Synergy of a Herpes Oncolytic Virus and Paclitaxel for Anaplastic Thyroid Cancer

Shu-Fu Lin,1,4 Sizhi Paul Gao,2 Daniel L. Price,1 Sen Li,1 Ting-Chao Chou,3 Paramjeet Singh,1 Yu-Yao Huang,4 Yuman Fong,1 and Richard J. Wong1

Abstract

Purpose: Novel therapeutic regimens are needed to improve the dismal outcomes of patients with anaplastic thyroid cancer (ATC). Oncolytic herpes simplex virus has shown promising activity against human ATC. We studied the application of oncolytic herpes simplex virus (G207 and NV1023) in combination with currently used chemotherapeutic drugs (paclitaxel and doxorubicin) for the treatment of ATC.

Experimental Design and Results: All four agents showed dose-response cytotoxicity in vitro for the human ATC cell lines KAT4 and DRO90-1. G207, combined with paclitaxel, showed synergistic cytotoxicity. Chou-Talalay combination indices ranged from 0.56 to 0.66 for KAT4, and 0.68 to 0.74 for DRO90-1 at higher affected fractions. Paclitaxel did not enhance G207 viral entry and early gene expression or G207 viral replication. Paclitaxel combined with G207 compared with single-agent treatment or controls showed significantly increased microtubule acetylation, mitotic arrest, aberrant chromatid separation, inhibition of metaphase to anaphase progression, and apoptosis. A single i.t. injection of G207 combined with biweekly i.p. paclitaxel injections in athymic nude mice bearing KAT4 flank tumors showed significantly reduced mean tumor volume (74 ± 38 mm³) compared with G207 alone (388 ± 109 mm³), paclitaxel alone (439 ± 137 mm³), and control (520 ± 160 mm³) groups at 16 days. There was no morbidity in vivo attributable to therapy.

Conclusions: Mechanisms of paclitaxel antitumoral activity, including microtubule acetylation, mitotic block, and apoptosis, were enhanced by G207, which also has direct oncolytic effects. Combination of G207 and paclitaxel therapy is synergistic in treating ATC and holds promise for patients with this fatal disease.

Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies and is considered a fatal disease. ATC represents <2% of all thyroid cancers but is responsible for up to 40% of mortality from thyroid cancer (1). The median survival of patients with ATC is ~6 months (1–3). Currently available chemotherapy drugs with activity against ATC include doxorubicin (Adriamycin), paclitaxel, and cisplatin. The response rate of ATC to Adriamycin is poor, and combination drug therapy fails to give an added benefit (4, 5). Although response rates to paclitaxel were 53% in a recent phase II clinical trial, the median survival of those patients responding to paclitaxel was only 32 weeks (6). Multimodality therapy for ATC, including surgical debulking, external radiation therapy, and chemotherapy, have failed to show any meaningful survival improvements from multimodality therapy (6–10). Novel therapies with different mechanisms of action are likely necessary to achieve any significant improvements in these dismal outcomes.

Attenuated, replication-competent herpes simplex virus type 1 (HSV-1) have been engineered with significantly reduced toxic effects compared with wild-type HSV-1 (11, 12). These attenuated viruses have shown efficacy in treating a variety of malignancies, including anaplastic thyroid cancer, in preclinical studies (11–17). G207 is attenuated by deletions of both copies of the diploid g134.5 neurovirulence gene and a lacZ gene insertion inactivating the ribonucleotide reductase (RR) gene (12). The NV series of viruses have a single deletion in g134.5, and NV1023 express lacZ (15, 18). Early clinical trials have shown that these attenuated oncolytic viruses and others may be safe for clinical application at doses reaching up to 10^{12} plaque-forming units (pfu; refs. 19–21).

