Abstract

Purpose: Overexpression of transforming growth factor (TGF)-β1 has been implicated in promoting immune suppression, tumor angiogenesis, tumor cell migration, and invasion in many cancers, including carcinoma of the breast. Thus, targeted down-regulation of TGF-β1 expression in breast cancer in situ and determination of its implications would provide new treatment approaches for disease management.

Experimental Design: Small interfering RNA constructs targeting TGF-β1 were validated and used to develop clonal derivatives of the metastatic breast cancer cell line MDA-MB-435. The cells were used in several in vitro analyses, including migration, invasion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, apoptosis, and signaling assays. A wound-healing assay was used to determine migration of the cells in culture and a Boyden chamber transwell assay was used for invasion. Further, the clones were used in an in vivo mouse model for the kinetics of tumor growth and gene expression in the primary site and in lungs upon metastasis.

Results: Inhibition of TGF-β1 expression in MDA-MB-435 cells showed a 35% decrease in migration and a 55% decrease in invasion in vitro, with a 50% increase in proliferation and no effect on apoptosis. In vivo analysis indicated a 90% decrease in the number of mice bearing macroscopic lung metastases; however, the primary tumors did not show any difference in the growth kinetics when compared with the parental MDA-MB-435 cells. Analysis of TGF-β signaling pathways in the clonal derivatives showed a decrease in Smad2 activation and an increase in AKT and extracellular signal-regulated kinase activation. Interestingly, analysis of TGF-β1 receptor expression showed a decrease in both receptor I and II expression in TGF-β1 silenced cells. These results suggest that inhibition of TGF-β1 ligand may act as a negative feedback loop to disrupt the function of all TGF-β isoforms.

Conclusions: Therapies targeting the TGF-β1 signaling pathway may be more effective in late-stage disease to prevent organ metastasis but not primary tumor formation and may be combined with other tumor-targeted therapies normally limited by increased circulating TGF-β levels.

Transforming growth factor (TGF)-β is involved in physiologic processes, such as wound healing, tissue development, and remodeling. TGF-β has also been implicated in many pathologic conditions, including cancer, and has been shown to regulate a number of events such as angiogenesis, immune suppression, and cell migration (1–5). Most breast cancers express TGF-β, with TGF-β1 being the most prominent in the plasma (6–8). Clinically, TGF-β1 is often elevated in the plasma of breast cancer patients and, preclinically, several models have shown correlations between TGF-β expression and increased tumorigenicity, increased invasion, and increased drug resistance (9–13). In mouse models of breast cancer, TGF-β signaling has been shown to promote lung (14, 15) and bone metastasis (14, 16–18).

TGF-β is present as three different isoforms, which have both overlapping and distinct functions. TGF-β is a homodimer that is secreted as a latent complex composed of the 25 kDa active homodimer, latency-associated peptide, and latent TGF-β-binding protein (19). This latent complex is proteolytically cleaved to its active form and it is the active portion that binds to the TGF-β cell surface receptors to initiate intracellular signaling pathways (20). TGF-β signals through Smad proteins, which translocate into the nucleus to act as transcription factors for several target genes. Smad-mediated signaling of TGF-β has also been shown to interact with other signaling molecules to activate a number of cell signaling pathways (21–24).

Both Smad-dependent and Smad-independent TGF-β signaling pathways have been shown to play a role in normal and pathologic conditions (25–29). TGF-β signaling through
mitogen-activated protein kinase, c-Jun-NH₂-kinase, p38, phosphatidylinositol 3-kinase (PI3K), and G-proteins may be responsible for some of the oncogenic effects in late-stage tumorigenesis (30–33). It is believed that these Smad and non-Smad signaling pathways may contribute to the pro-oncogenic effect of TGF-β in late-stage tumors by promoting the epithelial-mesenchymal transition, migration, angiogenesis, immune suppression, and proliferation.

Several drugs are currently being designed to inhibit various stages of TGF-β signaling (34). Both ligand and receptor-targeted therapies have shown promise in mouse models by decreasing the metastatic index, suggesting that TGF-β may be an effective target for anticancer therapies. However, systemic delivery of drugs targeting TGF-β or TGF-β receptors will exert undesired effects on normal cells as here TGF-β modulates growth control. Thus, approaches to target TGF-β expression in tumor cells in situ should have specific tumoristatic effects without affecting normal cell function.

