The Suppression of Aurora-A/STK15/BTAK Expression Enhances Chemosensitivity to Docetaxel in Human Esophageal Squamous Cell Carcinoma

Eiji Tanaka,1 Yosuke Hashimoto,1 Tetsuo Ito,1 Kan Kondo,1 Motoshige Higashiyama,1 Shigeru Tsunoda,1 Cristian Ortiz,1 Yoshiharu Sakai,1 Johji Inazawa,2 and Yutaka Shimada1

Abstract

Purpose: We previously reported that the expression of Aurora-A was frequently up-regulated in human esophageal squamous cell carcinoma (ESCC) tissues as well as cell lines and the up-regulation contributed to a poor prognosis. In this study, we assessed the possibility of Aurora-A suppression as a therapeutic target for ESCC using ESCC cell lines.

Experimental Design: We established subclones using vector-based short hairpin RNA (shRNA). Then, we investigated the effect of Aurora-A suppression on proliferation and cell cycle changes in vitro. Next, chemosensitivity against docetaxel was investigated by tetrazolium salt–based proliferation assay (WST assay) and cell number determinations, and furthermore, the type of cell death induced by docetaxel was analyzed by flow cytometry. Finally, to examine the effect of Aurora-A shRNA on proliferation and chemosensitivity against docetaxel in vivo, a s.c. tumor formation assay in nude mice was done.

Results: We established two genetically different stable cell lines (510 A and 1440 A) in which levels of Aurora-A were reduced. Cell growth was inhibited by 38.7% in 510 A and by 24.3% in 1440 A in vitro compared with empty vector–transfected controls (510 m and 1440 m), and this growth inhibition was mediated through G2–M arrest as confirmed by flow cytometry. Next, in a WST assay, the \(IC_{50} \) for Aurora-A shRNA-transfected cells was lower than that of empty vector–transfected cells (510 A, 2.7 \(\times \) 10\(^{-7} \) mol/L; 510 m, 4.8 \(\times \) 10\(^{-7} \) mol/L; 1440 A, 2.6 \(\times \) 10\(^{-7} \) mol/L; 1440 m, 4.9 \(\times \) 10\(^{-7} \) mol/L). In addition, 0.3 nmol/L docetaxel induced a notable level of apoptosis in Aurora-A shRNA-transfected cells compared with empty vector–transfected cells. In the assay of s.c. tumors in nude mice, tumor growth in 510 A was inhibited by 36.1% compared with that in 510 m, and in tumors treated with docetaxel, the suppression of Aurora-A resulted in 44.0% tumor growth suppression in vivo.

Conclusions: These results indicated that Aurora-A might play an important role in chemosensitivity to docetaxel, and the suppression of its expression might be a potential therapeutic target for ESCC.

Several proteins strictly regulate the process of cellular division. Defects in chromatid segregation cause genetic instability, a condition associated with tumorigenesis. During the proliferation of normal cells, the centrosome ensures the equal segregation of chromosomes to the postmitotic daughter cells by organizing the bipolar mitotic spindle. In contrast, in cancer cells, multipolar mitotic spindles and various centrosomal anomalies, such as supernumerary centrosomes, centrosomes of abnormal size and shape, aberrantly phosphorylated centrosomal proteins, and prematurely split centrosomes, are frequently observed (1–7).

Aurora-A, a member of the Aurora/Ipl1p family of cell cycle–regulating serine/threonine kinases, is expressed at interphase mitotic centrosomes and the spindle poles in the nucleus where it regulates segregation of chromosomes and cytokinesis. Recent studies have shown that the ectopic expression of Aurora-A in mouse NIH/3T3 cells and Rat 1 fibroblasts causes centrosome amplification and transformation in vitro as well as tumorigenesis in vivo (8, 9). Furthermore, the up-regulation of Aurora-A expression in diploid human breast epithelial cells leads to abnormal numbers of centrosomes and the induction of aneuploidy (8). A correlation between the up-regulated expression of Aurora-A and clinical aggressiveness has also been reported for several cancers (10–14). Moreover, recent reports showed that the up-regulation of Aurora-A resulted in resistance
to apoptosis induced by taxanes in a human cancer cell line (15, 16) and inhibition of the expression of Aurora-A resulted in potent antitumor activity and chemosensitizing activity to taxanes in pancreatic cancer (17). These findings suggest that Aurora-A is a critical kinase-encoding gene and a potential chemotherapeutic target.

