Dual Targeting of Endothelial Cells and Pericytes in Antivascular Therapy for Ovarian Carcinoma

Chunhua Lu,1 Aparna A. Kamat,1 Yvonne G. Lin,1 William M. Merritt,1 Charles N. Landen,1 Tae Jin Kim,1,3 Whitney Spannuth,1 Thiru Arumugam,2 Liz Y. Han,1 Nicholas B. Jennings,1 Craig Logsdon,2 Robert B. Jaffe,4 Robert L. Coleman,1 and Anil K. Sood 1,2

Abstract

Purpose: Pericytes are known to provide a survival advantage for endothelial cells. We hypothesize that strategies aimed at dual targeting of tumor-associated endothelial cells and pericytes will be highly efficacious.

Experimental Design: Paclitaxel-sensitive (HeyA8 and SKOV3ip1) or paclitaxel-resistant (HeyA8-MDR) orthotopic tumors in mice were examined for therapeutic efficacy by targeting the endothelial cells (using a vascular endothelial growth factor receptor inhibitor, AEE788) and pericytes (using STI571) alone or in combination. Additional therapy and survival studies in combination with paclitaxel were also done. Following therapy, tumors were examined for endothelial cell apoptosis, pericyte coverage, microvessel density, and proliferation.

Results: AEE788 inhibited tumor growth by 45% and 59% in the HeyA8 and SKOV3ip1 models, respectively, whereas STI571 alone was not effective. AEE788 plus STI571 resulted in 69% to 84% inhibition of tumor growth in both models. Moreover, combination of these agents with paclitaxel was even more effective, resulting in up to 98% inhibition of tumor growth. The triple combination was even effective in the HeyA8-MDR model. Remarkably, this triple combination also resulted in improved survival compared with all other groups (P < 0.001) and caused regression of formed tumors. Pericyte coverage was significantly decreased in the STI571 treatment groups, and microvessel density was significantly reduced in the AEE788 treatment groups. AEE788 induced endothelial cell apoptosis, which was further enhanced by the addition of STI571.

Conclusions: Strategies targeting both endothelial cells and pericytes are highly effective for in vivo treatment of ovarian carcinoma. This antiangiogenic effect may be partially due to decreased pericyte coverage, thus increasing the sensitivity of tumor vasculature to therapy. These encouraging data support the development of clinical trials based on this strategy.

Cancer Therapy: Preclinical

Ovarian cancer remains the most common cause of death from a gynecologic malignancy. Typical treatment for women with ovarian cancer is surgical tumor cytoreduction followed by platinum and paclitaxel chemotherapy. The majority of patients respond to initial therapy, but 70% will develop recurrence and succumb to disease. Therefore, novel therapeutic strategies are urgently needed to improve the outcome of women with ovarian cancer.

The progressive growth of primary tumor and metastases is dependent on angiogenesis. Inhibition of tumor angiogenesis may provide an efficient strategy to block tumor growth because endothelial cells are genetically stable and, therefore, less likely to accumulate mutations that would allow them to develop drug resistance (1). Antiangiogenic strategies have largely focused on targeting endothelial cells. For example, vascular endothelial growth factor (VEGF) is considered to play a key role in angiogenesis and VEGF inhibitors, such as bevacizumab, are showing promise in clinical trials (2). Other blockers of VEGF/VEGF receptor (VEGFR) signaling, including PTK787 (blocks VEGFR phosphorylation) or VEGF-Trap, have potent activity in inhibiting malignant ascites and tumor growth in preclinical mouse models of ovarian carcinoma (3–6). However, VEGF targeting alone does not seem to be sufficient for regression of most bulky tumors. Although anti-VEGF therapy has resulted in improved patient survival in several tumor types (7), further improvements in cure rates may require consideration of additional targets. One such target may...
be pericytes, which are mesenchymal cells that wrap around the vessel tube and are required for normal microvascular stability and function (8). Pericytes are associated with capillaries and postcapillary venules and provide structural support to endothelial cells. Pericytes covering vessels may limit the global effectiveness of antiangiogenic therapy by providing survival signals for endothelial cells (8). Therefore, we hypothesize that dual targeting of endothelial cells and pericytes would be more efficacious than targeting either cell type alone.