The present study determined the effects of TGF-β inhibition on cell proliferation, apoptosis, migration, invasion, and cell signaling in the metastatic human breast cancer cell line MDA-MB-435 in situ by RNA interference. The results of these studies indicate that small interfering RNA (siRNA)—mediated silencing of TGF-β in the metastatic breast cancer cells decreased the migration and invasion in vitro and decreased the number of lung metastasis in an orthotopic model without affecting the growth kinetics of the primary tumors. Increased AKT and extracellular signal-regulated kinase (ERK) signaling in the TGF-β siRNA clone indicates that combination therapies targeting these pathways along with TGF-β silencing may have a synergistic effect on decreasing tumor metastasis.

Materials and Methods

Reagents and cell lines. The metastatic human breast cancer cell line MDA-MB-435 was a generous gift from Dr. Janet Price (M.D. Anderson Cancer Institute, Houston, TX). The MDA-MB-435 cell line was derived from the pleural effusions of a 31-y-old Caucasian female diagnosed with metastatic breast cancer. Cells were maintained in L-15 medium supplemented with 10% fetal bovine serum, 1 mmol/L sodium pyruvate, 200 nonessential amino acids, 2 mmol/L L-glutamine, and penicillin-streptomycin. Cells were grown in a 5% CO₂ incubator at 37°C. Restriction enzymes and other modifying enzymes were purchased from New England Biolabs, Inc. Monoclonal antibody to phospho-Smad2 was obtained from Upstate Biotechnology. Phospho-p85 PI3K, p85 PI3K, TGF-βRI, phospho-ERK 1/2, ERK 1/2, RhoA, phospho-AKT, and AKT antibodies were obtained from Cell Signaling. TGF-βRII antibody was purchased from Santa Cruz Biotechnology.

Establishment of stable siRNA-expressing clones of MDA-MB-435 cells. The pRNAT plasmid expressing TGF-β1 siRNA was constructed by ligating the short hairpin RNA sequence containing both sense and antisense strands, separated by a 9-bp loop region and containing both BamHI and HindIII restriction enzyme overhangs for directional cloning. (5'-CAATCGCGTTATACGCTAGGCGTACAGCCGACGCTTCAAGGACGTCGCGTCGTCCGACAGCTGAATTTTTCCTCA-3'). MDA-MB-435 cells were transfected at 80% confluence with a pRNAT siRNA plasmid using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. Twenty-four hours after transfection, the cells were split into 96-well plates and cultured in medium containing 1 mg/mL genetin (G418). Single-cell clones and a mixed pool of 10 clones, constitutively expressing TGF-β1 siRNA, were expanded and screened using reverse transcription-PCR (RT-PCR) as described below to determine transcriptional silencing of TGF-β1. The mixed pool of clones was used for the remainder of the in vitro and in vivo studies.

Cell proliferation assay. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the proliferation rate of the cells. Five thousand cells were plated per well in a 96-well plate and allowed to attach overnight. Cells were serum starved overnight for synchronization and then grown for 72 h before analysis for proliferation. Unmodified MDA-MB-435 cells or clonal derivatives expressing TGF-β1 siRNA or scrambled siRNA were then incubated with 12 mmol/L MTT stock solution for 4 h at 37°C and then 100 μL of SDS-HCl solution were added to each well for an overnight incubation. Absorbance was read at 570 nm on a plate reader. A Vybrant MTT Cell Proliferation Assay Kit (V-13154) containing stock solution and SDS was obtained from Molecular Probes.

Apoptosis assay. Cells were plated in a six-well plate and allowed to grow to confluency. The cells were then trypsinized, washed with cold PBS, and then resuspended in 1× binding buffer at a concentration of 1 × 10⁶/mL. One hundred microliters of the cell suspension were incubated with 5 μL Annexin V and 5 μL propidium iodine for 15 min, in the dark, at room temperature. After incubation, 400 μL of 1× binding buffer were added to the solution and the buffer was analyzed by flow cytometry. All reagents were used in the Annexin V FITC Apoptosis Detection Kit from BD Biosciences.