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies in the world, including Japan, despite the recent refinement of various therapeutic strategies, including surgery, chemotherapy, radiotherapy, and combined therapy (18, 19). Docetaxel is used as monotherapy or in combination with other agents to treat ESCC, but its activity is far from satisfactory (20, 21). Therefore, identifying and targeting genes conducive to the treatment of ESCC, such as enhancement of conventional chemotherapy, is necessary to improve the survival of patients with this type of refractory cancer.

Using comparative genomic hybridization, we previously investigated changes in the copy number of chromosomes in 29 ESCC cell lines and found that a chromosome gain of the proximal part of 20q, where the Aurora-A gene is located, is one of the most common sites of aberrations (19 of 29, 65.5%; ref. 22). We also reported that the expression of Aurora-A was frequently up-regulated in ESCC tissues as well as cell lines, and this contributed to a poor prognosis (14). In the present study, to further elucidate the possibility of using Aurora-A in the treatment of human ESCC, we analyzed the phenotypic changes of cultured ESCC cells induced by suppression of Aurora-A expression using a plasmid vector-mediated short hairpin RNA (shRNA) expression system, especially synergistic enhancement of the cytotoxicity of docetaxel.

Materials and Methods

Cell culture. All tested ESCC cell lines of the KYSE series were established in our laboratory and maintained in RPMI 1640 (Life Technologies, Gaithersburg, MD) and Ham’s F12 (Nissui Pharmaceutical, Tokyo, Japan) mixed (1:1) medium containing 2% fetal bovine serum (23). HeLa cells were purchased from the American Type Culture Collection (Rockville, MD), cultured in DMEM (Life Technologies, Gaithersburg, MD) and Ham’s F12 (Nissui Pharmaceutical, Tokyo, Japan) mixed (1:1) medium containing 2% fetal bovine serum in PBS at room temperature. Subsequently, the cells were cultured onto collagen-coated glass coverslips (BD Biosciences, Bedford, MA). Then, cells were washed twice with PBS and fixed with 4% paraformaldehyde in PBS for 15 min at room temperature. The fixed cells were incubated with 0.3% Triton X-100 solution for 15 min at room temperature, and the cells were blocked for 1 h with 2% fetal bovine serum in PBS at room temperature. Subsequently, the cells were incubated with anti-human Aurora-A polyclonal antibody (diluted 1:50; TransGenic, Inc., Hamamatsu, Japan) or anti-human β-actin monoclonal antibody (1:2,000; Sigma, Inc., St. Louis, MO). The membranes were subsequently incubated at room temperature for 1 h with secondary antibody and analyzed using enhanced chemiluminescence plus reagent (Amersham, Buckinghamshire, United Kingdom). Quantitative analysis was done on a Macintosh computer using the public domain NIH Image program version 1.61 (developed at the NIH and available on the Internet).3

Immunofluorescent staining. 510 A, 510 m, 1440 A, and 1440 m cells were cultured onto collagen-coated glass coverslips (BD Biosciences, Bedford, MA). Then, cells were washed twice with PBS and fixed with 4% paraformaldehyde in PBS for 15 min at room temperature. The fixed cells were incubated with 0.3% Triton X-100 solution for 15 min at room temperature, and the cells were blocked for 1 h with 2% fetal bovine serum in PBS at room temperature. Subsequently, the cells were incubated with anti-human Aurora-A polyclonal antibody (diluted 1:50; TransGenic) for 1 h at room temperature. After washing twice with PBS, the cells were incubated with goat anti-rabbit FITC-conjugated secondary antibody (Invitrogen Co., Carlsbad, CA) for 1 h at room temperature. The cells were washed and mounted in glycerol and viewed under a laser scanning microscope (Axioskop 2 plus, Carl Zeiss Co. Ltd, Jena, Germany).

