Antiapoptotic Activity of Autocrine Interleukin-22 and Therapeutic Effects of Interleukin-22-Small Interfering RNA on Human Lung Cancer Xenografts

Weici Zhang,1 Yongyan Chen,1 Haiming Wei,1 Chaogu Zheng,1 Rui Sun,1 Jian Zhang,2 and Zhigang Tian1,2

Abstract

Purpose: Non–small cell lung carcinoma (NSCLC) is one of the most common malignant diseases and usually is resistant against apoptosis-inducing chemotherapy. This study is to explore the antiapoptotic mechanisms of interleukin (IL)-22 in human lung cancer.

Experimental Design: Nineteen cases with stage I to III NSCLC were collected to determine the expression of IL-22. Stable transfection of human IL-22 cDNA into A549 and PG cells and transfection of IL-22-RNA interference (RNAi) into these cancer cell lines were done to reveal the molecular mechanisms of IL-22.

Results: It was found that IL-22 was highly expressed in primary tumor tissue, malignant pleural effusion, and serum of patients with NSCLC. IL-22R1 mRNA was also detected in lung cancer tissues as well as lung cancer cell lines. Overexpression of IL-22 protected lung cancer cell lines from serum starvation-induced and chemotherapeutic drug-induced apoptosis via activation of STAT3 and its downstream antiapoptotic proteins such as Bcl-2 and Bcl-xL and inactivation of extracellular signal-regulated kinase 1/2. Exposure to blocking antibodies against IL-22R1 or transfection with the IL-22-RNAi plasmid in vitro resulted in apoptosis of these lung cancer cells via STAT3 and extracellular signal-regulated kinase 1/2 pathways. Furthermore, an in vivo xenograft study showed that administration of IL-22-RNAi plasmids significantly inhibited the human tumor cell growth in BALB/c nude mice.

Conclusions: Our study indicates that autocrine production of IL-22 contributes to human lung cancer cell survival and resistance to chemotherapy through the up-regulation of antiapoptotic proteins.

Lung cancer is the third most common malignant disease and about 75% of all diagnosed lung cancers are the non-small cell lung carcinoma (NSCLC), which is associated with very dismal prognoses. Chemotherapy in addition to surgical resection and radiotherapy remains a basic strategy for treatment of malignant tumors. Unfortunately, NSCLC exhibits only limited sensitivity to chemotherapeutic drugs, which has proven to be a major obstacle clinically. Inhibition of cell apoptotic pathways was reported as one important cellular mechanism responsible for the resistance of NSCLC cells to treatments (1–4).

Interleukin (IL)-22 is one of the IL-10-related cytokines (5, 6). The functional IL-22 receptor complex consists of two chains, IL-22R1 and IL-10R2, which are ubiquitously expressed in various of organs and cell types including immune cells, lung, liver, and colon (7, 8). In response to IL-22 in the liver, rapid STAT phosphorylation and/or activation of Akt were observed (9) and contributed to improving hepatocyte survival (10, 11) and proliferation (12). IL-22 expression has been found in alveolar macrophages and alveolar epithelial cells isolated from bronchoalveolar lavage fluid and normal lung sections (13). Lower levels of IL-22 were detected in the bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis and acute respiratory distress syndrome than normal control groups (13). Although these observations suggest involvement of IL-22 in the regulation of pulmonary inflammation, the potential role of IL-22 in the cell survival of lung cancer has not been explained thus far.

In this study, high expression levels of IL-22 were detected in primary tumor tissue, malignant pleural effusion, and serum of patients with NSCLC. Additionally, both IL-22R1 and IL-22 were highly expressed in primary lung cancer. Overexpression of IL-22 by gene transfer protected lung cancer cells from...
apoptosis via activation of STAT3 and its downstream antiapoptotic proteins and inactivation of extracellular signal-regulated kinase (ERK) 1/2. Treatment with IL-22R1 blocking antibodies or IL-22-RNA interference (RNAi) in vitro resulted in the apoptosis of lung cancer cells. Administration of IL-22-RNAI plasmids also significantly inhibited the growth of human lung cancer cell in BALB/c nude mice.