Migration (wound closure) assay. MDA-MB-435 and MDA-MB-435 TGF-β1 cells were plated at 10⁴ per well in a six-well plate coated with fibronectin. Once the cells reached 90% confluency, they were serum starved for 12 h. Following serum starvation, 10 μL/mL mitomycin C were added to the medium for 2 h in complete medium and a “wound” was created using a sterile 200 μl pipette tip. Photographs of the wounded area were taken at the time of wounding and thereafter every 24 h for 3 d to determine the rate of wound closure. Percent migration was calculated by measuring the length and width of the cell-free area. The width was measured at five points along the scratch area and then averaged to get an accurate representation of the entire scratch. Percent migration was determined by using the following formula: [Δ area/area (day 0)] × 100.

** Invasion assay.** To determine invasive ability, MDA-MB-435 and MDA-MB-435 TGF-β1 siRNA cells were plated on a cell culture insert coated with fibronectin (8-μm pore size, 24-well format; Becton Dickinson Labware) in serum-free medium and a chemoattractant (5% fetal bovine serum) was added to the lower chamber. To determine the amount of invasion, cells were incubated for 24 h and then removed from the upper chamber using a cotton swab. The cells on the underside of the chamber were fixed to the membrane using methanol for 5 min. Once fixed, the cells were stained with crystal violet for 10 min and rinsed with PBS. The chambers were then photographed to compare the amount of invasive cells on the underside of the membrane. Quantitation of the invasive cells was done using a semiquantitative colorimetric analysis of the crystal violet–stained cells. To remove the crystal violet dye from the cells, the membranes were submerged in 0.01% SDS solution for 20 min. Fifty microliters of the solution were then pipetted into a 96-well plate and absorbance measured at 560 nm. Values were then normalized to the unmodified MDA-MB-435 cells.

Quantitative real-time RT-PCR. Quantitative PCR was done using a SYBR Green detection system from Bio-Rad. Cells were seeded in a six-well plate and allowed to grow to confluency. Cells were transfected using Lipofectamine 2000 (Invitrogen) and then total RNA was isolated after 24 h. Total RNA was isolated using TRIzol reagent (Invitrogen) per the manufacturer’s instructions. Total RNA was then reverse transcribed into cDNA using Bio-Rad iScript CDNA synthesis kit. Quantitative PCR was last done using the Bio-Rad SYBR green supermix and iCycler detection system. The primer sequences used for different transcripts are listed below.
TGF-β1, forward 5'-GAGGGGAAATGGAGGCCTT-3', reverse 5'-CCGGTATGGAACCCGTTCATG-3'
TGF-β2, forward 5'-AAACAGGACAGAACGGCAATGC-3'; reverse 5'-AAAGTGACAGGACGCTTGAAG-3'
TGF-β3, forward 5'-AAGCGGGCTTTGGACACAACT-3'; reverse, 5'-ACGCAAGATTGGCATAGCTACCC-3'
MMP-9, forward 5'-TGGCTGTCATGCCTGAATG-3'; reverse 5'-GCCCAACACCTCTACTCTTC-3'
MMP-2 forward 5'-GAAGGTCAGGTCCGAG-3'; reverse 5'-GATGGTGATGGGATTTC-3'
TGF-βRI, forward 5'-TGGGACCCCTGCTTTCCCTCA-3'; reverse 5'-TCCCAAGGCTCTGCTCATTCT-3'
TGF-βRII, forward 5'-TGTTAGTCCTGCTAAGCGACCA-3'; reverse 5'-ACTTCTCCACTGCAATACCCG-3'
P13K, forward 5'-AGATCCGCTCTGGCCCTCAATGAGT-3'; reverse 5'-AGCCAGTTCAAGGGGACTCTTGG-3'
GAPDH, forward 5'-TTACTCTGGAGGCCATGT-3'; reverse 5'-TTACTCTGGAGGCCATGT-3'

The assays were done in triplicate and values were normalized using GAPDH as an internal control. PCR was done with a 3-min preincubation at 95°C followed by 45 cycles of a 1.5 s denaturation at 95°C, and a 30-s annealing and extension at 72°C. PCR products were subjected to melting curve analysis using the light cycle system to exclude amplification of nonspecific products. Quantitation of the PCR data was done using the ΔΔCt method as described previously (35).