Construction of an Aurora-A shRNA expression vector. To construct a vector for Aurora-A shRNA, the pSUPERIOR-puro (OligoEngine, Seattle, WA) was digested with BgIII and HindIII (TaKaRa Bio, Shiga, Japan). A chemically synthesized oligonucleotide encoding an Aurora-A short hairpin small interfering RNA, including a loop motif, was inserted downstream of the H1 promoter of the plasmid using a DNA ligation kit (TaKaRa Bio) and cloned. The sequence of the oligonucleotide targeted at Aurora-A is 5′-ATGCCCGTCTCTTACTGTCA-3′ for KYSE 510, corresponding to positions 853 to 871 within the Aurora-A mRNA sequence (17). To confirm the result, we designed another sequence for KYSE 1440, 5′-GCCGTTTCAGAATACGAGAGG-3′, corresponding to positions 335 to 353 within the Aurora-A mRNA. For the negative control vector, an empty pSUPERIOR-puro was used. We checked the internal stabilities of each sequences using Oligo 4.0s software (National Biosciences, Inc., Plymouth, MN) and found that the 3′-end in the sense strand was less stable than the 5′-end, which is known to cause less off-target effects according to literature (26). Furthermore, we checked each sequence using BLAST Web site software4 and found that each sequence was specific to Aurora-A. Moreover, we also stably transfected each sequence to HeLa cell, and preliminary experiments were undertaken to further confirm their effects (Supplementary Data 1).

Transfections. The ESCC cell lines KYSE 510 and KYSE 1440 were stably transfected with the Aurora-A shRNA expression vector or the empty pSUPERIOR-puro vector using Lipofectamin reagent (Invitrogen) as suggested by the manufacturer’s instruction. Briefly, 2 µg of each plasmid DNA and 20 µl of Lipofectamin reagent together with Opti-MEM I medium (Invitrogen) were used with serum-free medium for 8 h. Cells were incubated for another 48 h with normal growth medium, and subsequently, the cell clones were selected against 1.0 µg/mL puromycin (Nacalai Tesque, Kyoto, Japan) for 3 weeks, and we picked up single colonies originated from single cells and expanded to obtain stably transfected cell lines.

WST assay for sensitivity to docetaxel. Cytotoxic activity against docetaxel was measured by the tetrazolium salt–based proliferation assay (WST-8 assay; Wako Chemicals, Osaka, Japan) following the manufacturer’s instructions. Briefly, cells were cultured in 96-well microtiter plates in 90 µl of growth medium (4,000 cells per well) and incubated for 24 h for sufficient cell growth. Then, 10 µl of a graded concentration of docetaxel (10−8 to 10−15 mol/L) were added into each well and cultured for 48 h. Control cultures received normal growth medium only. After 48 h, 10 µl of WST-8 solution were added to each well and the plates were incubated at 37°C for another 3 h. Absorbance at 450 and 640 nm was measured using the Delta Soft ELISA analysis program, and cell viability was measured and compared with that of control cells. Each experiment was carried out independently and repeated at least thrice. The IC50 value was defined as the concentration that reduced the absorbance in each test by 50%.

Cell proliferation assay. Cells were cultured in 60-mm dishes (2 × 104 per dish) and incubated for 24 h for sufficient cell growth and then treated with medium containing 0.3, 0.6, or 1.0 nmol/L of docetaxel for

3 http://rsb.info.nih.gov/nih-image/

4 http://www.ddbj.nig.ac.jp/search/blast-j.html
and

with H&E and for Aurora-A. Immunohistochemical staining for Aurora-A was performed using formaldehyde/PBS. The tumors were paraffin embedded and stained (50×--510×-derived cells (Aurora-A shRNA-transfected cells, 510 A; empty vector

treated with 3% formaldehyde for 30 min served, respectively, as negative and positive controls for double staining. Cells were analyzed immediately after staining by using a FACScan flow cytometer and the CellQuest software. For each measurement, >10,000 cells were counted.