Oncolytic herpes viruses have been applied in combination with chemotherapy in preclinical studies to potentially increase treatment efficacy for various malignancies (22–28). Several studies have suggested that G207, in combination with DNA-damaging agents, such as fluorodeoxyuridine, mitomycin C,
and temozolomide, may have synergistic antitumoral effects (26–28). GADD34, a DNA repair enzyme, shares close homology to HSV-1 γ34.5, which is deleted for purposes of neurovirulence attenuation. Selected chemotherapy agents that up-regulate cellular GADD34 in response to DNA damage may potentially complement the γ34.5 deletion in G207 to enhance viral proliferation and oncolytic efficacy (26–28). However, studies investigating the mechanistic interactions between oncolytic HSV and chemotherapy used for ATC, such as Adriamycin and paclitaxel, have not previously been reported.

Our group has shown that oncolytic herpes viruses may have potent therapeutic effects in treating anaplastic thyroid cancer in vitro and in animal models (16, 29). The purpose of the current study is to investigate the potential application of oncolytic HSV (G207 or NV1023) in combination with chemotherapy for ATC to assess for beneficial interactions. Adriamycin inhibits the activity of topoisomerase IIa causing breaks in genomic DNA and may also increase the R2 protein of RR (30, 31). Paclitaxel causes microtubule stabilization, mitotic arrest, and apoptosis in cancer cells (32, 33). We sought to determine if G207 or NV1023 might show enhanced effects with either Adriamycin or paclitaxel, possibly through alterations in cellular GADD34 or RR.

The combination of oncolytic herpes virus (G207 or NV1023) with chemotherapy (Adriamycin or paclitaxel) was studied in two human ATC cell lines (KAT4 or DRO90-1) by cytototoxicity assays. Combination cytotoxic effects were assessed using Chou-Talalay multiple drug effect analyses (34). The combination of G207 with paclitaxel showed synergistic effects for both cell lines. The potential mechanisms of these antitumoral effects were assessed by viral entry and early gene expression assays, proliferation plaque assays, acetylated α-tubulin detection, determination of mitotic arrest, assessment of metaphase-to-anaphase transition, and apoptosis assays. Athymic nude mice with ATC flank tumors were treated with i.t. G207 plus i.p. paclitaxel to confirm the efficacy of combination treatment in vivo and to evaluate for safety. These results show that G207 viral entry and replication is not enhanced by paclitaxel therapy. G207 causes direct viral oncolysis while also enhancing the mechanism of paclitaxel activity by increasing α-tubulin acetylation, stabilizing microtubules, inducing mitotic arrest, inhibiting metaphase-to-anaphase progression, and increasing apoptosis. This study shows that the combination of G207 and paclitaxel has synergistic antitumoral effects for ATC.

Materials and Methods

Cell lines. Two human ATC cell lines were obtained. KAT4 was a gift of Dr. K. Ain (University of Kentucky Medical Center). DRO90-1 was a gift of Dr. G. Juillard (University of California). KAT4 and DRO90-1 were maintained in RPMI with 14 mL/L nonessential amino acid, L-glutamine (100 mg/L), sodium pyruvate (154 mg/L), and sodium bicarbonate (1.5 g/L). African green monkey kidney cells (Vero cells) for viral plaque assays were maintained in MEM. All media contained 10% FCS, 100,000 units/L penicillin, and 100 mg/L streptomycin. All cells were maintained in a 5% CO2 humidified incubator at 37°C.

Viruses. G207 is an attenuated, replication competent, mutant HSV-1 with deletions at both γ34.5 loci and a lacZ gene insertion inactivating the ICP6 gene (RR), whose construction has been previously described (12). NV1023 is an attenuated, replication-competent HSV-1, whose construction has also been previously described (15). NV1023 contains a fragment of HSV-2 DNA inserted in UL93/junction, a deletion of UL56, and one copy of the diploid genes ICP0, ICP4, and γ34.5. NV1023 contains the lacZ gene inserted at the US10-12 locus. Both viruses were obtained from Medigene. Viruses were diluted with serum-free media for in vitro studies and with PBS for in vivo studies.