Immunoblotting. Immunoblotting was done as described (36). Cell extracts from MDA-MB-435 cells and clonal derivatives expressing TGF-β1 siRNA or scrambled siRNA were prepared using cell lysis buffer (Promega) containing proteinase and phosphatase inhibitors. Lysates were separated on a 10% SDS-PAGE gel and then transferred onto a nitrocellulose membrane. The membranes were blocked with nonfat milk solution for 1 h. Detection of specific proteins was done using antibodies for pSmad2 (Upstate Biotechnology); TGF-βRI, pERK 1/2, ERK 1/2, RhoA, Smad2, pAKT, and AKT (Cell Signaling); TGF-βRII (Santa Cruz Biotechnology); TGF-β1 and TGF-β3 (Abcam). Blots were developed with enhanced chemiluminescence reagent obtained from Amersham Pharmacia Biotech. Densitometric scanning was done to quantify the band intensities.

In vivo xenograft model of breast cancer metastasis. Metastatic breast cancer was developed in athymic nude mice. Four- to 5-wk-old female athymic nude mice were purchased from Frederick Cancer Institute and housed in the Animal Care Facility of the University of Alabama at Birmingham. All animal protocols used for this study were approved by the Institutional Animal Care and Use Committee. A total of four groups consisting of 10 mice each were included in the study. Unmodified or TGF-β1 siRNA-expressing MDA-MB-435 cells were injected into the second or third mammary fat pad of 4- to 5-wk-old athymic mice. Tumors were allowed to grow for ~6 wk or ~1 cm in diameter and then excised. Six weeks after excision of the primary tumors, mice were sacrificed and lungs were collected to determine the amount of metastases. Incidence of metastasis was determined by the presence of macroscopic lesions on the surface of the lung while sacrificing the mice. The primary tumors were divided into three portions for the isolation of RNA, for cell lysate production, and for making paraffin blocks for immunohistochemistry.

ELISA. Blood samples from mice were allowed to clot for 2 h at room temperature. The samples were centrifuged for 20 min at 2,000 x g and the serum was removed and stored at -80°C until assayed. Serum samples were diluted 10-fold in PBS. This ELISA Kit measures bioactive TGF-β1. To determine total TGF-β1 levels, samples were activated using an acid treatment. To activate the samples, 100 μL of each sample was incubated with 20 μL of 1 N HCl for 10 min at room temperature. The sample was then neutralized by adding 20 μL of 1.2 N NaOH/0.5 mol/L HEPES. Active TGF-β1 levels were measured without treatment of the sample. TGF-β1 levels were measured as per the instructions of the ELISA kit manufacturer (R&D Systems). The minimum sensitivity of this assay was 4.61 pg/mL.
Immunohistochemistry. Immunohistochemical studies were done in 5-µm sections of paraffin-embedded tumor tissues using antibodies for TGF-β2 and TGF-β3 to determine the expression of these isoforms in the primary tumor material. Antigen retrieval was achieved by incubating the slides in citrate buffer for 20 min in a steamer and endogenous peroxidase was blocked by incubation with 3% H2O2 for 20 min at room temperature. The anti–TGF-β2/3 polyclonal antibodies were used in a working dilution of 1:200. Furthermore, the slides were stained with a donkey anti-rabbit and donkey anti-mouse horseradish peroxidase–linked secondary antibody (1:500 dilution). To determine the protein expression, stained slides were examined under high power (×40). The antigen-antibody complex was visualized with diaminobenzidine tetrahydrochloride and tissues were counterstained minimally with hematoxylin.

Statistical analysis. All in vivo experiments included at least 10 mice per group. Results consisting of three or more groups were analyzed using single-factor ANOVA. Analysis of results containing two groups was done using the Student’s t test, assuming unequal variance. Values of \(P < 0.05 \) were considered statistically significant.

Results

Characterization of MDA-MB-435 stable clones expressing TGF-β siRNA. MDA-MB-435 cells were transfected with the siRNA plasmid and selected for stable clones demonstrating inhibition of TGF-β1 expression. Silencing of TGF-β1 transcripts in positive clones was confirmed by RT-PCR. As shown in Fig. 1A, TGF-β1 mRNA levels were decreased >90% in the MDA-MB 435 TGF-βsi clone when compared with unmodified cells. Next, the effects of TGF-β silencing on both cell proliferation and apoptosis were determined in vitro. Analysis of cell proliferation using the MTT assay showed 50% increased proliferation in the TGF-βsi clone when compared with the unmodified MDA-MB-435 cells (Fig. 1B). Addition of exogenous TGF-β1 protein in culture more than doubled the proliferation of MDA-MB 435 cells but had no effect on the proliferation rate of the TGF-β1–silenced cells (Supplementary Fig. S1). Apoptosis of the cell clone was determined using Annexin V and propidium iodide staining followed by flow cytometry analysis. Unmodified MDA-MB-435 and MDA-MB-435 TGF-βsi cells showed 2.1% and 1.8% apoptosis, respectively, indicating no significant difference in the rate of apoptosis between them (Fig. 1C; \(P > 0.05 \)).

