MicroRNA Expression Profiles in Serous Ovarian Carcinoma

Eun Ji Nam,1 Heejei Yoon,2 Sang Wun Kim,1 Hoguen Kim,2 Young Tae Kim,1 Jae Hoon Kim,1 Jae Wook Kim,3 and Sunghoon Kim1

Abstract

Purpose: Although microRNAs have recently been recognized as riboregulators of gene expression, little is known about microRNA expression profiles in serous ovarian carcinoma. We assessed the expression of microRNA and the association between microRNA expression and the prognosis of serous ovarian carcinoma.

Experimental Design: Twenty patients diagnosed with serous ovarian carcinoma and eight patients treated for benign uterine disease between December 2000 and September 2003 were enrolled in this study. The microRNA expression profiles were examined using DNA microarray and Northern blot analyses.

Results: Several microRNAs were differentially expressed in serous ovarian carcinoma compared with normal ovarian tissues, including miR-21, miR-125a, miR-125b, miR-100, miR-145, miR-16, and miR-99a, which were each differentially expressed in >16 patients. In addition, the expression levels of some microRNAs were correlated with the survival in patients with serous ovarian carcinoma. Higher expression of miR-200, miR-141, miR-18a, miR-93, and miR-429, and lower expression of let-7b, and miR-199a were significantly correlated with a poor prognosis (P < 0.05).

Conclusion: Our results indicate that dysregulation of microRNAs is involved in ovarian carcinogenesis and associated with the prognosis of serous ovarian carcinoma.

Ovarian cancer is the most lethal of the gynecologic malignancies, but relatively little is known about the molecular genetics of its initiation and progression. Epithelial ovarian cancer, which accounts for 90% of ovarian cancer, is a heterogeneous group of neoplasms and is divided into histologic subgroups, each with their own underlying molecular genetic events: serous, mucinous, endometrioid, clear cell, Brenner, and undifferentiated carcinomas (1, 2). Among them, the serous type accounts for 75% to 80% of epithelial ovarian carcinomas. High grade serous ovarian carcinoma has a high incidence of TP53 (3), HER-2, ERBB2 (4), and AKT2 gene mutations (5) but a low incidence of KRAS and BRAF gene mutations (6). Nevertheless, the primary genetic alterations associated with serous ovarian carcinoma remain to be identified.

MicroRNAs (miRNA) are noncoding, single-stranded RNAs of ~22 nucleotides in length that constitute a novel class of gene regulators. miRNAs function as guide molecules by base paring with the mRNAs partially complementary to the miRNAs in miRNA-associated effector complexes (7). The binding of miRNAs to their target mRNAs leads to translational repression or decreases the stability of the mRNA (7, 8). miRNAs control various biological processes, including cell differentiation, cell proliferation, apoptosis, stress resistance, and fat metabolism (9).

Some miRNAs possess oncogenic or tumor suppressor activity. The first study documenting abnormalities in miRNA expression in tumors identified miR-15a and miR-16-1, which are located in a frequently deleted region in B-cell chronic lymphocytic leukemia (10). In a subsequent study, the miRNAs were found to suppress BCL2, an antiapoptotic gene (11). The let-7 family, which is down-regulated in lung cancer when RAS is frequently mutated (12), negatively regulates RAS (13). miR-155 is overexpressed in Burkitt’s lymphoma (14), breast cancer (15), and lung cancer (16). Its overexpression in transgenic mice leads to preleukemic pre-B-cell proliferation (17). miR-372 and miR-373 cooperate with oncogenic RAS in the cellular transformation of testicular germ cell tumors (18). All these findings suggest that altered miRNA expression contributes to tumorigenesis.

miRNA expression profiles show unique expression patterns according to the clinical features in several cancers, including chronic lymphocytic leukemia (19), breast cancer (15), pancreatic cancer (20), and lung cancer (12, 16), suggesting that some miRNAs could be used as diagnostic and prognostic markers. Of note, Lu et al. (21) found that miRNA expression profiling is much better for classifying poorly differentiated samples than mRNA expression profiling. Therefore, miRNA profiling may have a crucial clinical application.