Chemotherapy. Paclitaxel and Adriamycin were obtained from Sigma Chemical Co. Paclitaxel was diluted in DMSO (tissue culture grade; Sigma) and added to media for a final concentration of DMSO of <0.1% (v/v) for in vitro studies. For in vivo studies, paclitaxel was dissolved in cremophor EL (Sigma) and dehydrated ethanol (1:1 v/v) to a concentration of 30 mg/mL and stored at -20°C. Before i.p. injections, paclitaxel was diluted in 0.9% saline to a final concentration of 4 mg/mL. Adriamycin was diluted with 0.9% saline before in vivo use.

Cytotoxicity assays and Chou-Talalay analysis. KAT4 and DRO90-1 cytototoxicity resulting from virus, chemotheray, or both agents in combination was studied using lactate dehydrogenase (LDH) assays. Cells were plated at 2 × 10⁴ cells per well in 12-well plates in 1 mL media. After overnight incubation, the agent or vehicle was added at the indicated concentration. Serial dilutions were tested starting at the following starting doses: G207 at multiplicity of infection (MOI) of 8, NV1023 at MOI of 1, paclitaxel at 32 nmol/L, and Adriamycin at 6.4 μmol/L over a 4-day time course. After initial studies designed to select appropriate dose ranges, additional LDH assays were done to generate dose-response curves assessed at day 4. Median effect doses (D₅₀) were calculated for each cell line and each drug.

For combination studies, LDH cytototoxicity assays of G207 + paclitaxel, G207 + Adriamycin, NV1023 + paclitaxel, and NV1023 + Adriamycin at a fixed dose ratio were done on day 4 after treatment. Cells were washed with PBS and lysed with Triton X (1.35%; Sigma) to release intracellular LDH, which was quantified with a Cytotox 96 kit (Promega) at 450 nm by spectrophotometry (EL321e, Bio-Tek Instruments). Results are expressed as the percentage of surviving cells determined by comparing the LDH of each sample relative to control samples considered 100% viable. The dose-response curves of each agent for each cell line were obtained. The interactions between viruses and drugs were evaluated by calculating Chou-Talalay combination indices (CI) using CompuSyn software (ComboSyn). Each condition was replicated in triplicate, and each experiment was done at least twice to corroborate results.

Viral entry. G207 expresses the β-galactosidase gene as a marker of infection and gene expression. Cells were plated at 2 × 10⁴ per well in 96-well plates and then exposed to paclitaxel at varying doses for 6 h. For DRO90-1, serial dilutions from 24 nmol/L were done, whereas for KAT4, serial dilutions from 16 nmol/L were done. Cells were then exposed to G207 at MOI of 5. After 6 h of incubation, cells were lysed and β-galactosidase activity was measured with an Enhanced β-Galactosidase Assay kit (Gene Therapy Systems) and spectrophotometry (EL321e, Bio-Tek Instruments) at 570 nm. All conditions were measured in triplicate.

Viral titration. Viral proliferation was measured by plating 2 × 10⁴ cells in 12-well plates overnight and then treating them with G207 at MOI of 0.5 (KAT4) or MOI of 1.5 (DRO90-1) and paclitaxel 1 nmol/L (KAT4) or 3 nmol/L (DRO90-1) or DMSO as a control. Cells were scraped and collected daily with supernatants for 4 days. Three freeze-thaw cycles were done to release intracellular virus, and serial dilutions of the samples were done. Diluted samples were added to plates of confluent Vero cells for standard viral plaque assays (26). All conditions were measured in triplicate. For studies calculating the ratio of viral pfu per viable cancer cell, cells were treated for 2 days with G207 (MOI, 1) and a range of paclitaxel doses, and the number of viable cells was counted from additional wells.

Western blots. KAT4 cells were plated at 2 × 10⁴ cells in 100-mm Petri dishes in 10 mL media overnight and treated with G207 at MOI of <0.1% (v/v) for in vivo experiments. Adriamycin was diluted with 0.9% saline before in vivo use. Adriamycin was dissolved in cremophor EL (Sigma) and dehydrated ethanol (1:1 v/v) to a concentration of 30 mg/mL and stored at -20°C. Before i.p. injections, paclitaxel was diluted in 0.9% saline to a final concentration of 4 mg/mL. Adriamycin was diluted with 0.9% saline before in vivo use.