Flow cytometry for detection of apoptotic cells. KYSE cells transfected with empty vector or shRNA against Aurora-A were cultured in 6-cm dishes (2 × 10⁶ per dish) and treated as already described for the proliferation experiment. Briefly, cells were incubated for 24 h and treated with medium containing 0, 0.3, 0.6, or 1.0 nmol/L of docetaxel for 48 h. Then, they were cultured for another 48 h with normal growth medium. Subsequently, floating cells in the medium and adherent cells were collected. Using an Annexin V-FITC Apoptosis Detection Kit (Medical & Biological Laboratories Co. Ltd., Woburn, MA), cells were stained with Annexin V-FITC and propidium iodide according to the manufacturer's instructions. Annexin V binds to cells that express phosphatidylserine on the outer layer of the cell membrane, and propidium iodide stains the cellular DNA of cells with a compromised cell membrane. This allows for the discrimination of live cells (unstained) from early apoptotic cells (stained only with Annexin V) and late apoptotic or necrotic cells (stained with both Annexin V and propidium iodide). Untreated cells and cells treated with 3% formaldehyde for 30 min served, respectively, as negative and positive controls for double staining. Cells were analyzed immediately after staining by using a FACScan flow cytometer and the CellQuest software. For each measurement, >10,000 cells were counted.

Tumor formation assay in nude mice. Suspensions of 1.0 × 10⁶ KYSE 510-derived cells (Aurora-A shRNA-transfected cells, 510 A; empty vector–transfected cells, 510 m) in PBS (50 μL) were injected s.c. into the left flanks of 5-week-old male BALB/c nude mice (Japan SLC, Shizuoka, Japan) at day 0. The inoculation was conducted in five mice, and tumor growth was estimated from the average volume of tumors. Tumor volume was calculated by the formula 1/2 × L² × W (L = length and W = width of the tumor). At 46 days after inoculation, all mice were sacrificed, and s.c. tumors were resected and fixed in 10% formaldehyde/PBS. The tumors were paraffin embedded and stained with H&E and for Aurora-A. Immunohistochemical staining for Aurora-A was done as reported previously (14). All the animal experiments were done in accordance with institutional guidelines of the Kyoto University.

Treatment with docetaxel in nude mice. 510 m and 510 A tumors were generated as above. Briefly, suspensions of 1.0 × 10⁶ cells in PBS (50 μL) were injected s.c. into the left flanks of 5-week-old male BALB/c nude mice at day 0. The inoculation was conducted in five mice, and mice were treated with docetaxel (7.0 mg/kg body weight; i.p., thrice weekly) or with 0.1 mL PBS (pH 7.4; i.p., thrice weekly) as described previously with modifications (27). Tumor growth was estimated from the average volume of tumors, and tumor volume was calculated as already described. At 39 days after inoculation, all mice were sacrificed, and s.c. tumors were resected, and tumor size was compared. All the animal experiments were done in accordance with institutional guidelines of the Kyoto University.

Results

Expression of Aurora-A and sensitivity to docetaxel in ESCC cell lines. Levels of Aurora-A protein expression in three cancer cell lines were determined by Western blotting (Fig. 1A). KYSE 510 and KYSE 1440 had higher levels of expression than KYSE 110. Next, the sensitivity of the cell lines to docetaxel was checked by WST assay. As shown in Fig. 1B, IC₅₀ of KYSE 510 and KYSE 1440 (4.9 × 10⁻⁷ ± 0.20 × 10⁻⁷ mol/L and 4.6 × 10⁻⁷ ± 0.46 × 10⁻⁷ mol/L, respectively) was higher than that of KYSE 110 (2.4 × 10⁻⁸ ± 0.21 × 10⁻⁸ mol/L; Fig. 1B). Thus, the cell lines with the higher levels of Aurora-A protein (KYSE 510 and KYSE 1440) were more resistant to docetaxel than the cell line with the lower level (KYSE 110).

