Nelfinavir, A Lead HIV Protease Inhibitor, Is a Broad-Spectrum, Anticancer Agent that Induces Endoplasmic Reticulum Stress, Autophagy, and Apoptosis \textit{In vitro} and \textit{In vivo}

Joell J. Gills,¹ Jaclyn LoPiccolo,¹ Junji Tsurutani,¹ Robert H. Shoemaker,⁵ Carolyn J.M. Best,² Mones S. Abu-Asab,³ Jennifer Borozdji,¹ Noel A. Warfel,¹ Erin R. Gardner,⁶ Matthew Danish,⁴ M. Christine Holland,¹ Shigeru Kawabata,¹ Maria Tsokos,³ William D. Figg,¹,⁴ Mones S. Abu-Asab,³ Jennifer Borozdji,¹ Noel A. Warfel,¹ Erin R. Gardner,⁶ Matthew Danish,⁴ M. Christine Holland,¹ Shigeru Kawabata,¹ Maria Tsokos,³ William D. Figg,¹,⁴ Patricia S. Steeg,² and Phillip A. Dennis¹

Abstract

\textbf{Purpose:} The development of new cancer drugs is slow and costly. HIV protease inhibitors are Food and Drug Administration approved for HIV patients. Because these drugs cause toxicities that can be associated with inhibition of Akt, an emerging target in cancer, we assessed the potential of HIV protease inhibitors as anticancer agents.

\textbf{Experimental Design:} HIV protease inhibitors were screened \textit{in vitro} using assays that measure cellular proliferation, apoptotic and nonapoptotic cell death, endoplasmic reticulum (ER) stress, autophagy, and activation of Akt. Nelfinavir was tested in non—small cell lung carcinoma (NSCLC) xenografts with biomarker assessment.

\textbf{Results:} Three of six HIV protease inhibitors, nelfinavir, ritonavir, and saquinavir, inhibited proliferation of NSCLC cells, as well as every cell line in the NCI60 cell line panel. Nelfinavir was most potent with a mean 50% growth inhibition of 5.2 \textmu mol/L, a concentration achievable in HIV patients. Nelfinavir caused two types of cell death, caspase-dependent apoptosis and caspase-independent death that was characterized by induction of ER stress and autophagy. Autophagy was protective because an inhibitor of autophagy increased nelfinavir-induced death. Akt was variably inhibited by HIV protease inhibitors, but nelfinavir caused the greatest inhibition of endogenous and growth factor—induced Akt activation. Nelfinavir decreased the viability of a panel of drug-resistant breast cancer cell lines and inhibited the growth of NSCLC xenografts that was associated with induction of ER stress, autophagy, and apoptosis.

\textbf{Conclusions:} Nelfinavir is a lead HIV protease inhibitor with pleiotropic effects in cancer cells. Given its wide spectrum of activity, oral availability, and familiarity of administration, nelfinavir is a Food and Drug Administration—approved drug that could be repositioned as a cancer therapeutic.

Authors' Affiliations: ¹Medical Oncology Branch, ²Molecular Therapeutics Program, ³Laboratory of Pathology, ⁴Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; ⁵Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute; and ⁶Clinical Pharmacology Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute-Frederick, Maryland

Received 1/22/07; revised 5/31/07; accepted 6/14/07.

Grant support: Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research, and federal funds from the National Cancer Institute, NIH, under National Cancer Institute Contract NO1-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/).

J.J. Gills and J. LoPiccolo contributed equally to this work.

Requests for reprints: Phillip A. Dennis, Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 8, Room 5101, 8901 Wisconsin Avenue, Bethesda, MD 20892. Phone: 301-496-0929; Fax: 301-496-0047; E-mail: pdennis@nih.gov.

doi:10.1158/1078-0432.CCR-07-0161

Approximately 1.4 million people will be diagnosed with cancer in the United States in 2006 (1). The current cost to develop a new cancer drug is estimated around $1 billion and will likely take in excess of 15 years to go from conception to Food and Drug Administration (FDA) approval (2–4). One way to accelerate development and reduce costs is to identify new indications for already approved drugs, which has been referred to as “repositioning” (5, 6). Repositioning takes advantage of available pharmacokinetic and toxicity data on existing drugs, limits risks and costs to pharmaceutical companies, and could expedite the evaluation and movement of new cancer therapies to the clinic.