The platelet-derived growth factor (PDGF) ligand/receptor system (9–11) is one of the major signaling pathways for regulating pericyte homeostasis. In the current study, using an orthomeric mimic model of advanced ovarian carcinoma, we examined the efficacy and mechanisms of dual targeting of endothelial cells with AEE788 (VEGFR inhibitor) and pericytes with STI571 [PDGF receptor (PDGFR) inhibitor] on ovarian cancer growth.

Materials and Methods

Cell lines and culture conditions. For these studies, we used the highly metastatic human ovarian cancer cell lines HeyA8, SKOV3ip1, and HeyA8-MDR as described previously (12, 13). Cells were grown as monolayer cultures in RPMI 1640 cell culture medium supplemented with 15% fetal bovine serum and 0.5% gentamicin. HeyA8-MDR cells were grown in the same medium supplemented with 500 ng/mL paclitaxel. Adherent monolayers were maintained on plastic and incubated at 37°C in a mixture of 5% CO2 and 95% air. The tumor cells were free of Mycoplasma and pathogenic murine viruses (assayed by M.A. Bioproducts). The cultures were maintained for no longer than 12 weeks after recovery from frozen stock. The HeyA8-luciferase—transfected cell line (HeyA8-Luc) was established using a lentivirus system. The luciferase reporter was cut and removed from the pGL vector. The promoter (Promega) and cloned into the lentiviral vector FG9 with the cytomegalovirus/long terminal repeat and UBiC promoter. The lentiviral vector was cotransfected with packaging vectors, and the cells were free of Mycoplasma and pathogenic murine viruses (assayed by M.A. Bioproducts). The cultures were maintained for no longer than 12 weeks after recovery from frozen stock. The HeyA8-luciferase—transfected cell line (HeyA8-Luc) was established using a lentivirus system. The luciferase reporter was cut and removed from the pGL vector. The promoter (Promega) and cloned into the lentiviral vector FG9 with the cytomegalovirus/long terminal repeat and UBiC promoter. The lentiviral vector was cotransfected with packaging vectors, and the lentivirus was produced in human embryonic 293T cells by the calcium transfection method. Lentivirus was titrated and HeyA8 cells were infected with lentivirus along with polybrene (4

Treatment and data collection. For therapy experiments, HeyA8, SKOV3ip1, and HeyA8-MDR cells were injected i.p., and 7 days later, mice were randomized into six groups (n = 10/group) and the following treatments were initiated: (a) vehicle control (water orally daily plus PBS i.p. weekly), (b) AEE788 (50 mg/kg orally thrice weekly), (c) STI571 (50 mg/kg orally daily), (d) paclitaxel (6 mg/kg i.p. weekly), (e) AEE788 plus STI571, and (f) AEE788 plus STI571 plus paclitaxel (doses in combination are the same as individual treatment groups). The doses used in these experiments were identified as optimal biological doses previously (14). Following 3 to 5 weeks of therapy, mice were sacrificed when animals in the control group became moribund. Body weights were recorded, and tumors were weighed and collected.

For the survival experiments, mice were injected i.p. with HeyA8 cells (2.5 × 105 per mouse). In the small-volume disease model, treatment was started 7 days after tumor cell injection and continued until near death or moribund. For the large tumor model, treatment was started 17 days after tumor cell injection. The mice were randomized into six groups (n = 10/group) and received therapy according to the doses described above. Mice were sacrificed when moribund.

In vivo bioluminescence imaging. For regression experiments, mice were injected i.p. with the HeyA8-Luc cells at 2.5 × 105 per mouse. Bioluminescence imaging was conducted on a cryogenically cooled IVIS 100 imaging system coupled to a data acquisition computer running Living Image software (Xenogen). Before imaging, animals were anesthetized in an acrylic chamber with 1.5% isoflurane/air mixture and injected i.p. with 15 mg/mL of luciferin potassium salt in PBS at a dose of 150 mg/kg body weight. A digital gray-scale animal image was acquired following acquisition and overlay of a pseudocolor image representing the spatial distribution of detected photon emerging from active luciferase within the animal. Signal intensity was quantified as the sum of all detected photons within the region of interest per second. After 17 days, based on bioluminescence imaging data, mice were randomized into three groups and treated as follows: (a) vehicle control (water orally daily plus PBS i.p. weekly), (b) AEE788 plus paclitaxel, or (c) AEE788 plus STI571 plus paclitaxel (at doses listed above). For longitudinal assessment, bioluminescence imaging was conducted at 17, 23, 25, 27, and 31 days after tumor cell injection. At the end of the experiment, animals were sacrificed and necropsy was done to assess tumor weight and number of nodules.