In this study, we investigated the miRNA expression profiles in serous ovarian carcinoma and attempted to identify miRNAs capable of predicting the clinical prognosis.
Materials and Methods

Patients and tumor tissues. After obtaining informed consent and performing surgery at the Yonsei University College of Medicine (Seoul, Korea), samples of primary epithelial ovarian cancer were snap frozen in liquid nitrogen and stored at -80°C. The histopathologic diagnoses were determined using the WHO criteria, and the tumor histotype was serous cystadenocarcinoma in all patients. Twenty-eight samples were used for this study, including 20 serous ovarian carcinomas and 8 normal ovarian tissues. The clinical data and patient information are shown in Supplementary Table S1. Nine patients whose cancer progressed within 12 mo from the initiation of platinum-based combination chemotherapy were defined as the chemoresistant-disease group, whereas 11 patients whose cancer did not recur for >24 mo were defined as the chemosensitive-disease group. Progression was defined as the appearance of a new metastatic site that was not present at the initiation of primary chemotherapy or an abnormal CA-125 value with an increase of >25% over the previous level. Progression-free survival was defined as the interval from the initiation date of primary chemotherapy to the date of progression. Overall survival was calculated from the initiation date of primary chemotherapy until the date of death or the last follow-up visit.

miRNA microarrays. The frozen samples were homogenized in TRIzol reagent (Invitrogen) using an Omni-Mixer Homogenizer (Omni International). Total RNA was then isolated according to the manufacturer’s instructions. Total RNA from eight normal ovarian tissues was pooled and used as a common reference for miRNA expression. For the miRNA microarray study, 50 μg of total RNA were further processed to enrich the miRNA using a Purelink miRNA Isolation kit (Invitrogen). DNA oligonucleotide probes from the miRNA Registry (24) were labeled with Cy3 and Cy5 dye, respectively. Slides were hybridized for 12 to 16 h at 42°C in a humidifier using the ArrayIt SpotBot (TeleChem). The spot diameter (Digital Genomics); 50 ng of total RNA were used for hybridization on the miRNA microarray that contained 314 human miRNAs from the miRNA Registry. We analyzed the miRNA expression profiles of 28 serous ovarian cancer tissues and 8 normal ovarian tissues. The clinical data and patient information are shown in Supplementary Table S1. Nine patients whose cancer progressed within 12 mo from the initiation of platinum-based combination chemotherapy were defined as the chemoresistant-disease group, whereas 11 patients whose cancer did not recur for >24 mo were defined as the chemosensitive-disease group. Progression was defined as the appearance of a new metastatic site that was not present at the initiation of primary chemotherapy or an abnormal CA-125 value with an increase of >25% over the previous level. Progression-free survival was defined as the interval from the initiation date of primary chemotherapy to the date of progression. Overall survival was calculated from the initiation date of primary chemotherapy until the date of death or the last follow-up visit.

Northern blot analysis. Twenty-microgram RNA samples were separated on 15% Tris-borate EDTA urea acrylamide gels (Bio-Rad), and then transferred onto Hybond-N+ membranes (Amersham International). Total RNA was then isolated according to the manufacturer’s instructions. Total RNA from eight normal ovarian tissues was pooled and used as a common reference for miRNA expression. For the miRNA microarray study, 50 μg of total RNA were further processed to enrich the miRNA using a Purelink miRNA Isolation kit (Invitrogen). DNA oligonucleotide probes from the miRNA Registry (24) were labeled with Cy3 and Cy5 dye, respectively. Slides were hybridized for 12 to 16 h at 42°C in a humidifier using the ArrayIt SpotBot (TeleChem). The spot diameter was 100 μm. The slides were rehydrated and blocked in a solution containing 100 mM ethanolamine, 1 mol/L Tris (pH 9.0), and 0.1% SDS for 20 min at 50°C and then rinsed thoroughly with water and spun dry. Purified miRNAs were labeled using a mirVana miRNA Labeling kit (Ambion) and amine-reactive Cy5 or Cy3 dyes, respectively. Slides were hybridized for 12 to 16 h at 42°C in sealed cassettes under controlled humidity.