Silencing of TGF-β affects the migratory potential of MDA-MB-435 cells in vitro. MDA-MB-435 is a highly metastatic breast cancer cell line. In vitro studies were done to determine the effects of TGF-β1 silencing on both migration and invasion of these cell clones. Cell migration was first determined using a wound-healing assay in which cells were scratched and allowed to migrate into the wound area. The amount of migration or wound closure was enumerated 72 hours after disruption. Compared with the normal MDA-MB-435 cells that showed 92% wound closure by 72 hours, clones expressing the TGF-β1 siRNA showed 56% wound closure in the same period (Fig. 2A). Using a Boyden chamber, coated with fibronectin, we determined changes in cell invasiveness after 24 hours. Cells were

Fig. 2. Silencing of TGF-β mRNA affects migration and invasion of MDA-MB-435 cells in vitro. MDA-MB-435 cells and stable clones containing TGF-β siRNA were analyzed for cell migration using the wound-healing scratch assay. A, cells were “wounded” and monitored every 24 h for 3 d to determine the rate of migration into the scratched area. Invasiveness of cells was determined using a Boyden chamber assay. Cells were plated in the upper chamber of the apparatus and allowed to grow for 24 h in serum-free medium. A chemottractant (5% fetal bovine serum) was placed in the lower chamber. B, cells were fixed to the membrane and stained after 24 h to determine invasion.

\(*, \ P < 0.0001;**, \ P < 0.001; \) all assays were done in triplicate.
fixed and stained with crystal violet to determine the number of cells that invaded across the membrane. Compared with unmodified MDA-MB-435 cells, the MDA-MB-435TGF-βsi clone showed a significant decrease in invasion (Fig. 2B). Colorimetric analysis of the crystal violet–stained migratory cells indicated a 55% decrease in the number of invasive MDA-MB-435TGF-βsi cells when compared with parental MDA-MB-435 cells (Fig. 2B).

Analysis of TGF-β1 silencing in a xenograft model of breast cancer metastasis. MDA-MB-435 has been shown to be a highly metastatic breast cancer cell line when implanted in athymic nude mice. Animals injected orthotopically with this cell line show metastases to the lung, lymph nodes, brain, and bone in as little as 12 weeks postinjection. To determine the growth characteristics of the MDA-MB-435 cells with TGF-β1 down-regulation, 10^5 cells that were unmodified or modified to constitutively express TGF-β1 siRNA were implanted in the mammary fat pad of 4- to 5-week-old female athymic nude mice. Cohorts of animals from each group were sacrificed 42 days after removal of the primary tumors to determine lung metastasis. The primary tumors were allowed to grow to 1 cm in diameter before excision. As shown in Fig. 3A, there was no significant difference in the size of tumors (Fig. 3D). Expression of matrix metalloproteinases is important in invasion of the tumor cells through the basement membrane. TGF-β has been shown to modulate expression of the proteases in the tumor microenvironment. Results shown in Fig. 4A indicated a significant decrease in the number of macroscopic metastases present in the MDA-MB-435 TGF-βsi clone. Although 100% of mice injected with MDA-MB-435 cells developed macroscopic lung metastasis, only 10% of the mice injected with the MDA-MB-435 TGF-βsi clones developed similar lung metastasis. To determine the circulating levels of TGF-β1, an ELISA was done. Results, as shown in Fig. 4B, indicated no significant difference in levels of total TGF-β1 in the mice injected with MDA-MB-435 TGF-βsi cells when compared with normal MDA-MB-435 cells, suggesting that the TGF-β1 silencing is limited to the tumor microenvironment. Macroscopic lung lesions were used to determine the incidence of metastasis in each group. Mice injected with unmodified MDA-MB-435 cells revealed several macroscopic lesions in the lungs whereas mice injected with MDA-MB-435 TGF-βsi cells show no overt metastatic lesions (Fig. 4C). Histologic analysis revealed the presence of micrometastatic lesions in the lungs of mice injected with the TGF-β1–silenced clones (not shown). These data suggest that TGF-β1 does not affect primary tumor growth at the early stages of disease progression but exerts an effect on metastasis, specifically growth of tumor at the secondary site.

