The Targeted Immunocytokine L19-IL2 Efficiently Inhibits the Growth of Orthotopic Pancreatic Cancer

Karola Wagner, Petra Schulz, Arne Scholz, Bertram Wiedenmann, and Andreas Menrad

Abstract

Purpose: Effective control of pancreatic cancer has been hampered primarily by the lack of tumor specificity of current treatment modalities. The highly specific antibody-mediated delivery of therapeutic agents to the tumor microenvironment might overcome this problem. We therefore investigated the therapeutic efficacy of the targeted immunocytokine L19-Interleukin-2 (L19-IL2), consisting of the human single-chain Fv antibody L19, which is highly specific for the extradomain B (ED-B) of fibronectin, and the human cytokine IL-2, in pancreatic cancer.

Experimental Design: Therapeutic effects of L19-IL-2, IL-2, and gemcitabine on tumor growth and metastasis were evaluated in orthotopic mouse models for pancreatic cancer. Immunohistochemistry was done to define ED-B expression, tumor necrosis, apoptosis, proliferation, and invasion of macrophages and natural killer (NK) cells. NK cells were depleted by i.v. injection of an anti-asialo-GM-1 antibody.

Results: ED-B is selectively expressed in human pancreatic cancer and in primary tumors and metastases of the mouse models. L19-IL-2 therapy was clearly superior to untargeted IL-2 or gemcitabine and inhibited tumor growth and metastasis with remarkable long-term tumor control. Therapeutic effects were associated with the induction of extensive tumor necrosis and inhibition of tumor cell proliferation. Immunohistochemistry revealed an increase of macrophages and NK cells in the tumor tissue, suggesting immune-mediated mechanisms. The functional relevance of NK cells for the therapeutic effect of the targeted immunocytokine L19-IL-2 was confirmed by NK cell depletion, which completely abolished its antitumor efficacy.

Conclusions: These preclinical results strongly encourage the initiation of clinical studies using L19-IL-2 in pancreatic cancer.

Adenocarcinoma of the pancreas represents the fifth leading cause of cancer related death in industrialized western countries (1). The prognosis of patients diagnosed with pancreatic cancer is extremely poor with an estimated overall 5-year survival rate of 1% to 4%. Surgical resection provides the only potentially curative treatment, but locally advanced or metastasized disease precludes surgical treatment in most cases (2, 3). Due to poor selectivity, toxicities against nonmalignant cells, and dose limitations, currently available strategies including palliative, chemotherapeutic, and radiation treatments have little effect on the aggressive course of disease (4–7). One promising avenue to overcome these obstacles is the highly specific antibody-mediated delivery of therapeutic agents to the tumor microenvironment. In particular, vascular and/or stromal targeting represents an appealing therapeutic strategy for several reasons. First, targets, which are selectively expressed around tumor vessels and/or in the tumor stroma, are easily accessible to systemically administered antibodies. Second, markers of tumor stroma and tumor neovascularization are typically produced by endothelial cells and/or myofibroblasts, which are genetically more stable than tumor cells. Third, as neoangiogenesis is a prerequisite of tumor growth and metastasis, the selective targeting approach of L19-Interleukin-2 (IL-2) to newly forming tumor blood vessels should result in a therapeutic benefit. Currently, one of the most selective oncofetal antigens associated with neoangiogenesis and tumor growth is the extradomain B (ED-B) of fibronectin (6, 8). The fibronectin splice variant ED-B, a small domain of 91 amino acids, which is homologous from mouse to man, is usually absent in both plasma and tissue-fibronectin, except for some blood vessels of the regenerating endometrium and the ovaries (6, 8). However, it may become inserted in the fibronectin molecule during active tissue remodeling associated with neoangiogenesis, thereby accumulating around the neovascularization and in the stroma of malignant tumors and other tissues undergoing angiogenesis (6, 8). Recently, a human single-chain Fv (scFv) antibody fragment L19 has been generated, which displays...
transplantation was carried out as described (18). In brief, a median Philogen)orequimolaramounts ofL19(783 or 60 days (MiaPaca-A2) after tumor cell inoculation when solid wallwasclosed. Therapywasstarted7days(DanG), 40days(MiaPaca),head of the pancreas. The pancreas was replaced and the abdominal

in metastatic MiaPaca-A2 tumor model was calculated by determining the largest diameter and its perpendicular diameter and computing the product of the two measurements.