Agents that inhibit the HIV retroviral protease were first approved for human use in 1993 and are now widely used to treat HIV/AIDS infection, often in combination with other drugs that form highly active antiretroviral therapy. Although dyslipidemia, insulin resistance, and diabetes are common toxicities of HIV protease inhibitors, the maximum tolerated doses and dose-limiting toxicities of HIV protease inhibitors as single agents have not been defined. Because the toxicities associated with HIV protease inhibitors are similar to those observed with inhibition of the phosphoinositide 3-kinase
(PI3K)/Akt pathway (7, 8), we hypothesized that HIV protease inhibitors might function as Akt inhibitors.

The PI3K/Akt signaling pathway is a prototypic survival pathway that is commonly activated in many types of cancer and often confers a poor prognosis (9, 10). Development of inhibitors of the PI3K/Akt pathway is a major effort within academia, industry, and government. Unfortunately, the time frame for development of these novel inhibitors will likely not provide benefit for patients who currently have cancer.

To accelerate the availability of pathway inhibitors for clinical testing, we screened six clinically approved HIV protease inhibitors and found that three inhibited growth in a wide variety of cancer cell types at concentrations that have been achieved in patients infected with HIV. The most potent HIV protease inhibitor, nelfinavir, exerted pleiotropic biochemical and cellular effects that included induction of endoplasmic reticulum (ER) stress, autophagy, and apoptosis in vitro and in vivo. These studies provide a rationale to test nelfinavir as an anticancer agent and suggest that drug repositioning could complement traditional drug development in oncology.

Materials and Methods

Cell culture and reagents

H157 and A549 human non–small cell lung cancer cell lines were obtained from National Cancer Institute/Navy Medical Oncology (Bethesda, MD) and the American Type Culture Collection, respectively, and were maintained in RPMI 1640 containing 5% or 10% fetal bovine serum (FBS), at 37°C in a 5% CO2 atmosphere. MCF-7, SKBR-3, and BT-474 cells were obtained from the American Type Culture Collection. The MCF-7/LCC2 cell line was from the laboratory of Dr. Robert Clarke (Georgetown University Medical Center, Washington, DC) and JIMT-1 were from DSMZ (German Collection of Microorganisms and Cell Cultures). The SKBR-3/Her10 cells were derived by culturing the parental SKBR-3 cells in 10 μg/mL trastuzumab for at least 20 passages. Reduced response to trastuzumab-induced growth inhibition and p27/KIP1 induction was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and immunoblot, respectively. MCF-7, MCF-7/LCC2, and BT474 were grown in IMEM plus 10% FBS; SKBR-3, SKBR-3/Her10 (trastuzumab-resistant version of SKBR-3), and JIMT-1 cells (isolated from metastatic disease of a trastuzumab-resistant patient) were seeded at 1,000 per well in 96-well plates in their respective growth medium with FBS reduced to 5%. The cells were allowed to grow for 24 h and then treated with 0, 1, 10, or 50 μmol/L nelfinavir in DMSO. After 48 h, cell numbers were assessed by the MTT assay and calculated as a percentage of the growth of DMSO-treated controls. Experiments were done in triplicate with sextuplet wells for each condition.

NCI60 cell line screen

Methods for evaluation of cell growth inhibition in the NCI60 cell line panel were published previously (11, 12). Briefly, HIV protease inhibitors were solubilized in DMSO, diluted into RPMI 1640 + 5% FBS, then added to 96-well plates containing cell lines that were previously cultured for 24 h. Following a 48 h incubation, the medium was removed and the cells were fixed and stained with sulforhodamine B. Unbound dye was removed with five washes of 1% acetic acid and the plates were allowed to air dry. The dye was resolubilized in Tris buffer and the absorbance at 515 nm was measured. The concentration that produced 50% growth inhibition (GI50) compared with a DMSO control, total growth inhibition, or 0% growth, compared with a DMSO control, and the concentration that produced the death of 50% of the cells present at the start of the experiment (LC50) were determined.

DNA fragmentation assay

Cells were plated in 12-well plates at a density of 1.5 × 10⁴ per well and allowed to grow overnight. The following day, cells were treated with 20 μmol/L HIV protease inhibitors or an equal volume of DMSO for 24 or 72 h. Floating and adherent cells were harvested and fixed in cold 70% methanol. Following fixation, cells were stained with 25 μg/mL propidium iodide and 20 μg/mL RNase A in PBS for 30 min at room temperature. Quantification of sub-2N DNA was determined by flow cytometry using a Becton Dickinson FACSort and by manual gating using CellQuest software (FACSort, BD Biosciences). Apoptosis experiments were done in triplicate and were repeated twice.

Cell death assay

Following incubation, cells were harvested by trypsinization and resuspended in a solution of 1 μg/mL propidium iodide in PBS, then immediately acquired on the FL3 channel of a flow cytometer. The propidium iodide–positive population of cells was considered dead, whereas the propidium iodide–negative population was considered viable.