Analysis of both Smad and non-Smad TGF-β signaling pathways. Following TGF-β inhibition, to determine the possible influence of signaling pathways affecting metastasis,
both Smad and non-Smad signaling pathways were analyzed using the two cell lines. TGF-β ligand has been known to signal through Smad proteins. In addition, recent studies have shown that several non-Smad signaling pathways may be involved in the prometastatic effects of TGF-β in late-stage disease. Using RT-PCR and Western blot analysis, we examined alterations in gene expression for downstream targets of TGF-β. Results, shown in Fig. 5A, indicated that there was a 95% decrease in gene expression for TGF-βRI and TGF-βRII upon silencing of TGF-β1. These results were supported with protein analysis in which there was a 40% and 20% decrease in TGF-βRI and TGF-βRII, respectively, in the cell lysate.

PI3K gene expression was unaltered in the MDA-MB-435 TGF-βsi cells using RT-PCR. These results were confirmed at the protein level using antibodies to detect the phosphorylated form of the p85 subunit of PI3K. Analysis of PI3K activation showed no significant difference in the modified MDA-MB 435 TGF-βsi cells when compared with unmodified cells. However, MMP-9 and MMP-2 gene expression in MDA-MB-435 TGF-βsi clone showed a 99% and 90% decrease, respectively (Fig. 5B). Next, we examined the effects of TGF-β, Ras, mitogen-activated protein kinase, and AKT signaling pathways using Western blot analysis. Results of the studies, shown in Fig. 5C, indicated no significant change in RhoA expression but there was a 20% decrease in Smad2 phosphorylation and a 4-fold and 1.7-fold increase in AKT and ERK phosphorylation, respectively, suggesting a possible role of these signaling pathways in both inhibiting and mediating the prometastatic effects of TGF-β signaling. Quantification of all Western blots has been provided graphically in the Supplementary Fig. S2.

Analysis of TGF-β2 and TGF-β3 expression in vitro and in vivo. Although the main focus of the present study is to determine the effects of TGF-β1 silencing in the highly metastatic MDA-MB-435 breast cancer cell line, all three isoforms of TGF-β have been implicated in various processes involved in tumorigenesis. To determine the effects of TGF-β1 silencing on the other two isoforms, RT-PCR analysis was done. As shown in Fig. 6A, there was no significant difference in the expression levels of either TGF-β2 or TGF-β3 in the MDA-MB-435 TGF-βsi cells when compared with parental controls in vitro. However, RT-PCR analysis of the primary tumors formed from the TGF-β1–silenced cells indicated that there was >60% decrease in gene expression for both isoforms in vivo (Fig. 6B). These data were confirmed for TGF-β2 using Western blot analysis (Fig. 6C). Immunohistochemistry was also used to determine the protein expression of TGF-β2 and TGF-β3 in the primary tumors. Analysis of TGF-β2 expression in MDA-MB 435 tumors indicated strong staining throughout the tumor mass, whereas tumors from the MDA-MB 435 TGF-βsi clones showed distinct staining only in small areas of the tumor mass (Fig. 6D).

Discussion

TGF-β has emerged as a promising new target for treatment of cancer metastasis. Most of the studies to date have examined

![Graphs showing lung metastasis analysis](image)
the effects of TGF-β receptor inhibition on tumor metastasis (14). Results of the present study indicated that silencing of TGF-β1 altered the metastatic characteristics of the highly invasive MDA-MB 435 cell line. Furthermore, characterization of the clonal derivatives with TGF-β1 silencing in vitro and in vivo indicated a decrease in TGF-βRI and TGF-βRII mRNA expression. Silencing of the TGF-β receptor expression may be through a negative feedback loop in the cells, suggesting that therapies targeting the ligand may have similar effects as indicated by previous studies, which have shown that blocking TGF-β receptors can decrease tumorigenesis. Western blots for TGF-βRII in the present study indicated a 20% decrease in protein expression, which may be significant to decrease signaling of this pathway. Thus, it is possible that a 90% decrease in RNA level, which is relative to the control sample, may not truly reflect the protein level and the remaining 10% RNA may be sufficient to produce the level of protein seen in the Western blots. It is also interesting to note that whereas signaling through TGF-β receptors is the primary method of activation for Smad proteins, several studies have recently shown that mitogen-activated protein kinase and other tyrosine kinases can activate Smads independent of TGF-β receptors (37). This may be the reason for the variation between the levels of Smad activation and the TGF-β receptor levels.

