Hepatocellular carcinoma (HCC) is a serious healthcare problem worldwide. Prevention of HCC in viral liver cirrhosis has recently received increasing attention because the incidence and recurrence rate of this cancer in those patients is very high (1). One of the promising agents for HCC chemoprevention is retinoids (2). Retinoids, a group of structural and functional analogues of vitamin A, exert fundamental effects on the regulation of epithelial cell growth, differentiation, and development (3, 4). Retinoids exert their biological functions primarily by regulating gene expression through two distinct nuclear receptors, retinoic acid receptors (RAR) and retinoid X receptors (RXR), which are both composed of three subtypes (α, β, and γ). Among these receptors, RXRα acts as a master regulator of nuclear receptors and controls normal cell proliferation and metabolism (3, 4).

Because of such physiologic functions of retinoids and their receptors, abnormalities in the expression and function of these molecules are highly associated with the development of various cancers, including HCC. We have previously shown that hepatocarcinogenesis is accompanied by an accumulation of the phosphorylated (i.e., inactivated) form of RXRα protein (p-RXRα; ref. 5). The phosphorylation at serine 260 of RXRα, a consensus site of mitogen-activated protein kinase (MAPK), abolishes its ability to form heterodimers with RARβ, leading to uncontrolled cell growth (6, 7). Moreover, the abrogation of phosphorylation by MAPK-specific inhibitors restores the degradation of RXRα in a ligand, 9-cis-retinoic acid (9cRA)-dependent manner, and induces apoptosis and inhibits the growth of HCC cells (6). Therefore, the inhibition of RXRα phosphorylation by targeting its upstream signaling pathways may be an effective strategy for inhibiting the growth of HCC cells.

The Ras/MAPK pathway is one of the major components of the signaling pathways that transmit mitogenic signal from the receptor tyrosine kinases (RTK; refs. 8, 9). Epidermal growth factor receptor (EGFR), HER2, and HER3 belong to subclass I of the RTK superfamily (8, 9). Abnormalities in the expression and function of RTKs play a critical role in the development of human malignancies and are thereby regarded as a promising target for the treatment of various types of malignancies,
including HCC (10, 11). Among the RTK-targeted agents, the humanized anti-HER2 antibody trastuzumab (Herceptin) is widely used for the treatment of HER2-overexpressing breast cancers (12, 13). Trastuzumab induces HER2 receptor down-modulation, and as a result, inhibits critical signaling pathways, including Ras/MAPK and phosphatidylinositol 3-kinase/Akt pathways (12, 13). In view of these observations, there has been considerable interest in using the combination of 9cRA and trastuzumab for the prevention and treatment of HCC. The aim of this study is to investigate whether the combination of 9cRA plus trastuzumab exerts synergistic growth-inhibitory effects on human HCC cells and to examine possible mechanisms for such synergy, predominantly focusing on the inhibitory effects on RXRa phosphorylation by the combination of these agents.

Materials and Methods

Materials. 9cRA was purchased from Sigma Chemical, Co. Trastuzumab was from CHUGAI Pharmaceutical Co., Ltd. Anti-RXRα antibody was from Santa Cruz Biotechnology. Anti–extracellular signal-regulated kinase (ERK), anti–phosphorylated ERK, anti–Akt, anti–phosphorylated Akt, anti–Stat3, and anti–phosphorylated Stat3 antibodies were from Cell Signaling Technology. Antibody against glyceraldehyde-3-phosphate dehydrogenase was from Chemicon International. DMEM and FCS were from Invitrogen. CS-C complete medium was from Cell Systems Biotechnologie Vertrieb GmbH.

Cell lines and cell culture. Six human HCC cell lines, HLF, PLC/PRF/5, HepG2, HuH7, HLE, and Hep3B were obtained from the Japanese Cancer Research Resources Bank and were maintained in DMEM supplemented with 10% FCS. Hc human normal hepatocyte cell line was purchased from Applied Cell Biology Research Institute and was maintained in CS-C complete medium. The cells were cultured in an incubator with humidified air and 5% CO₂ at 37°C.