Materials and Methods

Chemicals, protein, and antibodies. 5-Fluorouracil (5-FU; Shanghai Xudong Haipu Pharmaceutical Co.) and carboplatin (Shandong Qilu Pharmaceutical Co.), two types of chemotherapeutic drugs, were used in our study. Recombinant human IL-22 was purchased from R&D Systems. The following primary antibodies were used in this study: goat anti-human IL-22 antibodies (R&D Systems), goat anti-human IL-22R1 blocking antibodies (R&D Systems), anti-phosphorylated STAT3 antibodies (Tyr^105, Ser^22), anti-STAT3 antibodies, anti-Bcl-2 antibodies, anti-Bcl-xl antibodies, anti-phosphorylated ERK1/2 antibodies (Thr^202/Tyr^204), anti-ERK1/2 antibodies, anti-phosphorylated AKT antibodies (Ser^473), anti-AKT antibodies (Cell Signaling Technology), and β-actin (Santa Cruz Biotechnology). Secondary antibodies that were used in this study: peroxidase-conjugated affinity-purified anti-goat IgG (Rockland) and peroxidase-conjugated affinity-purified anti-rabbit IgG (Sigma). All antibodies used in our study are polyclonal antibodies.

Cell culture. All cell lines were cultured at 37°C in 5% CO₂/95% air in the following medium supplemented with 10% heat-inactivated fetal bovine serum, 100 units/mL penicillin, and 100 μg/mL streptomycin. PG (large cell lung cancer cell line) and A549 (lung adenocarcinoma cell line) cells and their IL-22 or mock plasmid-transfected cells in RPMI 1640 (Invitrogen); H460, H1299, 95D, and HEK293 cell lines in DMEM (Invitrogen); SK-LU-1 and SK-MES-1 cell lines in MEM (Invitrogen) with 0.1 mmol/L nonessential amino acids, 2 mmol/L l-glutamine, and 1.0 mmol/L sodium pyruvate; and HUV-EC-C cells in E-2 (Invitrogen).

Specimens and immunohistochemistry. Nineteen cases with stage I to III NSCLC were collected from the Second Affiliated Hospital of Hebei Medical University between January 2004 and July 2007. Immunohistochemical assays were done on 5 μm formalin-fixed, paraffin-embedded sections. Briefly, deparaffinized sections were microwaved for 10 min in 10 mmol/L citrate buffer (pH 6.0) for antigen retrieval. The slides were blocked against endogenous peroxidase activity by 1.5% hydrogen peroxide solution for 20 min and were incubated with polyclonal anti-human IL-22 antibody at 4°C overnight. After washing with TBS (pH 7.6), slides were treated with biotinylated anti-goat immunoglobulin, washed in TBS, and incubated in streptavidin peroxidase. Staining was visualized with 3,3-diaminobenzidine tetrahydrochloride (Sigma) as a chromogen. Counterstaining of cells and tissue sections was done using hematoxylin.

Stable transfection of human IL-22 cDNA into A549 and PG cells. A549 and PG cells were seeded in six-well culture plates and transfected with pcDNA3-IL-22 plasmid using LipofectAmine 2000 (Invitrogen) in a 90% to 95% cell confluent state. Stably transfected cell lines derived from the single-cell clone were obtained after selection by G418 (800-1,000 μg/mL; Life Technologies) and limiting dilution culture. IL-22 mRNA and protein expression were detected by reverse transcription-PCR (RT-PCR) and Western blotting. The clones that had highest expression of IL-22 were picked and used in all experiments.

RT-PCR and real-time RT-PCR. Total cellular RNA was prepared using Trizol reagent and RT-PCR was used for following the set of primers: IL-22 (sense 5’-CCTGACGTCGTCGAGA-3’ and antisense 5’-CTTGAGCTGTGAGGA-3’), IL-22R1 (sense 5’-CCCCACGCGGA-3’ and antisense 5’-TGGCCCCATTGATGCTTG-3’), IL-10R2 (sense 5’-AGGCTGTAAATTGGCATAGTGA-3’ and antisense 5’-CCTTCTGATGCAGTAC-3’), and β-actin (sense 5’-GACCTGACTGACCA-3’ and antisense 5’-GTCACACTGTTAGGCTTGA-3’). The PCR variables were 1 cycle at 95°C for 5 min then 30 cycles at 95°C for 30 s, 54°C for 30 s, and 72°C for 1 min followed by extension for 7 min at 72°C.