Vector-based Aurora-A shRNA decreased proliferation in ESCC cell lines. To assess the role of the overexpression of Aurora-A in ESCC cells, we first established subclones via the transfection of vector-based shRNA for Aurora-A in KYSE 510 and KYSE
expression on chemosensitivity to docetaxel by cell number determinations. In the cell number determinations, the suppression of the expression of Aurora-A allowed even 0.3 nmol/L docetaxel to be effective (Fig. 3C and D). Discrepancy in effective concentration of docetaxel between WST assay and cell number determinations could be explained by the difference in the initial numbers of cells, cell concentration and observation period as WST assay and confirmed that growth-inhibitory effect of docetaxel in these two different experiments was similar (Supplementary Data 2). Importantly, in respective experiments, we found that the suppression of Aurora-A expression enhanced chemosensitivity to docetaxel. To investigate the effect of chemosensitivity to docetaxel by the suppression of Aurora-A expression, apoptotic cells in the 510 A and 1440 A clones as well as empty vector–transfected clones were examined by flow cytometry. The population of cells in G2-M phase was significantly larger in 510 A (41.13 ± 6.94%) and 1440 A (38.75 ± 10.5%) in 510 A and by 24.3 ± 10.0% in 1440 A compared with empty vector–transfected cells (510 m and 1440 m; P < 0.01 and 0.01, respectively; Fig. 2C). To investigate the growth suppression caused by inhibition of Aurora-A expression, cell growth was inhibited by 38.7 ± 10.5% in 510 A and by 24.3 ± 10.0% in 1440 A compared with empty vector–transfected cells (510 m and 1440 m; P < 0.01 and 0.01, respectively; Fig. 2C). To investigate the difference in the initial numbers of cells, cell concentration and observation period as WST assay and confirmed that growth-inhibitory effect of docetaxel in these two different experiments was similar (Supplementary Data 2). Importantly, in respective experiments, we found that the suppression of Aurora-A expression enhanced chemosensitivity to docetaxel. To investigate the effect of chemosensitivity to docetaxel by the suppression of Aurora-A expression, apoptotic cells in the 510 A and 1440 A clones as well as empty vector–transfected clones were examined by flow cytometry. The population of cells in G2-M phase was significantly larger in 510 A (41.13 ± 6.94%) and 1440 A (38.75 ± 10.5%) in 510 A and by 24.3 ± 10.0% in 1440 A compared with empty vector–transfected cells (510 m and 1440 m; P < 0.01 and 0.01, respectively; Fig. 2C). To investigate the growth suppression caused by inhibition of Aurora-A expression, cell growth was inhibited by 38.7 ± 10.5% in 510 A and by 24.3 ± 10.0% in 1440 A compared with empty vector–transfected cells (510 m and 1440 m; P < 0.01 and 0.01, respectively; Fig. 2C).
The effect of Aurora-A suppression on tumor growth in vivo. To examine the possible effect of Aurora-A shRNA on tumor growth in vivo, s.c. tumor formation assay in nude mice was done. As shown in Fig. 4A, the tumors formed from Aurora-A shRNA-transfected cells (510 A) were clearly smaller than that formed from empty vector–transfected cells (510 m). Then, we examined tumor volume and weight at 46 days after inoculation. The average tumor volume of the mice at day 46 was reduced by 36.1% in 510 A compared with 510 m (P = 0.03; Fig. 4C), and the average tumor weight was also decreased by 31.5% in 510 A compared with 510 m (P = 0.03; Fig. 4C). All of the tumors were stained with H&E and for Aurora-A (Fig. 4D), and Aurora-A immunoreactivity was confirmed to be reduced in tumors grown from Aurora-A shRNA-transfected cells but not in tumors grown from empty vector–transfected cells.