Protein extraction and Western blot analysis. Total cellular protein was extracted and equivalent amounts of protein were examined by Western blot analysis using specific antibodies, as previously described (6). For detection of the expression level of p-RXRα protein, RXRa protein was affinity-purified from the total cell extracts using anti-RXRα antibody–immobilized Sepharose beads and then was subjected to Western blot analysis using an antiphosphoserine antibody (6). Glyceraldehyde-3-phosphate dehydrogenase expression served as a loading control.

Cell proliferation assays. Three thousand HLF or Hc cells were seeded into 96-well plates. The following day, the indicated concentrations of 9cRA or trastuzumab were added to each well and the cells were incubated for an additional 3 days. The number of viable cells in replica plates were then counted using Trypan blue dye exclusion method, as...
previously described (14). To determine whether the combined effects of 9cRA plus trastuzumab were synergistic, HLF cells were treated with the indicated concentrations of 9cRA alone, trastuzumab alone, and various combinations of these agents for 3 days. The number of viable cells in replica plates were then counted using Trypan blue dye exclusion method and expressed as a percentage of the control value. A, 9cRA alone (•); 9cRA + 5 μg/mL trastuzumab (■); 9cRA + 10 μg/mL trastuzumab (▲); 9cRA + 20 μg/mL trastuzumab (*). B, trastuzumab alone (●); trastuzumab + 5 μmol/L 9cRA (▲); trastuzumab + 10 μmol/L 9cRA (■); trastuzumab + 20 μmol/L 9cRA (*). Bars, SD of triplicate assays. C, the data obtained in A and B were used to calculate the combination index, as described in Materials and Methods. D, effects of sequential treatment with 9cRA and trastuzumab on the proliferation of HLF cells. The cells were cultured for an initial 24 h in the presence of vehicle, 5 μmol/L of 9cRA, or 10 μg/mL of trastuzumab and subsequently incubated for another 24 h with one of these agents. Cell number was counted using the Trypan blue dye exclusion method and expressed as a percentage of vehicle-treated cells (column 1). Columns, mean; bars, SD. Similar results were obtained in a repeat experiment. *, P < 0.05; **, P < 0.01, compared with vehicle-treated cells (column 1); †, P < 0.05, compared with column 6.

Fig. 3. Inhibition of cell growth by 9cRA alone, trastuzumab alone, and various combinations of these agents in HLF cells. A and B, HLF cells were treated with the indicated concentrations of 9cRA alone, trastuzumab alone, and various combinations of these agents for 3 days. The number of viable cells in replica plates were then counted using Trypan blue dye exclusion method and expressed as a percentage of the control value. A, 9cRA alone (●); 9cRA + 5 μg/mL trastuzumab (■); 9cRA + 10 μg/mL trastuzumab (▲); 9cRA + 20 μg/mL trastuzumab (*). B, trastuzumab alone (●); trastuzumab + 5 μmol/L 9cRA (▲); trastuzumab + 10 μmol/L 9cRA (■); trastuzumab + 20 μmol/L 9cRA (*). Bars, SD of triplicate assays. C, the data obtained in A and B were used to calculate the combination index, as described in Materials and Methods. D, effects of sequential treatment with 9cRA and trastuzumab on the proliferation of HLF cells. The cells were cultured for an initial 24 h in the presence of vehicle, 5 μmol/L of 9cRA, or 10 μg/mL of trastuzumab and subsequently incubated for another 24 h with one of these agents. Cell number was counted using the Trypan blue dye exclusion method and expressed as a percentage of vehicle-treated cells (column 1). Columns, mean; bars, SD. Similar results were obtained in a repeat experiment. *, P < 0.05; **, P < 0.01, compared with vehicle-treated cells (column 1); †, P < 0.05, compared with column 6.

Terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling assays. HLF cells were treated with 5 μmol/L of 9cRA alone, 10 μg/mL of trastuzumab alone, or the combination of these agents for 48 h on coverslips. The cells were then fixed with 3.7% formaldehyde at room temperature for 10 min, permeabilized with 0.3% Triton X-100 in TBS (pH 7.4), and stained with a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) methods using In Situ Cell Death Detection Kit, Fluorescein (Roche Diagnostics), as described previously (14).

Retinoic acid responsive element and retinoid X responsive element reporter assays. Reporter assays were done as described previously (6). HLF cells were transfected with retinoid X responsive element (RXRE) or retinoic acid responsive element (RARE) reporter plasmids (750 ng/35 mm dish), which were provided by the late Dr. K. Umesono (Kyoto University, Kyoto, Japan), along with pRL-CMV (Renilla luciferase, 100 ng/35 mm dish; Promega) as an internal standard to normalize the transfection efficiency. Transfections were done using UniFector reagent (B-Bridge) according to the manufacturer’s protocol. After exposure of the cells to the transfection mixture for 24 h, the cells were treated with 5 μmol/L of 9cRA alone, 10 μg/mL of trastuzumab alone, or the combination of these agents for 24 h. The cell lysates were then prepared and the luciferase activity of each cell lysate was determined using a dual-luciferase reporter assay system (Promega), as previously described (6).

Statistical analysis. The data are expressed as mean and SD. Statistical significance of the difference in mean values was assessed with one-way ANOVA, followed by Sheffe’s t test.

Results

Expression of signaling components downstream of EGFR, HER2, and HER3 in HCC cells. We initially examined whether EGFR, HER2, and HER3 proteins and their downstream signaling molecules ERK and Akt proteins were overexpressed and constitutively activated in HLF, PLC/PRF/5, HepG2, HuH7,
HLE, and Hep3B human HCC cell lines and in the Hc human normal hepatocyte line using Western blot analysis. Among these HCC cell lines, HLF markedly expressed EGFR and HER2 when compared with the Hc cell line (Fig. 1). The phosphorylated (i.e., activated) form of HER2 (p-HER2) and HER3 (p-HER3) were also increased in the HLF cell line, although p-EGFR was not detected in all series of HCC cell lines and Hc cell line. These findings are consistent with those of a previous report (16) and are interesting because HER2 is the preferred heterodimerization partner for the other members of the EGFR family of RTKs and HER2/HER3 heterodimer can play a critical role in allowing the efficient activation of potent oncogenic signaling cascades (17, 18). In the HLF cell line, there was also a marked increase in the expression levels of p-ERK and p-Akt proteins, which induce the aberrant phosphorylation of RXRα protein and therefore play a role in the development of HCC (19). Therefore, the following combination studies using 9cRA plus trastuzumab were done using this cell line.

9cRA plus trastuzumab causes preferential inhibition of growth in HLF human HCC cells in comparison with Hc normal hepatocytes. We next examined the growth-inhibitory effect of 9cRA and trastuzumab on HLF and Hc cell lines. As shown in Fig. 2, 9cRA and trastuzumab inhibited the growth of HLF cell lines with an IC_{50} value of ~27 μmol/L and 22 μg/mL, respectively. The Hc normal human hepatocytes were more resistant to these agents because the IC_{50} values with both compounds were ~100 μmol/L and 100 μg/mL, respectively. These results suggest that 9cRA and trastuzumab preferentially inhibit the growth of HLF cells (Fig. 2).

9cRA plus trastuzumab causes synergistic inhibition of growth in HLF cells. We previously reported the combined treatment of 9cRA plus MAPK inhibitor to inhibit the proliferation of HCC cells and this was associated with a degradation of p-RXRα protein (6). Therefore, the ability of the combined treatment with a range of concentrations of 9cRA plus trastuzumab to synergistically inhibit the growth of HCC cells was investigated because trastuzumab targets HER2 receptor and inhibits the activation of downstream molecules ERK and Akt proteins (12, 13). We found that the combination of as little as 5 μmol/L of 9cRA and 10 μg/mL of trastuzumab (the approximate IC_{50} values for both compounds) exerted synergistic growth inhibition (Fig. 3A and B). The isobologram analysis (15) gave a combination index of 2+ to this mixture (Fig. 3C; Table 1). These findings suggest that 9cRA plus trastuzumab might be an effective combination for the inhibition of HCC cell growth due to their synergistic efficacy.