Protein isolation and Western blot assay. Cell pellets were resuspended in ice-cold NP-40 lysis buffer [50 mmol/L Tris-HCl (pH 6.8), 150 mmol/L NaCl, 1 mmol/L EGTA, and 1% NP-40] containing 1 mmol/L phenylmethylsulfonyl fluoride, 1 μg/mL leupeptin (Sigma), 1 μg/mL pepstatin (Sigma), and 1 μg/mL aprotinin (Sigma). The protein concentration was measured using Bio-Rad protein assay (Bio-Rad Laboratories). Protein extracts (60 μg) were subjected to electrophoresis on a 12% SDS-PAGE and electrophotographically transferred to nitrocellulose membranes. Membranes were blocked for 1 h with 5% nonfat dry milk in TBS containing 0.1% Tween 20 and successively incubated for 3 h with specific antibodies. After washing six times with TBS-Tween 20, the membranes were incubated for 1 h with horseradish peroxidase-conjugated secondary antibodies and visualized using an enhanced chemiluminescence detection system (SuperSignal West Dura Extended Duration Substrate; Pierce Chemical).**
Caspase activity assay. Caspase activity was detected using CaspSCREEN Flow Cytometric Apoptosis Detection Kit (BioVision). Briefly, 1 × 10⁶ cells per well (2 mL) were seeded in a six-well plate the night before the treatment. Cells were treated with chemotherapeutic drug for the indicated times, collected, and washed with PBS twice. Cells (1 × 10⁶) were resuspended in 0.3 mL D2R (aspartyl 2-rhodamine 110) incubation buffer. DTT (3 µL; 10 mmol/L final concentration) and D2R reagent (1 µL) were added. After 10 to 20 min incubation at 37°C in the dark, cells were analyzed by flow cytometry using FL-1 channel.

Transfection of IL-22-RNAi plasmid. The pU6+27 vector was used to express short hairpin RNA against IL-22. A 21-nucleotide sense and antisense hairpin oligonucleotide was generated complementary to IL-22 mRNA. Three RNAi sequences were designed, named IL-22-RNAi-1, IL-22-RNAi-2, and IL-22-RNAi03, in which the first nucleotide of RNAi corresponds to nucleotides 180, 378, and 438 of the IL-22 sequence, respectively. The top sequence of the IL-22-RNAi-1 (#1) was 5'-UCGACGCGAGGCXIAAGCGCUUGGCGIAGUUCAGAAGACGCCAAGGCUAGGCXICCUHUUUUUU3'-, IL-22-RNAi-2 (#2) was 5'-UCGACGCGAGGCXIAAGCGCUAGCGCUAAAGCACUHAGAAUGCCAGACUGCUUICAGCGCCUGUUUJIUJU3'-, and IL-22-RNAi-3 (#3) was 5'-UCGACCGCUAAGGACACAGUUGAAGAACAGAAGAAGAAGCGAGACUGCUUICAGCGCCUGUUUJIUJU3'.. The sequence was inserted into the pU6+27 backbone after digestion with SalI and XbaI. For plasmid transfection, cells were seeded at a density of 1 × 10⁵ per well in a six-well plate. One day later, monolayer cells were subjected to transient transfection with IL-22-RNAi plasmid (#1, #2, or #3) or control plasmid using LipofectAMINE 2000 reagent (Invitrogen), respectively.

Mice and human lung cancer xenografts. A total of seven male BALB/c nude mice at age 6 weeks were used for the experiment. Xenograft tumor models were established as reported previously (14). A s.c. injection of 1 × 10⁵ A549 cells into the flanks of mice was carried out.
Twenty-four hours later, the mice were randomly divided into two groups. The IL-22-RNAi group (n = 4) was injected i.v. with 50 μg IL-22-RNAi plasmid (#2) in 100 μL PBS followed by a booster of 25 μg plasmid in 100 μL PBS twice a week for a total of 6 weeks and 25 μg plasmid injected i.t. twice a week for a total of 3 weeks. The control group (n = 3) was injected with pI6+27 vector plasmid using the same protocol as the IL-22-RNAi group. Tumor formation was monitored daily and recorded. The studies have been reviewed and approved by an appropriate institutional review committee.