Depletion of natural killer cells. Natural killer (NK) cell depletion was done as described previously (19). Briefly, mice received six injections i.p. with 50 μl anti-asialo-GM-1 antibody (Wako Chemicals) every fourth day, starting 3 days before tumor cell injection. The level of NK cell depletion was monitored by flow cytometry and cytokotoxicity assay.

Preparation of spleen mononuclear cells. Spleens were removed under deep general anesthesia and digested with collagenase (Worthington) for 1 h at 37°C. Subsequently, contents were forced through a 100-μm cell strainer and washed twice with HBSS. Mononuclear cells were separated from the cell suspension via Ficoll-

immunocytokine L19-IL-2 in pancreatic carcinoma. IL-2 has been characterized as one of the most potent antitumor cytokines. However, despite being approved for the clinical treatment of metastatic renal cell carcinoma, systemically applied IL-2 has failed to fulfill earlier hopes. In part, this is due to serious, potentially life-threatening side effects that limit dose escalation and prevent the application of sufficiently high doses (11, 12). In addition, the fast clearance of systemically administered IL-2 further decreases its effectiveness. However, local administration of IL-2 has been more successful and has resulted in the control of malignant effusions and remission of established lesions (11, 13–15).

In this regard, a targeted accumulation of the cytokine IL-2 at the tumor microenvironment by conjugating it to the homodimeric scFv L19 appears to be an attractive concept to enhance the therapeutic index of IL-2 and at the same time diminish its toxic side effects. This study was therefore designed to evaluate the therapeutic efficacy of the recombinant targeted immunocytokine L19-IL-2 in pancreatic carcinoma.

Materials and Methods

Human tissue samples. Nineteen pancreatic carcinoma, 15 chronic pancreatitis, and 11 normal pancreatic tissue samples were obtained from individuals who underwent surgical resection at the Department of Surgery at Charité University Hospital. This study was approved by the local ethics committee and all patients gave written informed consent prior to surgery.

Cell culture. The human pancreatic carcinoma cell lines MiaPaca (American Type Culture Collection), DanG, and the murine lymphoma cell line YAC-1 (DSMZ) were cultured as described previously (16, 17). MiaPaca cells, stably transfected with an angiopoietin-2 DNA construct, were maintained as MiaPaca wild-type cells, except for the addition of hygromycin B (400 μg/mL; Invitrogen).

Animals. Female NMR nude mice (age, ≈ 10 weeks; weight, 21-25 g) were purchased from Bomholtgard. Animal care followed institutional guidelines and all experiments were approved by local animal research authorities.

Tumor implantation and in vivo treatment. Three orthotopic xenograft mouse models of pancreatic carcinoma were established, including two nonmetastatic models by injection of wild-type cells of the human pancreatic carcinoma cell lines DanG and MiaPaca and one metastatic model by implantation of MiaPaca cells stably transfected with an angiopoietin-2 DNA construct (MiaPaca-A2).3 Orthotopic transplantation was carried out as described (18). In brief, a median laparotomy was done under deep general anesthesia and the pancreas was exposed. Aliquots of 1 × 106 tumor cells were injected into the head of the pancreas. The pancreas was replaced and the abdominal wall was closed. Therapy was started 7 days (DanG), 40 days (MiaPaca), or 60 days (MiaPaca-A2) after tumor cell inoculation when solid tumors and metastases (MiaPaca-A2) had formed. Groups of 8 to 12 mice were treated with vehicle (0.9% saline) or 1.43 or 4.29 MIU/kg IL-2 equivalents as either untargeted IL-2 or L19-IL-2 (provided by Philogen) or equimolar amounts of L19 (783 μg/kg) for 10 days or 250 mg/kg gemcitabine (Lilly) once weekly.

At the end of each therapy, the tumor volume was calculated using the formula: length × width × depth × π / 6. The area of lymph nodes of the metastatic MiaPaca-A2 tumor model was calculated by determining the largest diameter and its perpendicular diameter and computing the product of the two measurements.3 Established by A. Scholz, unpublished data.

Depletion of natural killer cells. Natural killer (NK) cell depletion was done as described previously (19). Briefly, mice received six injections i.p. with 50 μl anti-asialo-GM-1 antibody (Wako Chemicals) every fourth day, starting 3 days before tumor cell injection. The level of NK cell depletion was monitored by flow cytometry and cytokotoxicity assay.