Immunofluorescence double staining for CD31 and desmin. Sections were fixed in cold acetone for 10 min, blocked with protein blocker for 20 min at room temperature, incubated with CD31 antibody (1:400; BD Pharmingen) overnight at 4°C followed by incubation with Alexa Fluor 594–conjugated anti-rabbit antibody (1:1,000; Invitrogen) for 1 h at room temperature. After washing with PBS, samples were incubated with desmin antibody (1:400; DakoCytomation) for 1 h and followed by incubation with Alexa Fluor 488–conjugated anti-rabbit antibody (1:1,200; Invitrogen) for 1 h at room temperature. Samples were counterstained with Hoechst for 5 min and mounted.

Orthotopic implantation of tumor cells and tumor collection procedures. To produce tumors in nude mice, subconfluent cultures of HeyA8, HeyA8-MDR, and SKOV3ip1 cells were lifted with trypsin, mixed with medium containing 10% fetal bovine serum, centrifuged at 1,000 rpm for 7 min, washed in serum-free medium, and resuspended in HBSS. Only single-cell suspensions with >95% viability, as determined by trypan blue exclusion, were used for the in vivo injections. Cells were then injected i.p. into female athymic mice at a concentration of 2.5 × 107/0.2 mL for HeyA8 cells and 1 × 107/0.2 mL for HeyA8-MDR and SKOV3ip1 cells. Mice were sacrificed 28 to 42 days after tumor cell injection, at which time body weight was recorded. Tumors in the peritoneal cavity were excised and weighed. For immunohistochemical staining and H&E staining procedures, tumors were fixed in formalin and embedded in paraffin. For immunofluorescence staining, terminal deoxynucleotidyl transferase—mediated dUTP nick end labeling (TUNEL), and immunohistochemistry requiring frozen tissue, tumors were embedded in OCT compound (Miles, Inc.), frozen rapidly in liquid nitrogen, and stored at −80°C.

Prepare the tumor samples and fix in formalin for histological examination. Tumors were fixed in formalin and embedded in paraffin. For immunofluorescence staining, terminal deoxynucleotidyl transferase—mediated dUTP nick end labeling (TUNEL), and immunohistochemistry requiring frozen tissue, tumors were embedded in OCT compound (Miles, Inc.), frozen rapidly in liquid nitrogen, and stored at −80°C.

For immunofluorescence staining, terminal deoxynucleotidyl transferase—mediated dUTP nick end labeling (TUNEL), and immunohistochemistry requiring frozen tissue, tumors were embedded in OCT compound (Miles, Inc.), frozen rapidly in liquid nitrogen, and stored at −80°C.

For immunofluorescence staining, terminal deoxynucleotidyl transferase—mediated dUTP nick end labeling (TUNEL), and immunohistochemistry requiring frozen tissue, tumors were embedded in OCT compound (Miles, Inc.), frozen rapidly in liquid nitrogen, and stored at −80°C.
Results

Effect of endothelial and pericyte targeting on ovarian cancer growth. To determine the efficacy of combinatorial approaches for ovarian cancer treatment, we used the HeyA8 and SKOV3ip1 models because they represent the growth patterns seen in women with metastatic ovarian cancer. For therapy experiments, 7 days after tumor cell injection, mice were randomized into the following six groups: (a) vehicle control, (b) AEE788 alone, (c) STI571, (d) paclitaxel, (e) AEE788 plus STI571, and (f) AEE788 plus STI571 plus paclitaxel. In the HeyA8 model, AEE788 alone and in combination with STI571 led to a 45% and 59% reduction in tumor growth compared with controls, respectively (Fig. 1A). STI571 alone had no effect on tumor growth. Similarly, in the SKOV3ip1 model, AEE788 alone and in combination with STI571 was effective in inhibiting tumor growth, whereas STI571 alone had no effect on tumor growth. The combination of these three agents (AEE788, STI571, and paclitaxel) resulted in 94% and 98% inhibition of tumor growth in the HeyA8 and SKOV3ip1 models, respectively, compared with controls. There were no differences in mouse weights between the six treatment groups, suggesting that eating and drinking habits were not affected.