4,6-Diamidino-2-phenylindole dihydrochloride staining

Following treatment, cells were pelleted and fixed with methanol/acetric acid (3:1), for 30 min at room temperature. A drop of fixed cell suspension was placed on a glass slide and allowed to dry, then covered with a drop of Vectashield mounting medium plus 4,6-diamidino-2-phenylindole dihydrochloride (Vector Labs) and a coverslip, followed by visualization with a fluorescence microscope.

Immunoblotting

Cells were plated in six-well plates at a density of 5 × 10⁴ per well. The following day, cells were treated with drug or equal volume of DMSO for the indicated times and lysed in 2× lysis buffer as described previously.
Intraperitoneal administration. For studies with H157 cells, 6-week-old male BALB/c AnNCr-nu/nu mice (Charles River Labs) were injected s.c. with $5 \times 10^5$ H157 cells in both shoulders and rear flanks. When tumors were palpable, mice were divided into three groups of 10 mice that were given i.p. injections of either the vehicle alone (4% DMSO, 5% polyethylene glycol, 5% Tween 80 in saline) or 50 or 100 mg/kg nelfinavir dissolved in 4% DMSO, 5% polyethylene glycol, and 5% Tween 80 in saline. At each time point, blood was collected from three mice in each dose group, under isoflurane anesthesia, by cardiac puncture. Blood was collected in a Becton Dickinson Microtainer serum separator tube (BD) and centrifuged at 15,000 × g for 1 min. Plasma was stored at -80°C until the time of analysis.

Once samples were defrosted at room temperature and vortex mixed, 100 μL of plasma was transferred to a glass tube. Methyl tert-butyl ether (MTBE) was added, along with 5 μL of the internal standard solution (amprenavir) followed by vortex mixing (5 min) and centrifugation (5 min at 2,000 × g). The supernatant was transferred to a clean glass tube and dried under desiccated air at 40°C for 10 min. The sample was then reconstituted in 100 μL of mobile phase. Twenty microliters of this solution were injected onto an Agilent Zorbax SB-C8 column (3.0 × 150 mm, 3.5 μm), running an isotropic mobile phase consisting of 62% of 50 mmol/L sodium phosphate buffer (pH 2.5), 5% methanol (JP Baker), and 33% acetonitrile (JP Baker), for a total runtime of 20 min. Retention times were 12 and 15.3 min for nelfinavir and amprenavir, respectively. A diode array detector was used for UV detection, monitoring 210 nm for nelfinavir and 265 nm and amprenavir.

Duplicate sets of calibrator samples, along with quality control samples, were analyzed each day, and the concentration of unknown samples was back-calculated using the calibration curve. The range spanned from 25 to 5,000 ng/mL, with 20-fold dilution allowing for measurement of samples up to 100,000 ng/mL. The accuracy and precision of the quality control samples was well within acceptable limits, ranging from -1.53% to 5.64% and 4.76% to 9.74%, respectively.

Pharmacokinetics were evaluated using a noncompartmental approach, using the mean concentration at each time point, within each dose group. The peak plasma concentration ($C_{\text{max}}$) and the time to peak plasma concentration ($T_{\text{max}}$) are reported as observed values. The area under the plasma concentration versus time curve (AUC$_{\text{last}}$) was calculated using the linear trapezoidal method from time zero (at drug administration) to the time of the last sample with measurable drug concentration for each group ($C_{\text{last}}$). Bailer's method was used to assess the variance, allowing for comparison of nelfinavir exposure between the two dose groups (14). The significance of the difference in AUC was evaluated by Z test. A calculated $P$ value of $<0.05$ was considered to be significant.

Terminal deoxynucleotidyltransferase-mediated nick-end labeling staining
Formalin-fixed, paraffin-embedded tumor sections on glass slides were deparaffinized and hydrated, followed by staining using a commercial peroxidase-linked apoptosis detection kit (Chemicon) according to the manufacturer's instructions. Samples were counterstained with hematoxylin and visualized using bright-field microscopy. Slides were randomized and counted as terminal deoxynucleotidyltransferase–mediated nick-end labeling (TUNEL)–positive nuclei per 40× field.