Preparation of spleen mononuclear cells. Spleens were removed under deep general anesthesia and digested with collagenase (Worthington) for 1 h at 37°C. Subsequently, contents were forced through a 100-μm cell strainer and washed twice with HBSS. Mononuclear cells were separated from the cell suspension via Ficoll-

human pancreatic carcinoma cell lines DanG and MiaPaca and one

is due to serious, potentially life-threatening side effects that

Clinical Cancer Research, Volume 14, Number 15, August 1, 2008
ED-B fibronectin is selectively expressed in human pancreatic carcinoma. We studied the expression pattern of ED-B fibronectin in human nontransformed pancreatic tissue, chronic pancreatitis, and ductal adenocarcinoma (Fig. 1A, a, c, and e). In parallel, serial sections from the same tissues were stained with a monoclonal antibody against the endothelial cell–specific antigen CD31 (Fig. 1A, b, d, and f). All but one carcinoma sample analyzed ($n = 19$) revealed a specific expression of ED-B fibronectin at the abluminal side of tumor blood vessels and in the tumor stroma (Fig. 1A, e and f). By contrast, nontransformed pancreatic tissue ($n = 11$; Fig. 1A, a and b) and chronic pancreatitis ($n = 15$; Fig. 1A, c and d) showed no ED-B fibronectin signal. Morphometric quantification of ED-B fibronectin in pancreatic cancer recorded the presence of ED-B fibronectin in $7.35 \pm 1.60\%$ of total tissue area compared with $<0.1\%$ in nontransformed pancreatic tissue and chronic pancreatitis (Fig. 1B). Thus, ED-B fibronectin provides the specific and selective overexpression required for an ED-B fibronectin-based targeted therapy in pancreatic cancer.

Development of an orthotopic mouse model for pancreatic cancer. To investigate the therapeutic efficacy of an ED-B fibronectin targeted therapy, we established orthotopic models for pancreatic cancer by injection of human wild-type DanG or MiaPaca pancreatic cancer cells or MiaPaca cells with stable overexpression of angiopoetin-2 (MiaPaca-A2) into the pancreas of nude mice. Orthotopic transplantation resulted in extensive local tumor growth with invasion of adjacent normal pancreatic tissue and neighboring organs. Moreover, MiaPaca-A2 tumors showed metastatic dissemination into intra-abdominal lymph nodes and liver. The immunohistochemical analysis of the orthotopically grown pancreatic tumors consistently revealed a strong cuff-like immunostaining for ED-B fibronectin around tumor blood vessels and in the stromal compartment (Fig. 1A, g and h, right). In comparison with the human situation, the extent of ED-B fibronectin expression was higher in DanG tumors ($22.33 \pm 0.65\%$; Fig. 1B) but equal in MiaPaca tumors ($7.96 \pm 1.32\%$; Fig. 1B).

Targeted immunocytokine L19-IL-2 exerts significant antitumor activity against established pancreatic cancer. To determine the efficacy of L19-IL-2 in pancreatic cancer, mice bearing orthotopic DanG tumors of $3.1 \pm 0.05\, \text{mm}^3$ average volume were randomized to receive vehicle or 1.43 or 4.29 MIU/kg IL-2 equivalents of either L19-IL-2 or untargeted IL-2 for 10 days. Whereas IL-2 treatment had no effect on tumor growth,
in the lower dose and only a minor effect in the higher dose, administration of L19-IL-2 significantly reduced tumor volume to 21.4% (1.43 MIU/kg) and 2.7% (4.29 MIU/kg) compared with control mice (Fig. 2A). This result clearly shows that L19-IL-2 is superior to the untargeted cytokine. As shown in a separate experiment, this was not due to an IL-2-independent antitumor activity of the scFv L19 antibody fragment, because administration of 4.29 MIU/kg L19-IL-2 reproducibly led to a significant reduction of tumor load, whereas equimolar amounts of the naked scFv L19 were therapeutically inactive (Fig. 2B).

