superoxide anion (31, 32). Because CYP1B1 expression is positively correlated with AhR expression in lung adenocarcinoma tissues and cells, it is plausible that elevated CYP1B1 activity enhances reactive oxygen species generation in cells highly expressing AhR. Further studies are needed to verify this hypothesis. In addition to cytochrome P450, AhR also regulates phase II drug-metabolizing enzymes and cell growth–related genes (33, 34). Expression of reactive oxygen species–related genes should also be altered following AhR overexpression.

Both CYP1B1 and AhR are potential targets for chemoprevention. AhR-mediated CYP1A1 and CYP1B1 activities convert polycyclic aromatic hydrocarbons into carcinogenic epoxide metabolites. Many flavonoids have been suggested as chemopreventives because they antagonize AhR activation, inhibit CYP1A1/CYP1B1 activity, or prevent polycyclic aromatic hydrocarbon–induced genotoxicity (35–39). Moreover, CYP1B1 also provides a therapeutic target for potential anticancer drugs that can be metabolically activated by CYP1B1 (40). Here, we report that AhR is overexpressed in lung adenocarcinoma. Some AhR agonists inhibit the growth of pancreatic cancer cells that express high levels of AhR (29). Therefore, AhR may also be considered to be a therapeutic target for lung adenocarcinoma in the future.

In our study, AhR reduction diminished the basal level of CYP1B1 mRNA, but not that of CYP1A1, in H1355 cells. Furthermore, AhR expression failed to correlate with CYP1A1 expression in lung adenocarcinoma among nonsmoking patients. The intrinsic properties of enhancers at CYP1A1 and CYP1B1 promoters might be responsible for the differences in gene expression in response to the exogenously ligand-free AhR activity. Several coactivators have been identified that provide a bridge between AhR molecules at the enhancer and general transcription factors at the promoter of CYP1A1 (41). In addition to the xenobiotic response element for AhR, an enhancer consisting of steroidogenic factor 1 elements and a cyclic AMP-response element also regulates human CYP1B1 expression (42). These elements have not been assessed in the CYP1A1 enhancer. In the absence of AhR ligands, cyclic AMP was shown to trigger nuclear translocation of AhR (43). Addition of 8-bromo-cyclic AMP or the adenylyl cyclase agonist forskolin increased CYP1B1 expression (44). Therefore, AhR might interact with different coactivators and transcription factors to differentially regulate CYP1A1 and CYP1B1 expression.

Few studies have investigated the relationship between AhR expression and oncogenesis. Cheshire et al. (45) reported that overexpression of a hyperactive mutant of β-catenin by transfection increases AhR expression in prostate cancer cells. Although β-catenin mutation or β-catenin nuclear translocation is rare in lung cancer, it is still possible that the downstream signaling pathway of β-catenin may be involved in AhR overexpression in lung adenocarcinoma.

In summary, AhR overexpression up-regulated CYP1B1 expression in lung adenocarcinoma tissues and cell lines in the absence of exogenous ligands. Abolishing AhR expression reduced intracellular reactive oxygen species and tumor cell growth in lung adenocarcinoma. Therefore, AhR and CYP1B1 might be potential therapeutic targets for lung adenocarcinoma.

References

Requirement of Aryl Hydrocarbon Receptor Overexpression for CYP1B1 Up-Regulation and Cell Growth in Human Lung Adenocarcinomas

Jinghua Tsai Chang, Han Chang, Po-Hung Chen, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/13/1/38

Cited articles
This article cites 42 articles, 16 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/13/1/38.full#ref-list-1

Citing articles
This article has been cited by 12 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/13/1/38.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.