A common clinical problem in the management of patients with ovarian cancer is the development of chemotherapy resistance. To address potential efficacy of dual endothelial and pericyte targeting in a chemotherapy-resistant model, we used the taxane-resistant HeyA8-MDR model. As expected, paclitaxel alone had no effect (Fig. 1A). AEE788 alone resulted in a 46% reduction of tumor growth, and AEE788 plus STI571 led to a 65% reduction of tumor growth over controls. Remarkably, the combination of AEE788, STI571, and paclitaxel was significantly superior to other groups, resulting in 88% reduction in tumor growth.

Based on the promising results with regard to inhibition of tumor growth, we next examined the effects of dual endothelial and pericyte-targeted therapy on survival. Therapy was initiated 7 days after injection of tumor cells and continued until individual animals became moribund. Because the greatest benefit in the therapy experiments was derived when chemotherapy was added to the biological therapy, for this experiment, we combined paclitaxel with each individual agent. Treatment with paclitaxel alone or in combination with AEE788 or STI571 resulted in a modest improvement in survival (each P < 0.05; Fig. 1B). Remarkably, the greatest improvement in survival was noted with the triple combination (P < 0.001; Fig. 1B).

Effect of dual endothelial and pericyte targeting on established ovarian tumor regression. Although the models described above recapitulate disease patterns of patients with small-volume disease, many patients with relapsed ovarian cancer have larger tumor burden. Therefore, we also examined the potential of dual endothelial and pericyte-targeted therapy to cause regression of larger tumors. Because it is difficult to take sequential measurements of ovarian tumors in an orthotopic setting, we used an in vivo bioluminescence imaging system for longitudinal assessments. The HeyA8-Luc cells were inoculated into the peritoneal cavity of nude mice, and baseline imaging was done on day 10. Following initiation of therapy on day 17, in vivo bioluminescence imaging was done at 2- to 6-day intervals and the experiment was terminated when controls became moribund. Based on the survival data noted above and our previous data (14) about the efficacy of AEE788 in combination with paclitaxel, we used this combination for comparison. Interestingly, the triple treatment resulted in regression of formed tumors by up to 75% (based on photon
counts) after 10 days of treatment (Fig. 2A). Although tumors grew slower with AEE788 plus paclitaxel, no apparent tumor regression was noted with this combination.

We also determined the effect of dual endothelial and pericyte targeting strategies on survival in the presence of larger tumors. For these experiments, therapy was started at 17 days after tumor cell inoculation. Even with larger tumors, the triple combination of AEE788, STI571, and paclitaxel had the greatest effect on prolonging survival compared with all other treatment groups ($P < 0.001$; Fig. 2B).

Effect of dual endothelial and pericyte targeting on MVD and vessel maturation. To examine potential mechanisms underlying the efficacy of the approaches presented above, we first assessed the extent of MVD (using CD31 staining) in tumor tissue following treatments. As shown in Fig. 3A, MVD was significantly reduced in the AEE788-only group ($P < 0.05$ versus control), AEE788 plus STI571 group ($P < 0.05$ versus AEE788-only group), and the triple combination group ($P < 0.05$ versus all groups). STI571 alone did not affect MVD.

STI571 was effective in blocking PDGFR phosphorylation in pericytes without affecting total PDGFR levels (Supplementary Fig. S1). We next examined the extent of pericyte coverage of tumor blood vessels using double immunofluorescence staining for desmin (pericyte marker) and CD31. As shown in Fig. 3B, 68% of the blood vessels in the HeyA8 tumors had pericyte coverage. Interestingly, treatment with AEE788 monotherapy resulted in increased pericyte coverage to 91% ($P < 0.05$). In contrast, treatment with STI571 significantly decreased pericyte coverage to 39%. The proportion of blood vessels with pericyte coverage was significantly decreased in the AEE788 plus STI571 group and in the triple combination group ($P < 0.05$; Fig. 3B). Treatment with paclitaxel alone did not alter vessel maturation.