CA 19-9 as a response marker of therapy. Orthotopic tumors do not allow the continuous evaluation of tumor size by caliper measurements. For this reason, we established CA 19-9 as a valuable serum marker to monitor both tumor progression and therapeutic effects of the targeted immunocytokine L19-IL-2. It was possible to show a significant correlation between tumor volume and serum concentrations of CA 19-9 ($r^2 = 0.54$, $P < 0.0001$; Fig. 2C). Accordingly and in agreement with the therapeutic effects on tumor burden described above, CA 19-9 levels were significantly reduced following L19-IL-2 treatment, whereas no changes were visible in the IL-2-treated group (data not shown). These results prompted us to evaluate the time-response relationship of L19-IL-2-induced tumor growth inhibition. Interestingly, a L19-IL-2-dependent tumor growth delay in terms of 2-fold lower CA 19-9 levels when compared with controls was observed as early as day 3 after start of treatment. This difference continued to increase until the end of experiment. Here, a >15-fold increase in serum CA 19-9 levels was detectable in the control group, whereas CA 19-9 levels

Fig. 2. Therapeutic effects of L19-IL-2 on orthotopic pancreatic cancer in nude mice. A to E, nude mice bearing orthotopic DanG pancreatic tumors were randomly treated. A, mean ± SE tumor volume of each treatment group. Note that treatment with L19-IL-2 was significantly superior to treatment with equimolar amounts of IL-2. *, $P < 0.004$, versus control; +, $P = 0.0003$, versus equimolar amounts of IL-2. B, percentage of tumor volume from vehicle-treated controls. Note that the naked L19 antibody achieved no therapeutic effect, whereas equimolar amounts of L19-IL-2 led to a significant decrease of the primary tumor volume. *, $P < 0.004$, versus control and scFv L19. C, serum CA19-9 levels from mice bearing orthotopic DanG tumors and tumor-free animals were determined and CA19-9 level versus tumor volume was plotted for each individual animal ($n = 56$, $r^2 = 0.54$, $P < 0.0001$). D, CA19-9 levels were determined at the designated time points. Points, mean of control or treatment group; bars, SE. *, $P < 0.05$. E, determination of serum lipase. Mean ± SE for each treatment group. F, nude mice bearing orthotopically transplanted MiaPaca pancreatic cancer were treated as specified. Mean ± SE tumor volume of each treatment group. Of note, L19-IL-2 treatment was significantly superior to treatment with equimolar amounts of IL-2. *, $P < 0.0007$, versus control; +, $P = 0.0003$, 1.43 MIU/kg body weight L19-IL-2 versus equimolar amounts of IL-2; **, $P = 0.0513$, 4.29 MIU/kg body weight L19-IL-2 versus equimolar amounts of IL-2.
Targeted immunocytokine L19-IL-2 does not elicit an unspecific inflammatory response. Having proven the therapeutic effect of L19-IL-2, we next ensured that IL-2 activity and subsequent inflammatory response is confined to the tumor not provoking an acute pancreatitis in adjacent nontransformed pancreatic tissue. For this purpose, serum lipase levels were determined as a surrogate marker of pancreatitis in mice treated with vehicle, IL-2, or L19-IL-2. However, neither treatment increased serum lipase concentrations (Fig. 2E). This finding was further corroborated by the histologic analysis of pancreatic tumors and residual nontransformed pancreatic tissue of animals treated with L19-IL-2 using conventional H&E staining and immunostaining with antibodies directed against NK1.1 (NK cells) and CD11b (predominantly macrophages), respectively. Of note, no signs of acute pancreatitis were detectable and inflammatory cells selectively accumulated in the tumor, sparing adjacent nontransformed pancreatic tissue (data not shown). Thus, L19-IL-2 treatment did not cause pancreatitis as an adverse effect.

Therapeutic effects of L19-IL-2 on pancreatic cancer are not cell type specific. To investigate whether L19-IL-2-mediated reduction of tumor growth could be reproduced in other pancreatic cancer cell lines, mice bearing orthotopic MiaPaca pancreatic tumors were assigned to treatment with the same conditions as specified above. Whereas untargeted IL-2 was not therapeutic at low dosage, equimolar amounts of L19-IL-2 reduced tumor load by 90%. At the high dosage, untargeted IL-2 achieved a 50% inhibition of tumor growth compared with an 83% reduction of tumor volume by L19-IL-2 (Fig. 2F).

L19-IL-2 treatment inhibits pancreatic cancer lymph node metastasis. Having confirmed the antitumor action of L19-IL-2 on primary pancreatic tumors, we next explored its potency in metastatic disease using the metastatic MiaPaca-A2 pancreatic tumor. Consistently, all lymph nodes infiltrated by cancerous cells and all liver metastases showed immunoreactivity for ED-B fibronectin (Fig. 3A, a), whereas noninfiltrated lymph nodes (Fig. 3A, b) and liver did not.