The effect of Aurora-A suppression on chemosensitivity to docetaxel in vivo. To examine the possible effect of Aurora-A shRNA on chemosensitivity to docetaxel in vivo, s.c. tumors were generated in nude mice followed by treatment with docetaxel or PBS. The tumors formed from Aurora-A shRNA-transfected cells (510 A) were apparently smaller than those formed from empty vector–transfected cells (510 m) after the treatment with docetaxel at day 39 (Fig. 5A, b and d). To confirm this, we measured tumor volume at 39 days after inoculation. As shown in Fig. 5C, following the treatment with docetaxel, the average tumor volume of 510 A and 510 m was 175.3 ± 70.4 mm³ and 312.8 ± 28.0 mm³, respectively, and thus, the suppression of Aurora-A expression resulted in a 44.0% inhibition of tumor growth (P = 0.03).

Discussion

We previously reported that the expression of Aurora-A was frequently up-regulated in ESCC tissues and cell lines and contributed to a poor prognosis (14). In an attempt to determine the potential of Aurora-A as a therapeutic target, we used a vector-based shRNA technique to knock out its expression and analyzed its phenotypes.

In the current study, we were able to suppress the expression of Aurora-A using vector-based shRNA for two different target sequences in two different ESCC cell lines and obtained very similar results at each examination in vitro. That is, a reduction of Aurora-A protein expression was clearly related to cell growth inhibition and increased sensitivity to docetaxel.

Recently, a relationship between Aurora-A activity and G₂-M transition was reported in cancer cells (28). In the current study, we showed that the suppression of Aurora-A expression caused an accumulation of the cells in the G₂-M phase in vitro, resulting in the inhibition of proliferation of ESCC cell lines. Moreover, in recent report, Hata et al. (17) showed that the suppression of Aurora-A expression had an antitumorigenic effect in vivo in pancreatic cancer, and we similarly showed that the suppression of Aurora-A expression in ESCC cell lines inhibited tumor growth in vivo using our vector-mediated shRNA strategy. Our results were consistent with Hata et al. in
terms of antitumor activity that the suppression of Aurora-A expression caused in ESCC. Consequently, Aurora-A seemed to be a critical factor for the proliferation of cancer cells, and therefore, it should be a good therapeutic target for halting proliferation of ESCC.

Furthermore, we found that the suppression of Aurora-A expression enhanced the sensitivity to docetaxel-induced apoptosis both in vitro and in vivo. Taxanes bind to free tubulin and promote the assembly of tubulin into stable microtubules. Hence, they stop cell cycle progression, causing cells in the M phase to accumulate at the metaphase-anaphase transition and subsequently leading them to apoptosis, which is consistent with our findings that the suppression of Aurora-A expression resulted in the accumulation of cells in the G2-M phase. As previously discussed, Aurora-A is essential for the proper arrangement of centrosomes and microtubules, and Hata et al. showed that a combination of the suppression of Aurora-A expression and use of taxanes resulted in an augmented induction of apoptosis in pancreas cancer in vitro (17). Additionally, Anand et al. (15) showed that the overexpression of Aurora-A induced increased resistance to taxanes via a decrease in spindle checkpoint activity in vitro. Our results

Fig. 3. Effect of the suppression of Aurora-A expression on sensitivity to docetaxel. A and B, cytotoxic activities of docetaxel were measured by WST-8 assay. Graded concentrations of docetaxel (10\(^{-3}\) to 10\(^{-7}\) mol/L) were added to the wells, and the cells were cultured for 48 h. Control cultures received normal growth medium only. Cell viability was measured as absorbance at 450 nm, and values obtained were compared with that of the control. The IC\(_{50}\) value was defined as the concentration that reduced the absorbance in each test by 50%. X-axis, final docetaxel concentration (10\(^{-8}\) to 10\(^{-11}\) mol/L). The experiments were repeated thrice. C and D, cytotoxic activities of docetaxel were confirmed by cell counting. Graded concentrations of docetaxel (0, 0.3, 0.6, and 1.0 nmol/L) were added for the first 2 d, and normal growth medium was added for the next 2 d. The number of cells was counted every 2 d. These experiments were repeated thrice.
are consistent with this study and were able to show that the suppression of Aurora-A expression enhanced chemosensitivity to docetaxel not only in vitro but also in vivo. These results suggest that, by suppressing Aurora-A expression, spindle checkpoint activity might have recovered and, thus, increased the sensitivity to taxanes. In the meantime, the mechanism that triggers apoptosis after inhibition of Aurora-A expression, as well as the complicated biological activity of Aurora-A, remains to be clarified.