Effect of dual endothelial and pericyte targeting on endothelial cell apoptosis in tumor tissue. It has been hypothesized that pericytes protect endothelial cells from the apoptotic effects of antiangiogenesis therapy (16, 17). Therefore, we used dual immunofluorescence (CD31/TUNEL) to evaluate for apoptosis of tumor-associated endothelial cells in the HeyA8 tumors following treatment with AEE788, STI571, and paclitaxel alone or in combination. As shown in Fig. 4A, minimal endothelial cell apoptosis was apparent in either the control or single-agent STI571 treatment groups. The greatest increase in endothelial cell apoptosis was noted in the triple combination group ($P < 0.01$; Fig. 4A). These data suggest that the triple combination...
therapy can induce tumor regression, at least in part, by reducing pericyte coverage and promoting endothelial cell apoptosis.

Effect of dual endothelial and pericyte targeting on tumor cell proliferation. To examine the effects of therapy on proliferation, we did immunostaining for PCNA. Proliferation was not significantly altered in paclitaxel-only or STI571-only treatment groups (Fig. 4B). However, proliferation was significantly decreased in the AEE788 ($P < 0.05$ versus controls) and AEE788 plus STI571 ($P < 0.05$) groups. The greatest reduction in proliferation was noted in the triple combination group ($P < 0.05$ versus all groups).

Discussion

In the present study, we show that pharmacologic targeting of both endothelial cells and pericytes substantially affects in vivo tumor growth and regression and significantly improves survival in our orthotopic ovarian cancer mouse model, particularly in combination with taxane chemotherapy. We have shown the effect of this effect in both small- and large-volume tumors as well as in taxane-resistant tumors. Targeting pericytes in these experiments with STI571 led to enhanced endothelial cell apoptosis and decreased tumor proliferation when combined with AEE788 and when added to combination paclitaxel and AEE788. Collectively, we show that pericycle targeting is feasible and important to a therapeutic strategy addressing newly formed and established tumor-associated vasculature.

VEGF plays a critical role in developmental, physiologic, and pathologic neovascularization and mediates endothelial cell proliferation and survival (18–20). However, VEGF targeting alone does not seem sufficient to cause regression of most bulky tumors. One explanation for this observation may be

![Fig. 2.](https://example.com/fig2.png)
related to pericytes, which can provide local survival signals for endothelial cells (8). Pericytes are multibranched, elongated periendothelial cells, which are closely approximated to endothelial cells and directly communicate with them through gap junctions (21). The high density of these cells around vessels of normal tissues with substantive metabolic function highlights their attendant role in vessel structural integrity. In this capacity, reduction of pericyte density can lead to functional defects of normal vasculature. For example, loss of pericyte density is an early histopathologic finding in the development of diabetic retinopathy (22). Pericyte loss in this case is associated with thickening of the basement membrane, hyperpermeability, and microaneurysm formation, leading to microvascular occlusion. Similarly, pericytes play a crucial role in angiogenesis. Under physiologic circumstances, pericytes may respond to angiogenic stimuli, such as VEGF and guide sprouting tubes, promote endothelial stability through matrix deposition, and have macrophage-like function (23). The role of pericytes in tumor angiogenesis is less well understood but seems to include microvascular stability and function. It has been shown by our group and others that pericytes are abundant on tumor blood vessels and, although abnormal in appearance, are intimately involved in eventual endothelial cell maturation and quiescence as well as stabilization of nascent cancer microvessels (8, 24, 25). The critical and dynamic function pericytes play in endothelial homeostasis and carcinogenesis make them a desirable subject for pharmacologic targeting.