Statistics
Experimental values were expressed ±SE. Statistical comparison of mean values was done using the Students $t$ test.
Results

HIV protease inhibitors inhibit proliferation of a broad spectrum of cancer cell types. To determine if HIV protease inhibitors had potential as cancer therapeutics, we screened six FDA-approved HIV protease inhibitors in cell proliferation assays using two NSCLC cell lines (A549 and H157; Fig. 1A). Atazanavir, nelfinavir, ritonavir, or saquinavir inhibited proliferation of H157 cells. Nelfinavir was most potent (GI<sub>50</sub> 8 μmol/L). These protease inhibitors were effective in A549 cells, except for atazanavir. Nelfinavir was again the most potent (GI<sub>50</sub> 9 μmol/L). Because nelfinavir, ritonavir, and saquinavir inhibited growth of two NSCLC cell lines, we assessed the spectrum of activity of these HIV protease inhibitors by screening them in the NCI60 cell line panel that contains 60 cell lines derived from nine different tumor types. Nelfinavir, ritonavir, and saquinavir exhibited dose-dependent inhibition of proliferation in all 60 cancer cell lines. Of the three, nelfinavir was the most potent, with an average GI<sub>50</sub> of...
5.2 μmol/L, and cytotoxicity was observed in 14 of 60 cell lines at doses ≤10 μmol/L (Fig. 1B). Despite similar wide spectrums of activity, saquinavir and ritonavir were less potent (Supplementary Figs. S1 and S2, respectively).

**HIV protease inhibitors induce caspase-dependent apoptosis.** To determine if HIV protease inhibitors were inducing apoptosis, we did a series of biochemical and morphologic assays. In H157 cells, nelfinavir and saquinavir increased the fraction of H157 cells with sub-G₁ DNA content (Fig. 2A). Although nonapoptotic, ritonavir did induce a G₁ cell cycle arrest (data not shown). In A549 cells, HIV protease inhibitor–induced DNA fragmentation was delayed, but the relative potency in A549 cells was the same as in H157 cells (nelfinavir > saquinavir > ritonavir). Because DNA fragmentation has been reported to be associated with both apoptotic and non-apoptotic modes of death, we did 4',6-diamidino-2-phenylindole dihydrochloride staining to assess HIV protease inhibitor–induced nuclear morphology. Following 24 h treatment in H157 cells or 48 h in A549 cells, pyknotic nuclei were detected after administration of nelfinavir and saquinavir but not ritonavir (Fig. 2A, right).

Because caspases activate the endonuclease responsible for cleaving cellular DNA during apoptosis, we did immunoblotting to detect cleavage of caspase-3, caspase-7, caspase-8, and caspase-9.
by HIV protease inhibitors (Fig. 2B). Nelfinavir and saquinavir increased the cleaved forms and decreased the full-length forms of caspase-3, caspase-7, caspase-8, and caspase-9 in H157 cells. Ritonavir had little effect on caspase cleavage, consistent with the lack of DNA fragmentation and induction of G1 arrest previously noted. Similar results were observed in A549 cells, except that cleavage of caspase-3 and caspase-7 was less apparent. In each cell line, nelfinavir and saquinavir caused the most PARP cleavage.

To assess whether caspase activation was required for nelfinavir-induced death, we used a pan-caspase inhibitor, zVAD-fmk (zVAD-fmk) and measured sub-G1 DNA formation and PARP cleavage (Fig. 2C). In each cell line, zVAD blocked nelfinavir-induced DNA fragmentation and PARP cleavage by 90%, indicating that nelfinavir-induced apoptosis is caspase dependent. Similar caspase-dependent mechanisms were observed in H157 cells with saquinavir treatment (data not shown).

**Nelfinavir induces caspase-independent death, ER stress, and autophagy.** In the course of these experiments, we observed that nelfinavir caused profound vacuolization and cellular detachment that occurred even after administration of zVAD-fmk (Fig. 3A). To determine if nelfinavir could induce nonapoptotic cell death, we measured the ability of treated cells to exclude the dye propidium iodide. Nelfinavir increased phosphorylation of eIF2α by 6- to 7-fold increase in uptake of propidium iodide in H157 and A549 cells at 24 and 72 h, respectively (Fig. 3B). When each cell line was pretreated with zVAD, PARP cleavage was inhibited (data not shown), but uptake of propidium iodide was only inhibited by ~10%, indicating that nelfinavir is able to induce nonapoptotic cell death under conditions where caspases are inhibited.

To better define the morphologic changes induced by nelfinavir, transmission electron microscopy was done on H157 cells treated with DMSO (Fig. 3C, a, c, and e) or nelfinavir (b, d, f, g, and h). These studies showed that nelfinavir caused distortion of mitochondria shape with loss of inner membrane integrity (a and b), nucleolar degradation (c and d), decreased glycogen content (arrowheads, e and f), and cytoplasmic vacuolization (g). A degradative autophagosome containing cellular organelles was also observed (h).