RNA interference has become conventional applications for in vivo cancer therapy (29, 30), and an efficient way of delivering small interfering RNA into solid tumors has been developed (31). In the current study, we explored the possibility that the RNA interference–mediated suppression of Aurora-A could be used as a specific gene-targeting therapy to suppress the progression of ESCC. Moreover, the function of Aurora kinase inhibitors (including the patent literature) has been studied recently, revealing potentially promising anticancer
Fig. 4. Effect of the down-regulation of Aurora-A expression on the formation of tumors in vivo. A, representative features of tumors in a mouse 46 d after the inoculation. a, tumors formed from empty vector-transfected cells (510 m) in the left flank; b, tumors formed from Aurora-A shRNA-transfected cells (510 A) in the left flank. B, growth of tumors in the mice injected with Aurora-A shRNA-transfected cells (510 A) or empty vector–transfected cells (510 m). The inoculation was done in five mice. C, tumor volume and weight at day 46 after inoculation. Left, black column, average tumor volume at day 46 after the inoculation of empty vector–transfected cells (510 m); white column, average tumor volume at day 46 after the inoculation of Aurora-A shRNA-transfected cells (510 A; n = 5). *, P = 0.03. Right, black column, average tumor weight at day 46 after the inoculation of empty vector–transfected cells (510 m); white column, average tumor weight at day 46 after the inoculation of Aurora-A shRNA-transfected cells (510 A; n = 5). **, P = 0.03. D, a, immunohistochemical staining of Aurora-A in s.c. tumors at day 46 after the inoculation of Aurora-A shRNA-transfected cells (510 A). Magnification, ×200. b, H&E staining of s.c. tumors at day 46 after the inoculation of Aurora-A shRNA-transfected cells (510 A). Magnification, ×200. c, immunohistochemical staining of Aurora-A in s.c. tumors at day 46 after the inoculation of empty vector–transfected cells (510 m). Magnification, ×200. d, H&E staining of s.c. tumors at day 46 after the inoculation of empty vector–transfected cells (510 m). Magnification, ×200.
Therefore, our results in combination with these findings suggest that taxane-mediated chemotherapy could be more effective in combination with these anti-Aurora agents in ESCC.

In summary, the suppression of Aurora-A expression is shown to inhibit tumor growth of ESCC and enhanced chemosensitivity to docetaxel both in vitro and in vivo. Consequently, the therapeutic regimen to suppress the Aurora-A expression is a feasible candidate to become a novel therapeutic strategy for the treatment of ESCC.

Acknowledgments

We thank Sakiko Shimada for assistance with the cell cultures; Takako Murai, Kumi Kodama, Akane Iwase, and Fumie Uemura for technical assistance; and Drs. Atsushi Itami, Go Watanabe, Junichiro Kawamura, and Toshiya Somafu for technical advice.
References

Clinical Cancer Research

The Suppression of Aurora-A/STK15/BTAK Expression Enhances Chemosensitivity to Docetaxel in Human Esophageal Squamous Cell Carcinoma

Eiji Tanaka, Yosuke Hashimoto, Tetsuo Ito, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/13/4/1331

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2007/02/15/13.4.1331.DC1

Cited articles
This article cites 33 articles, 15 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/13/4/1331.full#ref-list-1

Citing articles
This article has been cited by 8 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/13/4/1331.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.