Data analysis. After hybridization, the slides were washed and dried before performing a high-resolution scan on a GenePix 4000B Array Scanner (Axon Instruments). The scanned images were analyzed with GenePix software version 3.0 (Axon Instruments) to obtain gene expression ratios. Transformed data were normalized using the Lowess procedure (Supplementary Fig. S1; ref. 22) and subjected to analysis using the Significance Analysis of Microarrays software program (SAM, Version 1.10) and clustering analysis (23). The clustering analysis was done using the Cluster and TreeView programs available online. Abnormal data were flagged during the GenePix software analysis and these numerical data were excluded from the SAM analysis. Missing data were input using the average of 10 nearest neighbors. For the clinical data analysis, only the miRNAs differentially expressed in more than three patients were selected to decrease possible technical errors. Fisher’s exact test and the Mann-Whitney U test were used to evaluate which miRNAs could discriminate the chemosensitive and chemoresistant groups (ver. 12.0; SPSS, Inc.). For the selected miRNAs, receiver operating characteristics curve analysis was used to assess the diagnostic accuracy of each miRNA. Survival analysis was used to compare patients with or without specific miRNAs in terms of progression-free and overall survival. The Kaplan-Meier method was used to estimate survival curves, and the log-rank statistic was used to test the equality of the survival functions between the patients with or without specific miRNA.

Northern blot analysis. Twenty-microgram RNA samples were separated on 15% Tris-borate EDTA urea acrylamide gels (Bio-Rad), and then transferred onto Hybond-N+ membranes (Amersham Biosciences) and subjected to UV cross-linking. The oligonucleotides used without specific miRNA were labeled using a loading control.

Table 1. Differentially expressed miRNAs with >2-fold change in tumor versus normal ovarian tissues in at least 12 of 20 ovarian cancer patients

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Up* (%)</th>
<th>Down* (%)</th>
<th>Mean (median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mir-145</td>
<td>0/20</td>
<td>0/20</td>
<td>-3.20 (1.13)</td>
</tr>
<tr>
<td>mir-125b</td>
<td>0/20</td>
<td>0/20</td>
<td>-2.74 (0.80)</td>
</tr>
<tr>
<td>mir-100</td>
<td>0/20</td>
<td>0/20</td>
<td>-2.57 (1.08)</td>
</tr>
<tr>
<td>mir-99a</td>
<td>0/20</td>
<td>0/20</td>
<td>-2.48 (0.93)</td>
</tr>
<tr>
<td>mir-26a</td>
<td>0/20</td>
<td>0/20</td>
<td>-2.17 (0.78)</td>
</tr>
<tr>
<td>mir-10b</td>
<td>0/20</td>
<td>0/20</td>
<td>-1.99 (1.34)</td>
</tr>
<tr>
<td>mir-143</td>
<td>0/20</td>
<td>0/20</td>
<td>-1.70 (1.06)</td>
</tr>
<tr>
<td>mir-214</td>
<td>0/20</td>
<td>0/20</td>
<td>-2.08 (0.93)</td>
</tr>
<tr>
<td>let-7b</td>
<td>0/20</td>
<td>0/20</td>
<td>-1.57 (1.06)</td>
</tr>
<tr>
<td>mir-199a-AS</td>
<td>2/20</td>
<td>0/20</td>
<td>-1.36 (1.34)</td>
</tr>
<tr>
<td>mir-29a</td>
<td>0/20</td>
<td>0/20</td>
<td>-1.50 (1.15)</td>
</tr>
<tr>
<td>mir-125a</td>
<td>2/20</td>
<td>0/20</td>
<td>-1.18 (0.97)</td>
</tr>
<tr>
<td>mir-93</td>
<td>4/20</td>
<td>0/20</td>
<td>1.68 (0.53)</td>
</tr>
<tr>
<td>mir-23b</td>
<td>11/20</td>
<td>5/20</td>
<td>1.63 (1.63)</td>
</tr>
<tr>
<td>mir-20a</td>
<td>12/20</td>
<td>60/20</td>
<td>2.12 (0.65)</td>
</tr>
<tr>
<td>mir-27a</td>
<td>12/20</td>
<td>60/20</td>
<td>1.85 (1.16)</td>
</tr>
<tr>
<td>mir-16</td>
<td>16/20</td>
<td>80/20</td>
<td>1.89 (1.84)</td>
</tr>
<tr>
<td>mir-23a</td>
<td>11/20</td>
<td>55/20</td>
<td>1.77 (1.52)</td>
</tr>
<tr>
<td>mir-200a</td>
<td>12/20</td>
<td>60/20</td>
<td>2.58 (0.79)</td>
</tr>
<tr>
<td>mir-200b</td>
<td>14/20</td>
<td>70/20</td>
<td>2.84 (0.92)</td>
</tr>
<tr>
<td>mir-21</td>
<td>17/20</td>
<td>85/20</td>
<td>2.89 (1.20)</td>
</tr>
<tr>
<td>mir-200c</td>
<td>14/20</td>
<td>70/20</td>
<td>3.19 (0.95)</td>
</tr>
<tr>
<td>mir-141</td>
<td>14/20</td>
<td>70/20</td>
<td>2.91 (0.87)</td>
</tr>
</tbody>
</table>