Because HIV protease inhibitors can increase expression of genes involved in ER stress, and because interruption of the ER secretary pathway can cause ER to distend into visible vacuoles (15, 16), we assessed induction of ER stress in lung cancer cells after administration of nelfinavir. To determine if the vacuoles were ER derived, H157 or A549 cells were transiently transfected with a fluorescent construct containing the ER-targeting sequence of calreticulin and treated with nelfinavir for 12 h (Fig. 3D). In each cell type, nelfinavir caused aggregation of the ER-specific marker into vacuoles that colocalized with the vacuoles evident in phase-contrast microscopy. This suggested that the vacuoles were derived from ER. To confirm activation of ER stress by nelfinavir, we assessed the time-dependent induction of two markers of ER stress, phosphorylation of eIF2α, and expression of ATF3 (Fig. 3E). Increased phosphorylation of eIF2α was evident by 30 min and increased until 6 h, which was observed in both cell types. Expression of ATF3 lagged behind phosphorylation of eIF2α but was also increased in both cell lines by 6 h. Nelfinavir increased phosphorylation of eIF2α and expression of ATF3 to a greater extent than that observed with ritonavir or saquinavir. Together, these data show that induction of ER stress is an early event.
Fig. 3. Nelfinavir induces caspase-independent vacuolization and ER stress. 
A, nelfinavir induces cellular vacuolization in the presence or absence of a pan-caspase inhibitor. NSCLC cells were pretreated with or without zVAD-fmk (50 μmol/L) for 1 h, followed by treatment with DMSO or 20 μmol/L nelfinavir. Phase-contrast micrographs were taken 12 h after nelfinavir treatment. B, caspase activation is not required for nelfinavir-induced cell death. NSCLC cells were treated as described in (A) for 24 h (H157) or 72 h (A549). Following incubation, cells were assessed for inhibition of dye uptake as described in Materials and Methods. The propidium iodide−positive population of cells was considered dead, whereas the propidium iodide−negative population was viable. C, transmission electron microscopy of nelfinavir-treated H157 cells. Cells were treated with DMSO (a, c, and e) or 10 μmol/L nelfinavir (b, d, f, g, and h) for 16 h. a and d, normal versus nelfinavir-treated mitochondria; c and d, a comparison of nuclear and nucleolar morphology; e and f, cytoplasmic glycogen content; g, a nelfinavir-treated cell with vacuolated cytoplasm; h, a degradative autophagosome containing cellular organelles. D, nelfinavir induces aggregation of ER that colocalizes with vacuoles. H157 and A549 cells were transfected with a construct containing an ER membrane marker fused to enhanced yellow fluorescent protein, as described in Materials and Methods, and treated with nelfinavir for 12 h. E, biochemical markers of ER stress. Immunoblotting for levels of phosphorylated eIF2α and ATF3 was done after variable times of exposure to DMSO, nelfinavir, ritonavir, or saquinavir.
Fig. 4. Effects of nelfinavir on autophagy and Akt activation. A, nelfinavir induces expression of LC3-II, a marker of autophagy, independently of caspase activity. Cells were treated and harvested 24 h after nelfinavir treatment. Levels of total/cleaved PARP and LC3 were determined by immunoblotting. B, nelfinavir induces LC3 aggregation, which does not overlap with cellular vacuoles. H157 and A549 cells transiently transfected with a GFP-LC3 construct, then treated with DMSO or 20 μmol/L nelfinavir for 24 h. Two separate representative fluorescent images are shown for H157 (a and b) and A549 (c and d). Side-by-side fluorescent and phase-contrast images reveal that GFP-LC3 aggregation does not colocalize with vacuoles in H157 (c and d) or A549 cells (g and h). C, induction of ER stress and autophagy is a common mechanism of action for nelfinavir. Cell lines were treated with DMSO or nelfinavir for the times shown, and immunoblotting was done for markers of ER stress and autophagy. D, nelfinavir inhibits basal levels of Akt activation (left) and growth factor–induced Akt activation (right). H157 or A549 cells were treated with DMSO, or 20 μmol/L nelfinavir, ritonavir, or saquinavir, or 10 μmol/L of the PI3K inhibitor LY294002 (LY) for the indicated times. Levels of phosphorylated Akt (S473 and T308) and total Akt were determined by immunoblotting as described in Materials and Methods. For growth factor stimulation, cells were pretreated with DMSO or 20 μmol/L nelfinavir, followed by stimulation or not with IGF-I (100 nmol/L) or EGF (100 ng/mL) for 15 min. Levels of phosphorylated IGF-I receptor (Y1131), total IGF-I receptor, phosphorylated EGFR (Y1068), total EGFR, phosphorylated Akt (S473 and T308), and total Akt were determined by immunoblotting as described in Materials and Methods. C, pretreatment with an inhibitor of autophagy potentiates nelfinavir-induced death. H157 and A549 cells were pretreated or not with 10 mmol/L 3-methyladenine (3-MA) for 1 h, followed by treatment with DMSO or 20 μmol/L nelfinavir for 16 h (H157) or 48 h (A549). Total death and apoptosis were measured as described in Materials and methods. Columns, mean from at least three separate experiments; bars, SE. *; P < 0.01.
Nelfinavir Induces ER Stress, Autophagy, and Apoptosis