Statistical analysis. Statistical significance was determined if two-sided P < 0.05. Comparisons of cytokine concentrations between groups were done using the Mann-Whitney U test. Comparisons of IL-22 expression at mRNA levels between paired samples were done using the Wilcoxon matched-pairs signed-rank test. Student’s t test was used to evaluate difference between individual groups.

Results

IL-22 is overexpressed in tumor tissue, malignant pleural effusion, and serum of human NSCLC. Previous studies have shown that IL-22 is a potential immunomodulatory molecule in the lung (13). To further investigate the role of IL-22 in NSCLC, 13 NSCLC specimens (7 adenocarcinomas and 6 squamous cell carcinomas) and normal lung samples were analyzed by immunohistochemistry. As shown in Fig. 1A, IL-22 staining in both adenocarcinoma and squamous cell carcinoma tumor cells was stronger than in normal alveolar epithelial cells. IL-22 mRNA expression in tumor tissues from patients with NSCLC was significantly higher than that in peritumor tissues by real-time RT-PCR analysis (P = 0.0313; Fig. 1B). IL-22 mRNA was also detected in 5 NSCLC cell lines and significantly higher in SK-LU-1, H460, H1299, and 95D NSCLC cell lines than that in normal control cell line HEK293 (P < 0.01, P < 0.05, P < 0.01, and P < 0.01, respectively; Fig. 1E). In addition, the median serum IL-22 content in NSCLC patients with stages I to III was significantly higher when compared with healthy individuals (P = 0.0017; Fig. 1C). Furthermore, when comparing malignant pleural effusion with tuberculous pleural effusion, IL-22 levels were increased sharply only in patients with stage IV NSCLC (P = 0.0051; Fig. 1D). Taken together, these results suggested that IL-22 was closely associated with human NSCLC.

Antiapoptosis by IL-22 overexpression in human lung cancer cells. Two human NSCLC cell lines, PG and A549, were chosen in our study based on the expression of IL-22 and IL-22 receptors. IL-22 receptor mRNA was detected in both A549 and PG cells, whereas IL-22 was only detected in A549 cells. To further investigate the effects of IL-22 in NSCLC, PG and A549 cells were stably transfected with the human IL-22 gene. As shown in Fig. 2A, the mRNA of IL-22 expression was much higher in IL-22-transfected PG cells (PG/IL-22) compared with PG control cells, whereas the expression of IL-22 moderately increased in IL-22-transfected A549 cells (A549/IL-22) compared with A549 control cells. The serum starvation-induced apoptosis of human cancer cells was done to test the antiapoptotic effect of IL-22. After serum starvation for 12 h, the percentage of cells in the early apoptotic stage (Annexin V-positive/propidium iodide-negative) was ~4-fold higher in PG/neo cells than that in PG/IL-22 cells (5.7 ± 1.2% versus 1.5 ± 0.6%; P < 0.01); also, a significant difference between A549/neo and A549/IL-22 was observed in the late apoptotic stage (Annexin V-positive/propidium iodide-positive) after 24 h of starvation (5 ± 1.1% versus 2.7 ± 0.6%; P < 0.01; Fig. 2B). Furthermore, the antiproliferative effects of chemotherapeutic drugs (5-FU or carboplatin) on cancer cells were suppressed both in IL-22 transgenic cell lines (Fig. 3A) and in the presence of recombinant human IL-22 (Fig. 2B). Additionally, the apoptosis-inducing effect of chemotherapeutic drugs on cancer cells was also inhibited in PG/IL-22 and A549/IL-22 cells (Fig. 3C and D). The number of cells in the late apoptotic stage was 12-fold higher in PG/neo cells and 3-fold higher in A549/neo cells when compared with IL-22-transfected cells in exposure to 5-FU (500 μg/mL) for 4 h (Fig. 3C).