Cancer Therapy: Preclinical
of 1, 2 nmol/L paclitaxel, both, or neither for 48 and 72 h. Cell pellets were treated with lysis buffer (Cell Signaling Technology), protease inhibitor mixture (Complete Mini EDTA-free, Roche), sonicated, and clarified by centrifugation. Total protein (25 μg) was electrophoresed on 10% Tris-HCl gels (Bio-Rad), transferred to polyvinylidene difluoride membranes, blocked, and exposed to a mouse monoclonal acetylated α-tubulin primary antibody (6-11B-1, 1:2,000; Sigma) or mouse α-tubulin antibody (B-5-1-2, 1:2,000; Sigma) followed by a secondary antibody conjugated to horseradish peroxidase. Signal was developed using an Enhanced Chemiluminescence Plus Detection System (Amersham). Band density was quantified (Alphalager Imaging Systems), and the ratio of acetylated α-tubulin to α-tubulin was divided by control to yield relative protein expression.

Immunofluorescence microscopy. KAT4 cells were plated at 2 × 10^4 in four-well culture slides in 1 mL media overnight. Cells were treated with the indicated agents for 72 h, fixed in 100% dehydrated ethanol or methanol/acetone 1:1 (5 min, -20°C), washed with PBS, blocked with 1% bovine serum albumin/PBS (10 min, 37°C), and incubated with a mouse α-tubulin antibody (B-5-1-2, 1:2,000; Sigma) or mouse acetylated α-tubulin antibody (6-11B-1, 1:400; Sigma) for 25 min at 37°C. Cells were then washed in PBS and incubated with a secondary AlexaFluor 633-conjugated goat anti-mouse antibody (1:500; Molecular Probes) or AlexaFluor 488–conjugated goat anti-mouse antibody (1:1,000; Molecular Probes) for 25 min at 37°C. Cells were then washed with PBS, incubated with 4',6-diamidino-2-phenylindole (DAPI; 0.2 μg/mL; Invitrogen) for 10 min at room temperature, washed again with PBS, and covered with VECTASHIELD Mounting Medium (Vector Laboratories). Images were captured with a Leica TCS SP2 AOBS confocal microscope (Leica Microsystems). For mitotic index assessment, a minimum of 1,500 cells were counted from at least five different fields for each condition. Anaphase/metaphase ratio was evaluated by counting a minimum of 180 mitotic cells from three different fields for each condition.

Apoptosis assay. KAT4 cells were plated at 2 × 10^5 cells per dish in 60-mm dishes in 5 mL medium overnight. Vehicle, G207 (MOI, 0.5), paclitaxel (4 nmol/L), or a combination of G207 with paclitaxel was added. After 72 h, floating cells were collected and combined with trypsinized, adherent cells. Samples were treated with 1 mL 1% bovine serum albumin/PBS and fixed with 10% ethanol at 4°C overnight. Cells were then washed with 1 mL of 1% bovine serum albumin/PBS and treated with RNase A (100 μg/mL; Sigma) and propidium iodide (5 μg/mL; Sigma) at 37°C for 15 min. Apoptotic cells were characterized by subdiploid DNA content as detected by flow cytometry on a FACScalibur cytometer (Becton Dickinson), and data were analyzed by FlowJo v8.5.3 software (Tree Star). All samples were replicated in triplicate.