*Frequency of up or down-regulated miRNAs, which were considered differentially expressed if their M values are >1.0 or lower than (-)1.0

Results

Distinct miRNA signatures in serous ovarian cancer, compared with normal ovarian tissues. To identify miRNAs differentially expressed in serous ovarian cancer compared with the corresponding normal tissues, we used a customized miRNA microarray that contained 314 human miRNAs from the miRNA Registry (24). We analyzed the miRNA expression

http://rana.lbl.gov
profiles of 20 serous ovarian cancer tissues using a two-color system. We used pooled miRNAs from normal tissues as a common reference for each cancer case. After normalization, an “MA plot” was used to represent the data, where M = log2(Cy5/Cy3). The confidence of the signal was confirmed using SAM analysis (23). miRNAs were considered differentially expressed if their M values were >1.0 or <-1.0. Twenty-three miRNAs were differentially expressed in at least 12 of the 20 serous ovarian cancers (Table 1). The up-regulated miRNAs (n = 11) were miR-200a, miR-200b, miR-200c, miR-20a, miR-21, miR-23a, miR-23b, miR-27a, miR-141, miR-16, and miR-93. The down-regulated miRNAs (n = 12) were miR-214, miR-26a, miR-29a, let-7b, miR-100, miR-10b, miR-125a, miR-125b, miR-143, miR-145, miR-199a-AS, and miR-99a. Of these miRNAs, the most frequently up-regulated miRNA was miR-21 (17 of 20 cases), and the most frequently down-regulated miRNA was miR-125b (19 of 20 cases). Although the cancer specimens were obtained from different patients, the expression trends of the miRNAs were homogenous across almost all cases. miRNA families displaying one or two base differences, such as miR-200a, miR-200b, and miR-200c, showed similar expression profiles in the same ovarian cancer patients (Fig. 1).

Validation of the microarray results. To validate the microarray results, Northern blots of the differentially expressed miRNAs were done independently. We chose miR-200c, miR-93, miR-141, let-7b, miR-99a, and miR-125b, which were differentially expressed between the normal ovarian tissues and serous ovarian cancer tissues (Fig. 2). In agreement with the microarray results, miR-200c, miR-93, and miR-141 were up-regulated, whereas let-7b, miR-99a, and miR-125b were down-regulated in ovarian carcinoma. We quantified the band intensity of each miRNA and calculated the relative expression ratios after normalizing each band intensity to 5S RNA. The average correlation between the Northern blot results and microarray data were 0.791 (P < 0.001; Supplementary Fig. S2). We found that let-7b had a lower correlation between the two analyses compared with the other miRNAs tested, which might have resulted from the high ability of the let-7 family to cross-hybridize, as reported previously (21). Overall, however, the microarray data were good enough to warrant further analyses in a clinical setting.