Subsequently, we used IL-22R1 blocking antibodies to further confirm the role of IL-22 receptor signaling in chemotherapeutic drug resistance of NSCLC cell lines. As shown in Fig. 4, IL-22R1 blocking antibodies significantly promoted chemotherapeutic drug-induced apoptosis when compared with the isotype control. Because both IL-22 and
its functional receptor complex were detected in the A549 cell line (Fig. 2A) in the absence of the IL-22 transgene, anti-IL-22R1 antibodies increased apoptotic effects of 5-FU on A549/neo cells (Fig. 4). Because no constitutive expression of IL-22 was found in PG/neo cells, the blocking antibody against IL-22 receptor had no effect on drug-induced apoptosis in this IL-22-negative cancer cell line (Fig. 4). This suggested that the antiapoptotic effect of IL-22 was mediated by the interaction between IL-22 and its functional receptor complex.

Antiapoptotic effects of IL-22 in human lung cancer cells is via STAT3 and ERK1/2 pathways. It was noted that STAT3 was constitutively activated with high frequency in tumor and critical in promoting tumor cell growth and survival. We found that the antiapoptotic effect of IL-22 in PG cells (PG/IL-22 cells) but not A549/IL-22 cells was closely correlated to STAT3 activation, as STAT3 phosphorylation in PG/IL-22 cells was much higher than that in PG/neo cells (Fig. 5A). Meanwhile, the antiapoptotic proteins (Bcl-xL and Bcl-2) were consistently induced in PG/IL-22 cells regardless of 5-FU treatment, whose levels were higher than that in PG/neo cells (Fig. 5B and C). However, IL-22 transfection into A549 cells (A549/IL-22) did not so dramatically increase the activation of STAT3 (Fig. 5A and B) and production of Bcl-xL and Bcl-2 (Fig. 5B) as it did in PG cells, which is in accordance with the observation that A549/neo cells were more resistant to apoptosis than PG/neo cells after serum starvation (Fig. 2B) or 5-FU treatment (Fig. 3C) by constitutively higher IL-22 autoproduction in A549/neo cells (Fig. 2A). On the other hand, it was obviously observed that IL-22 overexpression in PG and A549 cells inhibited phosphorylation of ERK1/2 (Fig. 5A). Therefore, to verify the IL-22 effects on A549 cells, IL-22-mRNAi was examined. As shown in Fig. 6C and D, IL-22-mRNAi induced phosphorylation of ERK1/2 as well as inhibited the activation of STAT3 but did not induce the AKT activation in A549 cells. Taken together, these results suggested that antiapoptotic effects of IL-22 were possibly correlated to the inactivation of ERK1/2, activation of STAT3, and then induction of Bcl-2/Bcl-xL.

Therapeutic effects of IL-22-small interfering RNA by inducing apoptosis on human lung cancer xenografts. To assess whether IL-22 affects cell survival, three different plasmids of IL-22-RNAi were designed and transfected into A549 cells (A549/IL-22) and PG/IL-22 cells. The cell death rate was evaluated by MTT assay. A, 2 × 10^4 A549 and PG cells were exposed to carboplatin at different concentrations in the presence or absence of human recombinant IL-22 (20 ng/mL) for 48 h. The cell death rate was evaluated by MTT assay. C. 2 × 10^5 cells were cultured in six-well plates overnight and then exposed to 5-FU (500 μg/mL). Cells were harvested at indicated time points and stained with Annexin V/propidium iodide for fluorescence-activated cell sorting analysis. D. 5-FU or carboplatin was used to induce cell apoptosis at a final concentration of 500 or 100 μg/mL, respectively. Exposing cancer cells to chemotherapeutic drug for 8 h, apoptotic cells were evaluated using CaspSCREEN Caspase Screening Kit. Mean ± SD of three independent experiments. *, P < 0.05; **, P < 0.01.
constitutively express higher level of autocrine IL-22. Forty-eight hours after IL-22-RNAi vector transfection into A549 cells, IL-22 protein synthesis was almost completely blocked (Fig. 6A). The most effective IL-22-RNAi vector (#2) was then used. Meanwhile, inhibition of IL-22 expression by RNAi caused a significant increase in apoptosis of A549 cells induced by chemotherapeutic drugs (Fig. 6B) but not in a human normal endothelial cell line (HUV-EC-C cells; Supplementary Fig. S2). Furthermore, our results revealed that IL-22-RNAi inhibited the activation of STAT3 (Fig. 6C) and induced phosphorylation of ERK1/2 (Fig. 6C and D) but did not induce the AKT activation (Supplementary Fig. S1).