Flank tumor therapy. Six-week-old athymic female nude mice (National Cancer Institute) were anesthetized with inhalational isoflurane (Baxter). KAT4 flank tumors were established by injecting 1 × 10^6 cells in 100 μL PBS into the s.c. flanks of athymic nude mice. When tumors had reached ~4 to 5 mm in mean diameter, mice (n = 4 per group) were treated with a single dose of G207 (2 × 10^7 pfu/50 μL) or PBS by i.t. injection. Paclitaxel (0.4 mg/100 μL) or vehicle (cremophor EL/dehydrated ethanol/saline) was given by i.p. injection after the G207 injection. Paclitaxel or vehicle was injected i.p. on days 1 and 4 of a 7-day cycle for 2 weeks. Tumor dimensions were serially measured with electronic calipers every 2 days, and the volumes were calculated by the following formula a^2 × b × 0.4, where a represents the smallest diameter and b is the perpendicular diameter. The tumor volumes ± SEs of the mean were reported. The body weight and motor activity of each animal were monitored as indicators of general health.

Statistical analysis. The statistical significance of differences between two groups was assessed when appropriate, using two-sided Student’s t test with P < 0.05. Results are expressed as the mean ± SE.
concentrations tested, suggesting that this is not a mechanism to account for synergistic interactions.

To determine if paclitaxel affects G207 viral replication in anaplastic thyroid cancer, viral replication was measured by plaque assays after infection with G207 and exposure to either paclitaxel or vehicle. Relatively low doses of paclitaxel were chosen to avoid overriding cytotoxicity impairing viral replication. A time course study showed no significant effects of

Fig. 1. Time course cytotoxicity assays of paclitaxel, Adriamycin, NV1023, and G207 on the anaplastic thyroid cancer cell lines KAT4 and DRO90-1. A range of serial dilutions was studied to identify optimal viral dosing and drug concentrations. The percentage of surviving cells in vitro was determined by LDH assays, considering control samples to be 100% viable. Points, mean of triplicate samples; bars, SE.
paclitaxel on G207 viral replication (Fig. 3B). To assess for viral replication across a range of paclitaxel doses and to also account for alterations in viable cell numbers due to expected cytotoxicity from both paclitaxel and G207, we did additional viral titering studies at a set time point (day 2) and adjusted viral titers by viable cell number. The calculated numbers of viral pfu per viable cell did not significantly change across the range of paclitaxel doses tested for DRO90-1 or KAT4 (Fig. 3C). Collectively, these data show that paclitaxel does not enhance G207 viral entry or viral replication.

Effects of G207 and paclitaxel on microtubule acetylation. We sought to determine if G207 may affect mechanisms of paclitaxel antitumoral activity. Paclitaxel is known to enhance microtubule stability, leading to mitotic arrest and, ultimately, apoptosis. The acetylation of α-tubulin is an established marker of microtubule stability, and the amount of acetylated tubulin is proportional to the stability of the microtubule (35). Quantitative Western blots were done to assess acetylated α-tubulin in KAT4 cells 48 and 72 h after treatment with vehicle, G207, paclitaxel, or G207 + paclitaxel. Treatment with paclitaxel alone led to relative increases in acetylated α-tubulin by 1.4-fold by 48 h and 2.4-fold by 72 h compared with untreated controls. Paclitaxel in combination with G207 led to much greater increases in acetylated α-tubulin of 2.9-fold by 48 h and 6.3-fold by 72 h (Fig. 4A and B).

Effects of G207 and paclitaxel on mitotic arrest and anaphase/metaphase ratio. The acetylation of α-tubulin and the increase in microtubule stability by paclitaxel leads to mitotic arrest and impaired progression of cells from metaphase to anaphase (33, 36). Immunofluorescence microscopy for α-tubulin and DAPI in KAT4 cells was done to assess the effects of G207 on paclitaxel-induced mitotic arrest and on metaphase-to-anaphase transition. The percentage of cells identified in mitosis was significantly increased for combination of G207 and paclitaxel treatment compared with paclitaxel alone or G207 alone (Fig. 4C). We also examined the ratio of cells in anaphase (segregated chromatids along microtubule spindles) to those at metaphase (lined up at metaphase plate) to determine whether progression between these phases of mitosis was blocked. A low ratio is a marker of microtubule stabilization by paclitaxel (36). The ratio was 0.22 ± 0.05 for control, 0.17 ± 0.03 for G207, 0.14 ± 0.02 for paclitaxel, and 0.07 ± 0.01 for the combination of G207 with paclitaxel treatment (Fig. 4D). Therefore, the combination of G207 with paclitaxel was associated with a significantly higher mitotic arrest and a significantly lower anaphase-to-metaphase ratio compared with either paclitaxel or G207 alone (P < 0.05 for all comparisons, t test).