Based on this observation, mice bearing primary tumors and metastases were randomly treated with vehicle or L19-IL-2 at 4.29 MIU/kg. In addition to the anticipated reduction of primary tumor volume, L19-IL-2 treatment also decreased the mean lymph node area to <20% of the values obtained in vehicle-treated controls (P = 0.0120; Fig. 3B, compare a and b). To determine, if changes in lymph node area were due to infiltrating tumor cells, lymph nodes were immunostained for the presence of human cytokeratin to detect epithelial cells of human origin. This immunostaining with a pancytokeratin antibody revealed large, polymorph cells with strong immunoreactivity, indicative of tumor cells, in 80% of control mice (Fig. 3B, c) compared with 20% of L19-IL-2-treated mice. In contrast, lymph nodes of L19-IL-2-treated mice more frequently contained large quantities of small, granulocyte-like cells and inflammatory response.

Fig. 3. Therapeutic effects of L19-IL-2 on metastatic disease in an orthotopic mouse model of pancreatic cancer. A, lymph nodes of nude mice bearing metastatic MiaPaca-A2 pancreatic tumors were analyzed for ED-B fibronectin expression. Tumor-positive lymph nodes (a) showed a strong immunoreactivity for ED-B fibronectin, whereas tumor-free lymph nodes revealed no ED-B fibronectin signal (b). Bar, 100 μm. B, mice bearing metastatic MiaPaca-A2 pancreatic cancer were treated. B, photographs show the macroscopic aspect of a representative liver hilus of a control (a) and a L19-IL-2-treated (b) mouse (L, liver). Note that the liver hilus lymph node (arrow) of the L19-IL-2-treated animal (b) is visibly smaller when compared with vehicle-treated control (a). Lymph nodes were analyzed for tumor infiltration by immunostaining for pancytokeratin. Representative examples of a lymph node of a vehicle-treated (c) and a L19-IL-2-treated mouse (d). A strong immunostaining of large, polymorph cells is observed in the lymph nodes of the control mice (c). Small granulocyte-like, cytokeratin-positive cells are typically detectable in lymph nodes of L59-IL-2-treated mice (d). Bar, 100 μm. C, lymph nodes were analyzed by DNA-PCR for detection of a human-specific 850-bp fragment on the α-satellite DNA on human chromosome 17. Representative results from vehicle-treated (lanes 3–7) or L19-IL-2-treated mice (lanes 8–12). A lymph node of a tumor-free mouse and a MiaPaca primary pancreatic cancer served as negative (lane 7) and positive (lane 2) controls, respectively. D, summarized results of the calculated area of lymph nodes (left, Y axis, pale columns) and the human-specific DNA PCR (right, Y axis, dark columns). Mean ± SE lymph node area (pale columns; *P = 0.0120) or percentage of mice having PCR-positive lymph nodes (dark columns; *P = 0.0275).
Effects of L19-IL-2 on tumor necrosis, apoptosis, and proliferation. To identify the mechanisms underlying L19-IL-2-induced tumor remission, we initially analyzed DanG pancreatic tumor samples by conventional H&E staining. One of the most intriguing features of L19-IL-2-treated tumors was extensive tumor necrosis (Fig. 5A, b). Indeed, in mice receiving L19-IL-2, necrosis comprised 42 ± 10.86% of the tumor area, whereas only 2.5 ± 2.177% of the tumor area was necrotic in untreated controls (P < 0.0159; Fig. 5A). The determination of the apoptotic index in the residual vital tumor tissue via terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling assay revealed no difference between both groups (Fig. 5B). By contrast, L19-IL-2-treated tumors displayed a 4.6-fold reduced fraction of proliferating cells based on Ki-67 end labeling assay revealed no difference between both groups (Fig. 5B). Thus, these results corroborate our hypothesis of a false-positive cytokeratin immunostaining (Fig. 3B, d). The granulocyte-like appearance raised the possibility that these cells were detected due to a cross-reaction of anti-cytokeratin antibodies with granule-associated epitopes of mouse granulocytes, which has been reported previously (22). To verify this hypothesis, lymph nodes were screened for infiltration of human cancer cells by a sensitive DNA-PCR-based approach. Indeed, amplificates of a human-specific α-satellite DNA were only detected in lymph nodes of 33% of L19-IL-2-treated mice (Fig. 3C, lanes 8-12) but in 100% of control mice (Fig. 3C, lanes 3-7). Thus, these results corroborate our hypothesis of a false-positive cytokeratin immunostaining of small, granulocyte-like cells in lymph nodes of L19-IL-2-treated animals and show that L19-IL-2 treatment had either prevented or diminished lymph node metastases (P = 0.0275; Fig. 3D, dark columns).