miRNA signatures are associated with the prognosis of serous ovarian carcinoma. Next, we wanted to determine whether the miRNA expression profiles could distinguish chemosensitive cases from chemoresistant cases to assess the effect of miRNA expression on prognosis. The majority of the cases were separated into the two groups using an unsupervised hierarchical cluster analysis (Fig. 1). However, seven cases did not separate well based on the gene expression profiles of the selected miRNAs. Therefore, Fisher’s exact test was done using the binomial variable whether the miRNA was differentially expressed or not. miR-199a and amb-miR-7039 were significantly down-regulated in the chemoresistant group (P < 0.05; Supplementary Table S2). Ambi-miR-7039 are newly identified human miRNAs called Ambi-miR miRNAs. Based on the sequences provided by the company, amb-miR-7039 is a small nucleolar RNA. Therefore, we excluded amb-miR-7039 from the data set. There were no significant differences in the expression of the other miRNAs between these two groups. We then used the microarray data to construct a signature consisting of miR-199a, amb-miR-7039, and miR-99a. The expression of this signature was significantly higher in the chemoresistant group (P = 0.0005; Supplementary Table S2). Therefore, we concluded that the expression of this signature could be used to predict the chemoresistance of serous ovarian carcinoma.
were up-regulated, whereas R, chemoresistant disease. Three different normal ovarian tissues; the same samples were pooled as a common reference in the microarray experiment. S, chemosensitive disease; R, chemoresistant disease.

Further analysis. To evaluate the usefulness of miRNAs for detecting chemoresistant disease, we did a receiver operating characteristics analysis on the selected miRNAs to detect the recurrence of persistent ovarian cancer. Down-regulated miR-199a had the greatest area under the curve (0.763; Supplementary Table S2). As a result, the down-regulation of miR-199a could be a reliable marker for predicting chemoresistant disease.

Second, we investigated the correlation between the miRNA expression profile and survival. Kaplan-Meier analysis was done, and the median survival based on the expression of miRNA is shown in Table 2. Higher expression of miR-200a, miR-200b, miR-200c, miR-141, miR-18a, miR-93, and miR-429, and lower expression of miR-199a, let-7b, and miR-125b were significantly correlated with decreased progression-free survival and overall survival (log-rank test, P < 0.05; Table 2). As shown in Fig. 3, tumors with high expression of miR-200a had a median overall survival of 27.5 months (95% confidence interval, 22.8-46.0) compared with 61.0 months (95% confidence interval, 43.5-67.8) for those with no significant expression (P = 0.0054).

Discussion

We identified 23 miRNAs whose expression is significantly deregulated in serous ovarian carcinoma compared with normal ovarian tissues. These miRNAs may be used to distinguish serous ovarian cancer from normal ovarian tissue. While our article was being reviewed, a study of miRNA expression profiling in ovarian cancer was published by Iorio and colleagues (25). Half of the miRNAs that we identified (Table 1) are seen in their list of miRNAs aberrantly expressed. They include the most significantly altered miRNAs in both studies: miR-200a/b/c, miR-141, miR-21, miR-145, miR-99a, let-7, and miR-125b. This concordance further supports our findings and relevance of these miRNAs to ovarian cancer.