Apoptosis assay. We assessed the percentage of KAT4 cells undergoing apoptosis 72 h after treatment with G207 (MOI, 0.5), paclitaxel (4 nmol/L), G207 + paclitaxel, or vehicle as a control using propidium iodide staining and fluorescence-activated cell sorting assessment of the sub-G0 population of cells. The percentage of cells in apoptosis for control (1.4 ± 0.1%), G207 (14.5 ± 0.4%), paclitaxel (25.6 ± 0.8%), and

Fig. 2. Cytotoxicity of combination herpes oncolytic virus and chemotherapy. A, cytotoxic effects of G207 or NV1023 in combination with the paclitaxel or doxorubicin on KAT4 and DRO90-1 on cell survival using LDH assays in vitro. Varying viral and drug concentrations were applied alone or in combination for a 4-d exposure period. G207 plus paclitaxel showed enhanced cytotoxic effects. The combinations of G207 plus Adriamycin and NV1023 plus paclitaxel showed predominantly additive cytotoxic effects for both cell lines. The combination of NV1023 plus Adriamycin failed to result in additive cytotoxic effects for either KAT4 or DRO90-1. Columns, mean; bars, SE. B, the CI of G207 or NV1023 in combination with paclitaxel or Adriamycin were calculated using Chou-Talalay analyses and plotted against the affected fraction (Fa) or the percentage of cell death resulting from combined therapy. CI of <0.9 indicates synergy, CI between 0.9 and 1.1 is addictive, and CI of >1.1 indicates antagonism. Paclitaxel and G207 show synergistic effects for KAT4 and at higher affected fractions of DRO90-1. In contrast, Adriamycin and NV1023 exhibit antagonistic effects together, whereas other combinations of drug and virus were predominantly additive. C, the dose reduction index (DRI) was calculated for each drug and virus combination at various affected fractions. The dose reduction index was greatest for paclitaxel with G207 for both KAT4 and DRO90-1 cell lines at an affected fraction of 90%.
combination of G207 and paclitaxel (33.9 ± 0.9%) was measured (Fig. 4E). The combination of G207 and paclitaxel showed a significant increase in apoptosis compared with either paclitaxel or G207 alone (P < 0.01 for both comparisons, t test).

Immunofluorescence confocal microscopy. Immunofluorescence microscopy of KAT4 cells for acetylated tubulin shows a low level of fluorescence for control-treated and G207-treated KAT4 cells, mild fluorescence for paclitaxel-treated cells, and significantly enhanced fluorescence for G207 + paclitaxel–treated cells (Fig. 5A).

The morphologic changes of chromosomes for control-treated, G207-treated, paclitaxel-treated, and G207 + paclitaxel–treated KAT4 cells were assessed after DAPI (blue) and α-tubulin (red) immunofluorescence staining. For both control-treated and G207-treated cells, chromosomes retained a normal morphology throughout mitosis (Fig. 5B). The chromosomes line up in an organized fashion at the metaphase plate, and the sister chromatids are drawn uniformly apart by microtubules to opposing poles during anaphase. In contrast, some paclitaxel-treated cells show a failure by the chromosomes to congregate linearly along the metaphase plate. Others migrate in an aberrant fashion toward the opposing poles, with some chromosomes separate from the group. Most striking are the cells treated by the combination of G207 + paclitaxel. For these cells, we observed aberrant chromosomal morphology, fragmented portions of chromosomes, and mitotic catastrophes (Fig. 5B).