Although the present study focused specifically on the role of TGF-β1 in tumor metastasis, the decrease in receptor expression would also limit signaling of the other TGF-β isoforms. Both TGF-β2 and TGF-β3 have recently been implicated in several processes of tumorigenesis and metastasis. Results from our in vitro experiments showed no change in expression for TGF-β2 and TGF-β3 isoforms, illustrating the specificity of the siRNA sequence designed for this study. However, analysis of the mRNA levels for all three TGF-β isoforms in the primary tumor material showed a significant decrease when compared with tumors formed from unmodified MDA-MB 435 cells. These data were also confirmed at the protein level by using immunohistochemistry. This decrease in TGF-β2 and TGF-β3 gene expression in vivo may be partially due to the down-regulation of TGF-β receptors in the tumor cells, which may have abrogated both autocrine and paracrine signaling in the tumor microenvironment. Thus, the decrease in tumor metastasis in vivo may be partially attributed to the decrease in signaling from other TGF-β isoforms.

Initial studies to characterize the clonal derivatives of MDA-MB-435 cells constitutively expressing TGF-β siRNA showed no changes in apoptosis, indicating that changes in the number of metastasis are not due to increased apoptosis. Cell proliferation analysis indicated a 50% increase in proliferation in vitro. This increase in proliferation in response to TGF-β1 silencing seems to be due to an increase in AKT and ERK signaling pathways.

![Fig. 5. Effects of TGF-β silencing on Smad-dependent and Smad-independent pathways.](https://example.com/fig5.png)
When incubated with exogenous TGF-β1 protein, there was an increased proliferation in unmodified MDA-MB 435 cells; however, no change was seen in the TGF-β1–silenced clones. This decreased sensitivity to TGF-β1 may be attributed to a decrease in receptor expression. However, there was no concomitant increase in tumor growth in vivo, suggesting a possible role of other inhibitors in the microenvironment of the primary tumor. Silencing of TGF-β1 by RNA interference specifically inhibited the expression of MMP-9 and MMP-2 in vitro and in the primary tumor. Several matrix metalloproteinases have been shown to be overexpressed in the tumor microenvironment and are required for invasion of the tumor cells through the basement membrane. The down-regulation of matrix metalloproteinase expression and the decreased migration and invasion in vitro in response to TGF-β1 silencing supports the role of TGF-β1 in modulating migration and invasion of the tumor cell and not apoptosis. This was confirmed in vivo by analyzing the primary tumor growth, which was not decreased in tumors with TGF-β1si clones. Analysis of the primary tumor growth revealed a slight decrease in tumor size after 6 weeks, which was not statistically significant but may suggest the timeframe during which the function of TGF-β switched from a tumor suppressor to a prometastatic phenotype.

The TGF-β/Smad signaling pathway has been well characterized for a number of years (38, 39). TGF-β receptor and Smad proteins have been linked to the activation of mitogen-activated protein kinase, PI3K, and the RhoA signaling pathways in several cancer models (40–44). AKT, a well-known cell survival and proliferation signaling molecule, has been shown to inhibit TGF-β–induced apoptosis and regulate epithelial-mesenchymal transitions in tumor cells (45, 46). Interestingly, the results of our studies have shown that silencing of the TGF-β1 ligand in situ in breast cancer cells increases both AKT and ERK activation. Studies have shown that ERK signaling can also play a dual role in tumorigenesis. ERK1 up-regulation has been linked to increased cell proliferation, whereas increases in ERK2 seem to mediate apoptosis (47). ERK activation has also been shown to mediate epithelial-mesenchymal transition and is extensively involved in cytoskeletal rearrangement and migration. Our results indicate that the increase in both AKT and ERK could be associated with the increased proliferation found in the MDA-MB-435 TGF-β1si cells in vitro. Furthermore, an analysis of PI3K activation showed no significant difference in this upstream mediator of AKT. These data suggest that the up-regulation of AKT signaling in TGF-β1si clones is likely due to the removal of an inhibitor, TGF-β1, and not up-regulation through the PI3K pathways. However, in vivo, the tumor microenvironment also contains inhibitory signals, which control the growth of the primary tumors. Increased ERK activation may also be involved in the migration of the cells to the secondary site. Whereas we observed a significant decrease in the number of macroscopic lung lesions, there were micrometastatic foci present in the lungs of mice injected with TGF-β1–silenced cells upon histologic analysis, indicating that silencing of TGF-β1 does not completely eliminate lung metastasis in this model. Although the study of ERK signaling in tumor progression is somewhat controversial, it is clear that the