Subsequently, we established xenograft tumors in BALB/c nude mice to analyze the effects of IL-22 RNAi on tumor cell growth in vivo. Cancer cells (1 × 10⁷) were injected s.c. into the lower right flank of nude mice. IL-22 RNAi plasmids or control plasmids were administrated into mice according to the schedule shown in Fig. 6E. The relative tumor growth of xenografted mice was monitored for 38 days with termination at 59 days post-inoculation. Tumor volume was significantly lower in IL-22-RNAi-treated mice than that in vector control mice (P < 0.01; Fig. 6F). Tumor weight was also significantly decreased in IL-22-RNAi-treated mice (data not shown).

Discussion

In this study, we first showed that IL-22 was overexpressed in primary tumor tissue, malignant pleural effusion, and serum in patients with NSCLC and that the overexpression of IL-22 was possibly correlated with occurrence and progress of human NSCLC. Furthermore, the fact that gene silencing of IL-22 by small interfering RNA significantly inhibited xenograft tumor growth suggested that IL-22 played an important role in NSCLC progression.

Reports relating to the association of IL-22 expression with tumor growth and apoptosis are few and varied. Although the growth of IL-22-transfected colon 26 cells was not different from that of control cells in vitro, survival of inoculated mice was significantly prolonged compared with control mice, suggesting that IL-22 might play a protective role in the mice with colon carcinoma (15). In contrast, Weber et al. (16) reported that IL-22 reduced EMT6 murine breast tumor growth by inhibiting ERK1/2 and AKT phosphorylation. On the other hand, in an in vitro study using HepG2 human hepatocellular carcinoma cells, it was noted that IL-22 transfection promoted cell growth and survival by activation of STAT3 and induction of antiapoptotic and mitogenic proteins (10). In addition, it was reported that isochaihulactone induced apoptosis in A549 cells via the phosphorylation of ERK1/2 but not on the activation of protein kinase C or AKT/glycogen synthase kinase-3β (17). FOH-induced apoptosis in
human lung carcinoma cells was dependent on the activation of the MEK-ERK signaling pathway (18), and PG490 (triptolide)-mediated sensitization of human lung cancer cells to Apo2L/TRAIL-induced apoptosis required activation of ERK2 (19). In the current study, both in vitro and in vivo data showed that overexpression of IL-22 protected lung cancer cells from apoptosis (Figs. 1–3 and 6) via the activation of STAT3 and its downstream antiprotective proteins such as Bcl-2 and Bcl-xL and inactivation of ERK1/2 (Fig. 5). Our results (Fig. 6C and D; Supplementary Fig. S1) also suggested that the activation of ERK1/2 and inactivation of STAT3, but not AKT pathway, were involved in the antitumor effect of IL-22-RNAi in A549 cells.

The conflicting data produced by various investigators may be due to differences in disease models, species, and cell types studies as well as the pleiotropic roles of IL-22. In our study, A549 cells, one of most extensively used NSCLC models, were selected based on the clinical observation that overproduction of IL-22 was correlated with progression of NSCLC (Fig. 1). Furthermore, it has been shown that NSCLC possess several intracellular signaling pathways that act against chemotherapeutic insults including the anticancer drug-induced or constitutive activation of the phosphatidylinositol 3-kinase (20), the nuclear factor-kB, Akt (21–24), and the STAT3 signaling pathways (25). In our study, an increase in both constitutive and chemotherapeutic drug-induced activation of STAT3 was detected in A549 cells (Fig. 5). In addition, inhibition of IL-22 could enhance the sensitivity of A549 cells to chemotherapeutic drugs (Fig. 6B). Hence, IL-22 contributed to the activation of STAT3 and chemoresistant effect in NSCLC cells.