L19-IL-2 treatment yields considerable long-term therapeutic effects. To explore whether L19-IL-2 is capable of sustaining long-term remission, mice bearing orthotopic DanG pancreatic cancer were treated with 4.29 MIU/kg body weight L19-IL-2 and were subsequently left untreated. CA 19-9 levels were determined at the indicated time points. A, mice bearing orthotopic DanG pancreatic tumors were subjected to i.p. treatment with 250 mg/kg body weight gemcitabine once weekly, i.v. injection of 4.29 MIU/kg body weight L19-IL-2 for 10 consecutive days, or vehicle treatment. Mean ± SE of each treatment group. *P < 0.01, versus control; **P < 0.01, versus gemcitabine.

Discussion

IL-2 is an approved drug for the treatment of metastatic renal cell carcinoma and melanoma. To specifically increase the concentration of IL-2 at the tumor site, locoregional treatment
schedules were designed and investigated. (11, 12). High concentrations of IL-2 are indeed essential for a therapeutic effect and have been exemplified by the application of IL-2 in patients with advanced pancreatic cancer via arterial or portal venous catheters in combination with polychemotherapy (23, 24). Unfortunately, all locoregional applications are limited to tumors that are accessible from the outside without having the possibility to deliver the cytokine to distant metastases. This hurdle can be overcome by a highly selective compound such as the targeted immunocytokine L19-IL-2. The most important prerequisite for a novel antibody-targeted delivery therapy like L19-IL-2 is the tumor-specific expression and accessibility of a target molecule within the body. ED-B fibronectin fulfills these requirements because (a) this molecule is specifically up-regulated during tumor angiogenesis and tumor growth (6, 25, 26) and (b) it is accessible for antibody-targeted therapies. This has been shown with the ED-B-specific scFv L19, which was successfully used for tumor imaging (10) and the delivery of various effector molecules in animal studies (26–29).

This is the first study that shows a specific overexpression of ED-B fibronectin in human pancreatic carcinoma, whereas no ED-B fibronectin was detectable in normal pancreas or chronic pancreatitis. Our immunohistochemical data strongly

Fig. 5. Effects of L19-IL2 on tumor necrosis, apoptosis, and proliferation. DanG tumors from mice that had received either vehicle or 4.29 MIU/kg body weight L19-IL2 were examined by conventional H&E staining (A, a and b), terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling assay (B, a and b), or Ki-67 staining (C, a and b). Right, quantification of necrosis (A; *, P = 0.0159), apoptosis (B), and proliferation (C; *, P = 0.0177). Mean ± SE percentages of each group. Bar, 500 µm (A) and 50 µm (B and C).
supported the evaluation of the therapeutic efficacy of the targeted immunocytokine L19-IL-2 in mouse models for this devastating disease. There is increasing evidence that the ectopic or orthotopic environment has a different effect on tumor cell protein expression, tumor growth, invasiveness, angiogenesis, metastasis, drug delivery, and sensitivity to therapeutic agents (30). For this reason, we developed orthotopic mouse models for pancreatic cancer, which accurately recapitulate the tumor behavior and the clinical course of this deadly disease.

In both models, we strongly showed an ED-B fibronectin expression pattern, which is comparable with the human situation in both primary tumors and lymph node and liver metastases. Here, we report the first study that addresses the therapeutic efficacy of L19-IL-2 in a tumor grown in its natural microenvironment. In this orthotopic setting, we could clearly show that the systemic i.v. administration of clinically relevant doses of L19-IL-2 efficiently inhibited the growth of established primary pancreatic tumors and distant metastases, whereas equivalent concentrations of untargeted IL-2 had no or only minor therapeutic effects. It is noteworthy that the therapeutic effect of L19-IL-2 could be shown in two independent mouse models with different quantitative level of ED-B fibronectin expression (DanG, 22.33%; MiaPaca, 7.96%). This observation was unexpected, yet the density of ED-B fibronectin visualized