G207 and paclitaxel combination therapy of murine flank tumors. A flank tumor model of human KAT4 anaplastic thyroid cancer in athymic nude mice was used to study the effects of G207 and paclitaxel therapy in vivo. Groups with established flank tumors of equitable volumes were treated with vehicle, a single i.t. G207 injection, biweekly i.p. paclitaxel, or G207 + paclitaxel. KAT4 flank tumors receiving combination of G207 + paclitaxel showed a significantly reduced mean tumor volume (74 ± 38 mm³) compared with G207 alone (388 ± 109 mm³), paclitaxel alone (439 ± 137 mm³), and control (520 ± 160 mm³) by 16 days (P < 0.01 for all three comparisons; Fig. 6). Tumors treated with either G207 or paclitaxel alone had slightly smaller mean volumes than control group, but without statistical significance. The study was terminated when largest control group tumors began to ulcerate after day 16. The mean body weight of the mice was 22 g, and there were no significant differences between the groups initially or by the end of the study. The motor activity of all the mice remained normal. There were no mucosal or
cutaneous lesions identified on any animal. No morbidity attributable to either tumor progression or therapy was identified. No mortality was observed.

Discussion

Anaplastic thyroid cancer is one of the most aggressive human malignancies. Currently available treatments, including radiation therapy and chemotherapy, are considered palliative in nature. Novel therapies are needed to achieve improved outcomes for these unfortunate patients. Our group has previously reported on the preclinical efficacy of oncolytic herpes viruses for treating anaplastic thyroid cancers, using both in vitro assays and a murine in vivo animal model (16, 29).

The combination of oncolytic herpes viral therapy with chemotherapy has been previously found to be effective for selected viruses and drugs (22–28). G207 acts mainly through direct viral oncolysis of infected cancer cells. One mechanism of synergy between chemotherapy and HSV oncolysis is related to the homology between GADD34, a DNA repair enzyme induced by some drugs, and γ134.5, a diploid neurovirulence HSV protein that may be deleted as an attenuation strategy. Drugs, such as temozolomide or mitomycin C, that stimulate GADD34 in cancer cells may also enhance herpes viral oncolysis by complementing the function of γ134.5 (27, 28). RR is also deleted in certain oncolytic HSV-1, such as G207, as an attenuation strategy. Drugs, such as temozolomide and fluorodeoxyuridine, which can increase RR of a cancer cell may also enhance G207 viral replication and oncolysis (26, 28). Selected chemotherapies may therefore potentiate herpes viral replication and oncolysis by complementing the function of genetic deletions intended to attenuate these viruses for safety.

In this study, we sought to determine the utility of oncolytic herpes viral therapy when delivered in combination with two currently used chemotherapeutic drugs for ATC: Adriamycin and paclitaxel. Paclitaxel has been shown to increase GADD34 mRNA expression in ovarian cancer cells (37). Adriamycin-induced DNA damage increases expression of the R2 protein of RR in colon cancer and the M2 portion of RR in osteosarcoma (31, 38). We initially hypothesized that paclitaxel and Adriamycin might be able to enhance HSV-1 oncolysis through an up-regulation of GADD34 and RR in ATC cells.

Two well-studied, replication-competent, HSV-1 oncolytic viruses (G207 and NV1023) were selected for study. NV1023 is attenuated by the deletion of one copy of the γ134.5 neurovirulence gene, whereas G207 is attenuated by deletions in both copies of γ134.5 and RR. Our cytotoxicity data showed synergy...
between the combination of G207 and paclitaxel using Chou-Talalay analyses. Interestingly, we observed antagonistic effects between Adriamycin and NV1023, whereas the other combinations of drug and virus were predominantly additive. The varied responses between these different combinations is an indicator of the complex interactions between a live virus relying on host cell machinery for replication and a toxic drug that induces cellular DNA damage (Adriamycin) or mitotic arrest (paclitaxel).