Nelfinavir inhibits growth of drug-resistant cancer cell lines. Because nelfinavir was active against all the cell lines in the NCI60 and was broadly active against receptor tyrosine kinase signaling pathways that can promote therapeutic resistance, we tested nelfinavir in a panel of drug-sensitive (MCF-7 and SKBR-3) and drug-resistant breast cancer cell lines (MCF-7/LCC2, SKBR-3/Her10, JIMT-1, and BT474; Supplementary Fig. S3). All cell lines, with the exception of the BT474 cells, were inhibited by at least 60% by nelfinavir at 10 μmol/L. Drug-resistant cells were as sensitive as the parental cell lines. These studies indicate that nelfinavir has activity against cancer cells that acquire resistance to therapies such as tamoxifen and trastuzumab.

Nelfinavir inhibits growth of NSCLC xenografts and induces apoptosis, ER stress, and autophagy in vivo. Because nelfinavir was the lead HIV protease inhibitor based on in vitro studies, we evaluated its ability to inhibit the growth of H157 and A549 xenografts when given via i.p. injection (Fig. 5A and B) or gavage (Fig. 5C). With i.p. administration, nelfinavir was well tolerated and significantly decreased H157 tumor growth by 61% at day 11 for the 50 mg/kg group (P = 6.618 × 10⁻⁵), and 63% at day 11 for the 100 mg/kg group (P = 0.0001). In A549 xenografts, i.p. nelfinavir inhibited tumor growth by 48% at day 19 (P = 0.046). In the gavage study, two dosing regimens were compared, 100 mg/kg given daily or 50 mg/kg given twice a day. The daily regimen was well tolerated, but the twice daily gavage regimen was not tolerated, leading to significant loss of body weight in both control and nelfinavir-treated mice. Thus, this regimen was discontinued. Similar to the inhibition of tumor growth observed with i.p. administration, oral administration of 100 mg/kg/d nelfinavir decreased H157 tumor growth in a statistically significant manner (P = 0.0015).

The pharmacokinetics of nelfinavir were evaluated in mice following i.p. administration of either 50 or 100 mg/kg (Supplementary Fig. S4). Mean peak plasma concentrations (Cmax) of 23.21 μg/mL (34.96 μmol/L) and 54.33 μg/mL (81.83 μmol/L) were observed at the first measured time point, 30 min after injection of 50 and 100 mg/kg, respectively. Nelfinavir was rapidly cleared, however, because levels dropped to 0.1 μg/mL (0.15 μmol/L) and 3 μg/mL (4.5 μmol/L) for the 50 and 100 mg/kg dose group, respectively, at 4 h. The overall drug exposure during the sampling time was ~2.5-fold higher in mice receiving 100 mg/kg, compared with those that received 50 mg/kg (3.445.53 versus 1,398.26 min μg/mL; P = 0.04).

Tumors from the H157 gavage study were harvested and analyzed for biomarker modulation. Nelfinavir increased the number of apoptotic cells in tumor xenografts, as measured by TUNEL staining (Fig. 5D). Electron microscopy of these tumors (Fig. 5E) revealed increased dilation of the ER, as well as the presence of dense material inside double membrane bound vacuoles (inset, bottom right), indicating that nelfinavir induced morphologic features of ER stress and autophagy in vivo. To confirm that these processes were occurring in the tumors, we did immunoblotting to assess expression of eIF2α phosphorylation, ATF3, and LC3-II (Fig. 5F). Nelfinavir increased expression of all these markers in a statistically significant manner. In contrast to markers of ER stress and autophagy, levels of Akt phosphorylation at S473 and T308 were not altered (data not shown). These biomarker studies are consistent with our in vitro studies with H157 cells that showed that nelfinavir-induced inhibition of Akt was transient, but that nelfinavir-induced phosphorylation of eIF2α and expression of ATF3 and LC3-II were sustained. Moreover, they show that nelfinavir can achieve effective circulating levels by two routes of administration to inhibit tumor growth in vivo, and that nelfinavir can induce apoptosis, ER stress, and autophagy in tumor tissues.