We have previously shown that tumor-associated endothelial cells express VEGFR and EGFR and phosphorylation of these receptors is important for cell survival (14). In addition, tumor and endothelial cells produce PDGF-BB, which stimulates pericytes to produce VEGF (26). In the tumor microenvironment, this function may act locally as a survival factor for endothelial cells (26–28).\(^5\) In addition, transforming growth

\(^5\) Unpublished data.
factor-β1 production by pericytes may reduce the proliferation of endothelial cells through binding to Alk5, a transforming growth factor type I receptor found on pericytes (29). Although AEE788 alone and in combination with paclitaxel does not affect tumor-associated endothelial cell expression of VEGFR and EGFR, it substantially reduces receptor phosphorylation. In the present study, AEE788 reduced MVD, but the proportion of vessels with pericyte-coated vessels was increased, suggesting that pericytes may indeed protect these vessels from antiangiogenic therapy. Tumor vessels that lack pericytes seem to be more dependent on VEGF for their survival than vessels invested by pericytes (8). Therefore, the combination of antiendothelial and antipericyte agents may have additive or synergistic activity. Results from our experiments support this hypothesis as dual endothelial (via AEE788) and pericyte (via STI571) targeting was more effective than either agent alone. The efficacy was even greater in combination with taxane chemotherapy. Remarkably, this approach was effective in both growth inhibition and tumor regression experiments. Similar results were found by Yokoi et al. (30) in an orthotopic human
pancreatic carcinoma model. Bergers et al. (25) used the RPI-Tag2 pancreatic β-cell tumor model to test the efficacy of SU5416 (VEGFR inhibitor) and SU6668 (PDGFR inhibitor) or STI571 (PDGFR inhibitor). The combination of SU6668 or STI571 with SU5416 was most effective in reducing tumor growth, even with larger-sized tumors, where inhibition of VEGF signaling alone was insufficient (25). Similar observations have been reported by Kim et al. (31), showing that blocking EGFR phosphorylation and PDGFR together with paclitaxel significantly suppressed human prostate cancer bone metastasis.

In light of the central role pericytes seem to play in endothelial homeostasis, it is likely that tumor vessels lacking pericytes would be more dependent on VEGF for their survival than vessels invested by pericytes. Thus, if pericytes were absent or could not produce VEGF, the endothelium theoretically would become vulnerable to VEGF blockade. We showed, in this report, that inhibition of PDGFR activation by STI571 alone was insufficient to induce endothelial cell apoptosis. However, STI571 therapy significantly increased the sensitivity of dividing tumor-associated endothelial cells to the effect of AEE788 alone and in combination with paclitaxel. In this manner, receptor tyrosine kinase inhibitors with multiple targets may exert their antitumor activity in part by reducing pericyte density on the tumor vessels, thereby sensitizing them to inhibition of endothelial cell receptor tyrosine kinases. Tumor cell proliferation was similarly unaffected by PDGFR blockade alone. However, the combination of AEE788, STI571, and paclitaxel led to substantial reduction in tumor cell proliferation, suggesting significant modulation in VEGF-dependent growth signaling. The combined targeting of these agents and their availability for clinical use could provide an attractive approach for therapeutic management of patients with established tumors.

A potential confounding factor in the interpretation of our results is the relative nonspecificity of the agents used. STI571 is known also to inhibit c-Kit and bcr-abl signaling. Although it is possible that these pathways may be important for tumor growth in our model, activated c-Kit is not usually present in ovarian carcinoma (32). Inhibition of PDGFR signaling through more specific agents, such as PDGF-aptamer or PDGF-Trap, may be instructive in future studies. In addition, we have previously shown that AEE788 can affect phosphorylation of EGFR, which had substantive effects on signaling.

In conclusion, our data show that strategies targeting both endothelial cells and pericytes are more effective than either alone for in vivo treatment of ovarian carcinoma, especially when combined with paclitaxel chemotherapy, even in established or drug-resistant tumors. Inhibition of VEGF and PDGF will likely be a potent antivascular strategy, inducing endothelial cell apoptosis, tumor vessel destabilization, and regression. This study provides the preclinical rationale for the development of more effective strategies for management of human ovarian cancer metastasis.

Acknowledgments

We thank Drs. Isaiah J. Fidler and Lee Ellis for helpful input and discussions about this work and Dr. Corazon Bucana and Donna Reynolds for assistance with immunohistochemistry.

References

VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J 2001;15:1239–41.

Clinical Cancer Research

Dual Targeting of Endothelial Cells and Pericytes in Antivascular Therapy for Ovarian Carcinoma

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/13/14/4209

Cited articles
This article cites 32 articles, 13 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/13/14/4209.full.html#ref-list-1

Citing articles
This article has been cited by 15 HighWire-hosted articles. Access the articles at:
/content/13/14/4209.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.