The most consistently up- and down-regulated miRNAs were miR-21 and miR-125b, respectively. miR-21 is also up-regulated in other cancers such as glioblastoma (26), breast cancer (15), and cholangiocarcinoma cell lines (27). In recent reports, the up-regulation of miR-21 was associated with an antiapoptotic effect on tumor growth (27). The inhibition of miR-21 using antisense oligonucleotides increased the expression level of PTEN (27), a negative regulator of the phosphatidylinositol-3-OH kinase–AKT signaling pathway, and decreased Bcl-2 (28), an antiapoptotic gene, resulting in inducing apoptosis. A loss of heterozygosity of PTEN was seen in ~30% of serous ovarian cancer without additional somatic mutations (29). Serous ovarian cancer may acquire an antiapoptotic phenotype by inactivating PTEN genetically and up-regulation of miR-21. miR-125b was implicated in differentiation (30), cell proliferation, and mobility (31). Receptor tyrosine kinases ERBB2 and ERBB3 were shown to be targets of miR-125a/b (31). Overexpression of miR-125a/b in an ERBB2-positive breast cancer cell line impaired cell growth and mobility.

---

**Table 2.** Median survival of serous ovarian carcinoma patients according to the miRNA expression profiling

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Median progression-free survival ± SD (mo)</th>
<th>P value</th>
<th>Median overall survival ± SD (mo)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significant expression</td>
<td>No significant expression</td>
<td></td>
<td>Significant expression</td>
</tr>
<tr>
<td>miR-200a</td>
<td>11.0 ± 20.7</td>
<td>54.5 ± 24.8</td>
<td>0.0302</td>
<td>27.5 ± 18.3</td>
</tr>
<tr>
<td>miR-200b</td>
<td>11.0 ± 22.9</td>
<td>54.5 ± 20.5</td>
<td>0.0183</td>
<td>29.5 ± 18.8</td>
</tr>
<tr>
<td>miR-200c</td>
<td>11.0 ± 22.9</td>
<td>54.5 ± 20.5</td>
<td>0.0163</td>
<td>29.5 ± 18.8</td>
</tr>
<tr>
<td>miR-27a</td>
<td>12.0 ± 22.0</td>
<td>55.0 ± 25.2</td>
<td>0.0677</td>
<td>30.0 ± 18.2</td>
</tr>
<tr>
<td>miR-31</td>
<td>9.5 ± 11.9</td>
<td>45.0 ± 25.2</td>
<td>0.1118</td>
<td>26.5 ± 18.7</td>
</tr>
<tr>
<td>let-7b</td>
<td>7.5 ± 15.6</td>
<td>53.5 ± 21.7</td>
<td>0.0059</td>
<td>27.0 ± 19.5</td>
</tr>
<tr>
<td>miR-141</td>
<td>11.0 ± 24.4</td>
<td>54.0 ± 21.9</td>
<td>0.0194</td>
<td>29.5 ± 18.8</td>
</tr>
<tr>
<td>miR-18a</td>
<td>11.0 ± 23.0</td>
<td>54.5 ± 20.5</td>
<td>0.0163</td>
<td>29.5 ± 18.8</td>
</tr>
<tr>
<td>miR-182</td>
<td>10.5 ± 18.1</td>
<td>46.0 ± 25.7</td>
<td>0.0472</td>
<td>27.5 ± 17.2</td>
</tr>
<tr>
<td>miR-199a</td>
<td>9.5 ± 21.8</td>
<td>54.0 ± 20.1</td>
<td>0.0164</td>
<td>25.0 ± 16.7</td>
</tr>
<tr>
<td>miR-429</td>
<td>9.0 ± 17.3</td>
<td>52.0 ± 23.9</td>
<td>0.0083</td>
<td>27.0 ± 20.4</td>
</tr>
<tr>
<td>miR-93</td>
<td>11.0 ± 23.0</td>
<td>54.5 ± 20.5</td>
<td>0.0163</td>
<td>29.5 ± 18.8</td>
</tr>
</tbody>
</table>

*Significant expression of miRNA was defined if M value >1 or <-1.