Discussion

The need for expedited development of effective cancer therapies is critical. At current rates, ~8 million Americans will die from cancer during the estimated time it will take for a lead compound to be developed into a FDA-approved drug. An
arguably faster path to development is to reposition established drugs as anticancer agents. Successful examples of this approach include cyclooxygenase-2 inhibitors, which are FDA-approved anti-inflammatory drugs that are approved for cancer chemoprevention in familial adenomatous polyposis patients, and lenalidomide, an analogue of thalidomide, which was originally marketed for morning sickness that is now approved for therapy of myelodysplastic syndromes (24). Other approved
drugs that are currently under investigation as anticancer agents include the oral hypoglycemic rosiglitazone, the immunosuppressant rapamycin, and the birth control hormone medroxyprogesterone acetate. Collectively, these examples illustrate how repositioning of existing drugs could complement de novo drug development.

Could HIV protease inhibitors be repositioned as anticancer agents? Our results in the NCI60 cell line panel show that HIV protease inhibitors have a wide spectrum of activity, inhibiting the proliferation of 60 cancer cell lines derived from nine different tumor types. This is consistent with previous reports demonstrating that HIV protease inhibitors are effective in other model systems such as multiple myeloma and Kaposi sarcoma (25–27). Of the six HIV protease inhibitors evaluated, only three were effective, suggesting that the chemical requirements for HIV protease inhibition and anticancer activity are not identical. Although antitumor effects of many HIV protease inhibitors have been described (28), the two most potent HIV protease inhibitors in our studies were nelfinavir and saquinavir, which produced similar inhibition of proliferation and caused large amounts of apoptosis. Several groups have shown that ritonavir also inhibits the proliferation of cancer cells and our data indicates this is due to a G1 cell cycle arrest, rather than direct mechanisms of cytotoxicity. Interestingly, both nelfinavir and saquinavir contain a unique cis-decahydrosquinozoline-2-carboxamide moiety (Supplementary Fig. S5, boxed areas), which could provide a structural basis for the differences in potency between these and other HIV protease inhibitors.

Our data clearly extends the biological mechanisms used by nelfinavir. Although nelfinavir has previously been reported to cause apoptosis and modulate signaling pathways (26, 29, 30), our study shows that nonapoptotic death was also responsible for cytotoxicity in multiple cell lines, including H460, MCF7, and PC3 cells (data not shown). Nonapoptotic cell death was related to induction of ER stress and autophagy in five cancer cell lines, even when apoptosis is blocked. Other cancer agents, such as cisplatin, bortezomib, and 17-(allylamino)-17-demethoxygeldanamycin, also induce ER stress in vitro (31–33), but our studies show that nelfinavir induces ER stress in vivo. Similarly, several other approved or promising anticancer or chemopreventive agents have been shown to induce autophagy in vitro, but none have been shown to induce autophagy in vivo (34–36). Thus, our data showing that nelfinavir induces ER stress and autophagy in vivo is novel, and implies that markers of ER stress and/or autophagy could be useful in clinical trials with nelfinavir. Whether the induction of autophagy is beneficial for tumor growth or regression is controversial. We used a pharmacologic inhibitor of autophagy, 3-methyladenine, to show that autophagy protected NSCLC cells against nelfinavir-induced death. This suggests that adding an inhibitor of autophagy to nelfinavir might increase its anticancer properties. However, such an approach might also increase toxicity if the induction of autophagy in normal tissues is used as a survival mechanism (37). Of note, we did not observe induction of autophagy in livers from nelfinavir-treated mice (data not shown), suggesting that tumor-specific induction of autophagy could be exploited for therapeutic gain.

Although Akt activation was inhibited by nelfinavir in our studies, the kinetics of inhibition were cell line specific and did not correlate with induction of cellular responses such as ER stress and autophagy. Other groups have reported that nelfinavir decreases phosphorylation of Akt at S473 in cancer cell lines, but only after 1 or 3 days of incubation (26, 29). In addition, other studies have shown that HIV protease inhibitors can inhibit insulin-stimulated Akt activation (26, 38, 39). Our studies extend these observations by showing that nelfinavir reduces Akt activation in response to EGF or IGF-I, and that decreased Akt stimulation correlates with decreased receptor tyrosine kinase activation. Mechanistically, this is significant because growth factor receptor activation can be a common means for Akt activation and could be clinically relevant because EGFR and IGF-IR are targets for cancer therapy. Nelfinavir might also have utility in therapeutically resistant tumors because it inhibited proliferation of drug-resistant breast cancer cells in which EGFR and IGF-IR signaling have been implicated in promoting therapeutic resistance (40, 41). These observations are consistent with reports that HIV protease inhibitors can overcome resistance to radiation (29, 42), which can also occur through activation of EGFR and IGF-IR (43, 44).