![Image](https://example.com/image.png)

Fig. 6. Analysis of TGF-β2 and TGF-β3 isoforms in vitro and in vivo upon silencing of TGF-β1. RNA isolated from unmodified MDA-MB-435 and TGF-β1si containing MDA-MB-435 clone was used in RT-PCR analysis to determine gene expression. Gene-specific primers were used to determine the expression levels of TGF-β2 and TGF-β3 in vitro (A) and in the primary tumors in vivo (B). Values from individual amplifications were normalized against GAPDH levels. Lysate from the primary tumor tissues were analyzed for the expression of TGF-β2 and TGF-β3 isoforms by Western blot and the bands were quantified by densitometry (C). Immunohistochemistry was done with primary tumor tissues following implantation of MDA-MB-435 and MDA-MB-435 TGF-β1si cells using antibodies for TGF-β2 and TGF-β3 (D). *P < 0.05, **P < 0.01.
overlap between ERK and AKT signaling pathways can mediate several events in tumor progression. Hence, cross-talk between these three pathways may be necessary to induce epithelial-mesenchymal transition and promote metastasis. It is possible that alteration of these two signaling pathways in combination with TGF-β1 silencing specifically in the tumor microenvironment may have a synergistic effect on the therapy seen in our study.

Although several studies have provided a link between TGF-β inhibition and tumor metastasis, very few have been able to show long-term inhibition that is specific to the tumor cells. Studies have shown significant decrease in tumor metastasis using antisense, small-molecule inhibitors and antibodies that target both the TGF-β1 ligand and the receptor. Although these studies have shown some success in animal models, the ability to administer these in human patients as a therapy is encountered by limitations (48). Small-molecule inhibitors have also shown promise but have limited biodistribution and lack specificity to both the tumor cells and the tumor microenvironment (49, 50). Constant administration of high doses of these inhibitors is undesirable due to potential toxicity. Thus, alternate modes of delivery based on gene transfer with siRNA targeting TGF-β1 only in tumor cells and possible combination therapies with non-Smad downstream effectors will make TGF-β1-targeted therapies more effective.

The present study suggests that therapies targeting TGF-β1 in tumor cells may be effective in decreasing metastasis. The ability of this therapy to decrease metastasis may be related to the ability of the cells to grow at the secondary site. This therapy may also result in a decrease in the TGF-β-mediated pro-angiogenic effects such as angiogenesis, immune suppression, and mesenchymal-epithelial transition. Our results also indicate that both the autocrine and paracrine signaling in the tumor microenvironment could be targeted to gain maximum therapeutic effect using this approach due to the variations in results seen between the in vitro and in vivo studies. Future studies to investigate the effects of growth factor secreted from the stromal cells may give additional insight as to the effectiveness of targeting both the tumor and stromal cells. Although not a focus in these studies, several studies have shown that inhibition of TGF-β signaling modulates the immune response in several cancer models (51). Future studies to understand TGF-β signaling in various stages of tumor progression may lead to the further development of more tumor-targeted therapies that may be used in combination with current therapies to decrease the incidence of cancer metastasis.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

Silencing of Transforming Growth Factor-β1 In situ by RNA Interference for Breast Cancer: Implications for Proliferation and Migration In vitro and Metastasis In vivo

Lakisha D. Moore, Tatyana Isayeva, Gene P. Siegal, et al.

Updated version Access the most recent version of this article at: http://clincancerres.aacrjournals.org/content/14/15/4961

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2008/08/25/14.15.4961.DC1

Cited articles This article cites 51 articles, 18 of which you can access for free at: http://clincancerres.aacrjournals.org/content/14/15/4961.full.html#ref-list-1

Citing articles This article has been cited by 7 HighWire-hosted articles. Access the articles at: /content/14/15/4961.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.