†Log-rank test gave significant P values (P < 0.05).
capability (31). Frequent overexpression or amplification of \textit{ERBB}2 was reported in ~20% of serous ovarian cancers (2, 32). Because the chromosome 11q23-24 for \textit{ERBB2} was reported in the regions most frequently deleted in breast, ovarian, and lung cancers (33), correlation between the overexpression of \textit{ERBB2} or \textit{BRB}3 and loss of \textit{miR-125}\textsubscript{a/b} loci might exist. In addition to \textit{miR-125b}, low levels of let-7 were seen frequently in our cases. Some of them might be related to oncogenic mutations in \textit{KRAS}, accounting for 35% of low-grade serous ovarian carcinoma (2), based on reciprocal relationship between let-7 and its target gene \textit{RAS} (13). In addition to oncogenes \textit{ERBB}2, \textit{BRB}3, and \textit{RAS}, additional target genes of \textit{miR-125b} and let-7 might be responsible for the high frequency of their down-regulation in serous ovarian cancer.

Contrary to a previous report (11), we observed increased levels of \textit{miR-15} and \textit{miR-16}, which are miRNAs with tumor-suppressing properties. Their lower levels were associated with high antiapoptotic BCL2 protein in chronic lymphocytic leukemia (11). This discrepancy could have resulted from the activity of specific miRNAs in different tissues or cellular contents (34). For example, the \textit{miR-17} cluster was amplified in human non–small cell lung cancer (35), whereas the cluster was frequently deleted in hepatocellular carcinoma (36).

Our findings suggest that the most reliable predictive marker for chemoresistant disease was the down-regulation of \textit{miR-199a} (area under the curve, 0.763), which is located on chromosome 19p13.2. Web-based computational approaches (TargetScan, PicTar-Vert, and MiRanda) predict hundreds of potential targets of \textit{miR-199a}, including discoidin domain receptor family member 1 (DDR1), a gene predicted by at least two of these methods that contains more than three conserved sites for the miRNA. DDR1 is a receptor tyrosine kinase activated by various collagens, and it plays a role in cell attachment, migration, survival, and proliferation. DDR1 was reported to induce cyclooxygenase-2 expression resulting in enhanced chemoresistance via the nuclear factor-\textalphaB pathway (37). However, further studies are needed to validate the function of this miRNA.

Ten miRNAs were significantly correlated with patient survival. \textit{miR-199a} was also related to patient survival because clinically, survival might be affected markedly by chemoresistance. Notably, of the identified miRNAs (Table 2), five miRNAs originated from two clustered chromosome regions: \textit{miR-200a}, \textit{miR-200b}, and \textit{miR-429} are from chromosome 1p36.33, and \textit{miR-200c} and \textit{miR-141} are from chromosome 12p13.1. The increased expression of \textit{miR-200a} might underlie genomic amplification. Frequent chromosomal gains in that region have been reported in serous ovarian carcinoma (38, 39). The inhibition of \textit{miR-200b} increased the sensitivity to gemcitabine in cholangiocarcinoma cell lines (27), thereby, increased expression of \textit{miR-200b} may result in poor response to antineoplastic drugs. Moreover, inhibition of \textit{mir-141} using anti–mir-141 decreased cell growth in cholangiocarcinoma cell lines (27). Accordingly, these miRNAs could be a novel target for enhancing chemosensitivity or inducing cell death in serous ovarian cancer. As a result, we can predict the prognosis of patients with serous ovarian carcinoma using the deregulated miRNAs. Although other studies have examined miRNAs in ovarian cancer (21, 25, 39), to our knowledge, ours is the first to ascribe a prognostic value to miRNAs expression profiles in serous ovarian carcinoma.

Overall, our report contributes to the understanding of miRNA expression profiling and its relationship to tumorigenesis in serous ovarian carcinoma. Moreover, some miRNAs are significantly correlated with the response to chemotherapy and survival in serous ovarian carcinoma, and could be used as prognostic markers.

**References**

MicroRNA Expression Profiles in Serous Ovarian Carcinoma

Eun Ji Nam, Heejei Yoon, Sang Wun Kim, et al.


Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/14/9/2690

Cited articles
This article cites 39 articles, 18 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/14/9/2690.full#ref-list-1

Citing articles
This article has been cited by 49 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/14/9/2690.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/14/9/2690.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.