In focusing on interactions between G207 and paclitaxel, we sought to determine if G207 replication is affected by paclitaxel. One mechanism of anaplastic thyroid cancer resistance to paclitaxel is linked to activation of the Raf/MEK/ERK pathway (39). We found that phosphorylated MEK increases in a dose-dependent manner in KAT4 and DRO90-1 cells treated with paclitaxel (data not shown). Because activated MEK may also enhance the replication of γ134.5-deleted HSV-1, we reasoned that G207 replication might be enhanced in either paclitaxel-treated or paclitaxel-resistant cells (40). However, G207 viral entry and proliferation studies in the presence of paclitaxel failed to show any enhancement of viral replication. Viral entry was actually reduced by paclitaxel, and viral replication was either mildly impaired or unchanged with the addition of paclitaxel. These results are supported by a previous study showing that wild-type HSV-1 (F strain) yield in Vero cells was reduced, although not completely inhibited, in the presence of paclitaxel (41). Another study showed that an ICP34.5-deleted modified oncolytic HSV-1 exhibited additive or synergistic effects in breast cancer cell lines, although not through any alterations in viral replication (42). These findings suggest that synergistic cytotoxicity between G207 and paclitaxel is not related to any increase in G207 viral replication, in contrast to other viral and chemotherapy combinations (26–28).

To further assess these interactions, we explored how G207 in combination with paclitaxel might affect the mechanisms of paclitaxel therapeutic activity. During mitosis, the duplicated chromatids of a cell are separated to opposing poles by microtubules before cell cleavage. Dynamic changes in microtubule structure at mitotic spindles are critical for successful mitosis (33, 43). Paclitaxel is known to stabilize microtubules, impairing such dynamic changes, impeding chromatid separation, blocking cell mitosis, and promoting apoptosis in malignant cells (32, 33, 36). We found that anaplastic thyroid cancer cells treated with G207 in combination with paclitaxel exhibited significant increases in measures of microtubule inhibition. For combination treatment, we detected enhanced...
microtubule acetylation (a marker of microtubule stabilization), mitotic arrest, inhibition of anaphase progression, and apoptosis compared with either single agent alone or untreated control samples. Wild-type HSV-1 has evolved a mechanism of preventing host cell apoptosis for the purpose of promoting viral replication (44). However, some attenuated, oncolytic HSVs have been shown to induce apoptosis in some adjacent cancer cells not directly infected by the virus, potentially through a secreted viral protein (45). We detected apoptosis in a small percentage of KAT4 cells treated with combination therapy compared with single modality treatment or control. B, representative animals 16 d after treatment show significant tumor volume differences. There were no significant differences in the mean body weight of experimental groups, and no morbidity observed was attributable to therapy with G207, paclitaxel, or both in combination.

Fig. 6. Combination of single G207 and biweekly paclitaxel therapy in vivo in a murine xenograft flank tumor model. A, KAT4 flank tumors were established in nude mice and treated with vehicle (PBS i.t. + cremiphor EL mixture i.p.), G207 (2 × 10^7 pfu i.t. + cremiphor EL mixture i.p.), paclitaxel (0.4 mg i.p. + PBS i.t.), or both G207 and paclitaxel in combination (2 × 10^7 pfu i.t. + 0.4 mg i.p.). Tumor volumes were significantly lower for mice treated with combination therapy compared with single modality treatment or control. B, representative animals 16 d after treatment show significant tumor volume differences. There were no significant differences in the mean body weight of experimental groups, and no morbidity observed was attributable to therapy with G207, paclitaxel, or both in combination.
References

Cancer Therapy: Preclinical

1528
www.aacrjournals.org
Downloaded from clinicanoncology.aacrjournals.org on July 15, 2017. © 2008 American Association for Cancer Research.
Synergy of a Herpes Oncolytic Virus and Paclitaxel for Anaplastic Thyroid Cancer

Shu-Fu Lin, Sizhi Paul Gao, Daniel L. Price, et al.

Updated version

Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/14/5/1519

Cited articles

This article cites 48 articles, 19 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/14/5/1519.full#ref-list-1

Citing articles

This article has been cited by 4 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/14/5/1519.full#related-urls

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.