A recent report by Jiang et al. (45) showed that nelfinavir induces a G0-G1 cell cycle arrest in melanoma cells that is related to nelfinavir-mediated degradation of CDC25a, which leads to CDK2 inhibition and dephosphorylation of Rb. In contrast to these results, we did not observe significant alterations in the cell cycle in the five cell lines used in this study (H157, A549, H460, MCF7, PC3; data not shown). Moreover, we did not observe CDC25a degradation, induction of p21 or p27, or decreased levels of cyclin E in H157 or A549 cells. However, in concordance with the results obtained by Jiang et al., nelfinavir decreased phosphorylation of Rb and overall expression of Rb in H157 and A549 cells. This importance of these effects is questionable, however, because decreased phosphorylation and expression of Rb occurred at later time points when most cells were detached and/or dead. Thus, we conclude that alteration of cell cycle distribution is not a primary mechanism of action of nelfinavir in these cell lines.

A key issue in the repositioning of nelfinavir will be the achievable dose in cancer patients. The Cmax for nelfinavir in HIV patients is ~7 to 9 μmol/L (46, 47), which exceeds the average G1q of 5.2 μmol/L in the NCI60 cell line screen, and suggests that effective concentrations could be achieved in cancer patients. In mice, nelfinavir concentrations peaked at 30 min at 35 or 82 μmol/L for 50 or 100 mg/kg/dosing, respectively, and levels decreased to 150 nmol/L or 5 μmol/L, respectively, at 4 h. This rapid clearance of nelfinavir is consistent with a half-life of 3 to 5 h in humans when given orally (48), and indicates that tumors were exposed to concentrations that exceed the in vitro GS50 for <4 h. Given that the dosage regimen for our xenograft studies was daily, it is conceivable that tumors were without drug exposure for prolonged periods everyday, and efficacy could have been improved by more frequent dosing or by the addition of other drugs that retard metabolism of nelfinavir (49). The fact that dose-dependent inhibition of tumor growth was not observed with regimens of 50 or 100 mg/kg/d, despite a 2.5-fold difference in drug exposure over 4 h, suggests that prolonged exposure rather than Cmax might be more important for tumor inhibition. Notably, establishment of a maximum tolerated dose of nelfinavir as a single agent was never attempted in phase I studies with HIV patients, because dose escalation was stopped once the viral load of HIV decreased.
Thus, dose escalation above the dose that is FDA approved for HIV patients might be feasible, and a phase I trial using twice daily dosing to establish dose-limiting toxicities and the maximum tolerated dose is now open (NCI-07-C-0047). Achieving higher plasma concentrations than those achieved in HIV patients could maximize the chance for clinical responses, based on dose-dependent effects in the NCI 60 panel, as well as establish the maximum tolerated dose for nelfinavir as a single agent. Given that nelfinavir is a lead HIV protease inhibitor that is orally available and FDA approved with a history of human use, its clinical evaluation as an antitumor agent could be expedited.

Acknowledgments

We thank Gail McMullen for assistance with the animal studies, the NIH AIDS reagent repository, and Pfizer, Inc., for the gift of HIV protease inhibitors; Dr. Tamotsu Yoshimori for the gift of the LC3 antibody and GFP-LC3 plasmid; the Sallie Rosen Kaplan fellowship foundation for support of J.J. Gills and C.J.M. Best; Stephen Wincovitch and Susan Garfield for assistance with confocal microscopy; and Victor Marquez for helpful discussion.

References

Nelfinavir, A Lead HIV Protease Inhibitor, Is a Broad-Spectrum, Anticancer Agent that Induces Endoplasmic Reticulum Stress, Autophagy, and Apoptosis In vitro and In vivo

Joell J. Gills, Jaclyn LoPiccolo, Junji Tsurutani, et al.


Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/13/17/5183

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2007/09/11/13.17.5183.DC1

Cited articles
This article cites 49 articles, 26 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/13/17/5183.full.html#ref-list-1

Citing articles
This article has been cited by 29 HighWire-hosted articles. Access the articles at:
/content/13/17/5183.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.