Autocrine production of cytokines is required for cell survival and growth and is responsible for resistance to apoptosis induced by antitumor drugs in many cancer cells. It has been shown that autocrine IL-4 and IL-10 production in thyroid cancer cells results in constitutive activation of the JAK/STAT pathway that protects cells against CD95-induced (26) and chemotherapeutic drug-induced apoptosis (27). Moreover, autocrine IL-6-induced STAT3 activation contributes to the pathogenesis of lung adenocarcinoma and formation of malignant pleural effusion (25). Similar to these findings, we found that there was an autocrine IL-22 production in NSCLC. The constitutive production of IL-22 was observed in primary NSCLC (Fig. 1) and A549 cells (Fig. 2). Other researchers (13, 28) and our studies (Fig. 2) showed that functional IL-22 receptor complex was detected in A549 cells. Blocking this functional IL-22 autocrine loop using anti-IL-22R1 Abs resulted in an increased chemotherapeutic drug-induced apoptosis in A549 cells (Fig. 4). These results, for the first time, provided evidence that IL-22 can directly act on NSCLC cells by increasing the expression of antiapoptotic proteins, thus promoting the resistance of NSCLC cells to antitumor drugs.

It is well known that development of malignant pleural effusion is associated with a poor prognosis. In malignant pleural effusions, the mRNA expressions of IL-4, IL-10, tumor necrosis factor-α, and transforming growth factor-β1 were significantly higher than those from tuberculosis pleural effusion (29). Higher levels of IL-6 (25) and VEGF (25, 30) were also found in the pleural fluids of patients with NSCLC and contributed to the formation of malignant pleural effusion.

Fig. 6. Therapeutic effects of IL-22-RNAi plasmid in tumor xenograft BALB/c-nu/nu mice. A, three different plasmids of IL-22-RNAi were designed and transient transfected into A549 cells by LipofectAMINE 2000. Forty-eight hours after transfection, examination of IL-22 protein in IL-22-RNAI transiently transfected A549 cells was done by Western blotting to screen the most effective plasmid of IL-22-RNAI. B, A549 cells (2 x 10⁵) in six-well plate were transient transfected with IL-22-RNAI plasmid (#2) or control vector and cultured for 48 h followed by exposure to chemotherapeutic drugs for 8 h. The cells were finally examined for apoptosis by CaspSCREEN Caspase Screening Kit. C and D, A549 cells were plated in six-well plates at 1 x 10⁶ per well. One day later, monolayer cells were subjected to transient transfection with IL-22-RNAI by LipofectAMINE 2000. At 48 h after transfection, Western blotting analysis (C) and flow cytometry analysis (D) were done to determine the phosphorylation of ERK1/2 and STAT3. Representative of three independent experiments. E, schematic diagram of injection protocols for IL-22-RNAi plasmids. A549 cells suspended in 100 μL PBS was s.c. inoculated in the right flank of nude mice. On the next day, 50 μg IL-22-RNAI plasmid (#2; n = 4) or control plasmid (n = 3) in a total of 100 μL PBS was injected i.v. followed by treatment with 25 μg plasmid i.v. (totally injected for 12 times) and i.t. (totally injected for 6 times) twice a week. F, tumor growth was monitored and recorded from days 21 to 59. Tumor volume was calculated as length x width x height.
Our current data showed that the significantly elevated expression of IL-22 in malignant pleural effusion might serve as the antiapoptotic factor responsible for cancer cell survival (Fig. 1D). Although the role of autocrine production of IL-22 needs further study, our in vitro and in vivo observations suggest that this cytokine may possibly be a novel target for diagnosis, treatment, and prognosis of NSCLC.

References

Antiapoptotic Activity of Autocrine Interleukin-22 and Therapeutic Effects of Interleukin-22-Small Interfering RNA on Human Lung Cancer Xenografts

Weici Zhang, Yongyan Chen, Haiming Wei, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/14/20/6432

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2008/10/17/14.20.6432.DC1

Cited articles
This article cites 30 articles, 16 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/14/20/6432.full.html#ref-list-1

Citing articles
This article has been cited by 7 HighWire-hosted articles. Access the articles at:
/content/14/20/6432.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.