Fig. 6. Identification of the immune effector cells mediating L19-IL-2-induced tumor regression. A and B, DanG tumors from mice that had received either vehicle or L19-IL-2 as indicated were examined with a CD11b antibody (A) and a NK1.1 antibody (B). Left, representative examples of vehicle-treated (A and B, a) and L19-IL-2-treated mice (A and B, b). Bar, 50 μm. Right, quantification of infiltrating CD11b+ cells (A) and NK cells (B). *, P = 0.0159 (A) and 0.0012 (B). C, nude mice bearing DanG orthotopic tumors were randomly assigned to the indicated treatment groups. Columns, mean of tumor volumes of each group; bars, SE. *, P < 0.01, versus any other group.
by immunohistochemistry must not necessarily correlate with the in vivo accumulation of the targeted immunocytokine L19-IL-2 in the tumor tissue. It may very well be that, in comparison with DanG, the apparently low target density in the MiaPaca tumor model can be compensated by a more functional vascular network leading to a higher accumulation of L19-IL-2 at the tumor site. Different levels of L19-IL-2 accumulation could also explain the induction of a complete and permanent remission in 40% of the animals, whereas untargeted IL-2 showed tumor regrowth after treatment. If our hypothesis is true, the stratification of patients who will most likely benefit from a targeted immunocytokine therapy will be most possible using radioactively labeled L19. Future experiments in this direction are currently being done.

In this context, it is also important to note that, until today, the mechanisms underlying the antitumor activity of IL-2 are not still not fully understood. In our study, one of the most intriguing features of L19-IL-2-treated tumors was an extensive tumor necrosis, which was most prominent in the central part of the tumor. In this region, few leukocytes were detectable. Therefore, tumor cell death caused by direct cell-to-cell contact with NK cells, macrophages, or other immune effector cells is unlikely. Indeed, recent evidence supports the occurrence of a local vascular leak syndrome provoked by lymphokines and nitric oxide produced by IL-2-activated immune effector cells (31, 32). Furthermore, direct cytotoxic effects of IL-2 (12) and activated NK cells (33, 34) on the endothelium were reported. Considering that (a) endothelial cells seem to migrate along extracellular matrix structures containing ED-B fibronectin (35) and (b) L19-IL-2 is selectively accumulating within the ED-B fibronectin-rich proangiogenic tumor microenvironment, we postulate that L19-IL-2-triggered direct and/or indirect mechanisms have a detrimental effect on both the tumor vasculature and the tumor cells themselves, which are per se insensitive to IL-2-treatment (36). Therefore, the considerable decrease of Ki-67-positive tumor cells in the tumor of L19-IL-2-treated animals can only be attributed to cytokines such as IFN-γ and tumor necrosis factor-α, which are released by the large amounts of tumor-infiltrating NK cells and macrophages. Both IFN-γ and tumor necrosis factor-α are known to directly inhibit the growth of pancreatic cancer cells (37, 38).

We could bolster this hypothesis by showing a L19-IL-2-triggered 4-fold increase of tumor-infiltrating macrophages and a >70-fold increase of NK cells. These data suggest that macrophages were not the main drivers for the therapeutic efficacy of L19-IL-2 in our study. In line with this notion, it has been established previously that depletion of macrophages could only attenuate but not abrogate the antitumor activity of IL-2, indicating the contribution of additional mechanisms (39). In our study, we could pinpoint the NK cells as the driving force, which on depletion completely abolished the therapeutic efficacy of L19-IL-2.

Our findings are in perfect agreement with published data, which report on (a) promising antitumor effects in addition to extravasation and infiltration of tumor tissues by NK cells in vitro and in vivo (40) and (b) NK cells that were identified as the primary target cell population for IL-2 in preclinical and clinical settings (41).

In conclusion, our preclinical data strongly support the initiation of clinical studies using the targeted immunocytokine L19-IL-2 in pancreatic cancer.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

The Targeted Immunocytokine L19-IL2 Efficiently Inhibits the Growth of Orthotopic Pancreatic Cancer

Karola Wagner, Petra Schulz, Arne Scholz, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/14/15/4951

Cited articles
This article cites 41 articles, 11 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/14/15/4951.full#ref-list-1

Citing articles
This article has been cited by 7 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/14/15/4951.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.