Table 1. Combined effects of 9cRA and trastuzumab on HLF cells

<table>
<thead>
<tr>
<th>9cRA concentration (μmol/L)</th>
<th>Trastuzumab concentration (μg/mL)</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>±</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>20</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

Abbreviations: CI, combination index; "±", CI 0.9-1.1 additive effect; "+", CI 0.8-0.9 slight synergism; "++", CI 0.6-0.8 moderate synergism; "+++", CI 0.4-0.6 synergism; "++++", CI 0.2-0.4 strong synergism.

We next examined whether 9cRA might enhance the growth-inhibitory effect of trastuzumab or, alternatively, whether trastuzumab might amplify the antiproliferative effect of 9cRA (Fig. 3D). HLF cells were first exposed to either 5 μmol/L of 9cRA or 10 μg/mL of trastuzumab for 24 hours, followed by incubation with the second respective agent for an additional 24 hours. The most significant reduction in the number of viable cells was found when 9cRA was administrated following trastuzumab treatment (Fig. 3D, column 7). These results suggested that trastuzumab might enhance the sensitivity of the cancer cells to 9cRA.

9cRA plus trastuzumab causes a synergistic decrease in the phosphorylated forms of HER2, ERK, Akt, and Stat3 proteins in HLF cells. We next examined whether the synergistic growth inhibition by the combined treatment of 9cRA plus trastuzumab (Fig. 3C; Table 1) was associated with the inhibition of RXRα phosphorylation. Treatment with 10 μg/mL of trastuzumab alone caused a decrease in the expression levels of p-HER2, p-ERK, p-Akt, p-Stat3, and p-RXRα proteins in HLF cells (Fig. 4, column 3). There was also a decrease in the expression levels of p-HER2, p-Stat3, p-ERK, p-Akt, and p-RXRα proteins when the cells were treated with 5 μmol/L of 9cRA alone (Fig. 4, column 2). Moreover, the decreases in the expression of p-RXRα, p-ERK, p-Akt, and p-Stat3 proteins was...
greater when the cells were treated with the combination of these agents (Fig. 4, column 4).

9cRA plus trastuzumab synergistically induces apoptosis in HLF cells. We then examined whether the synergistic growth inhibition by combined treatment with 9cRA plus trastuzumab (Fig. 3C; Table 1) might be explained by the induction of apoptosis because both of these agents could induce apoptosis in cancer cells (4, 13). The treatment of HLF cells with either 5 μmol/L of 9cRA alone or 10 μg/mL of trastuzumab alone induced terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling–positive cells in ~10% of the total remaining cells (Fig. 5, columns 2 and 3). Moreover, the combination of these agents markedly enhanced the induction of apoptosis in 39% of the total remaining cells (Fig. 5, column 4). These results strongly suggest the synergism in inducing apoptosis by the combination of 9cRA and trastuzumab.

Trastuzumab enhances the induction of both RARE and RXRE promoter activities by 9cRA. RARs and RXRs modulate the expression of target genes by interacting with RARE or RXRE elements located in the promoter regions of these genes (3, 4). We conducted transient transfection luciferase reporter assays to determine whether trastuzumab might enhance the induction of RARE or RXRE promoter activities by 9cRA. We found that 5 μmol/L of 9cRA alone significantly increased both RARE and RXRE reporter activities (Fig. 6A and B, columns 3). Moreover, when trastuzumab was combined with 9cRA, there was a synergistic increase in the transcriptional activity of these reporter activities (Fig. 6A and B, columns 4).

Discussion

The present study showed that the combination of 9cRA plus trastuzumab synergistically inhibited the growth of HLF human HCC cells (Fig. 3; Table 1) and that this was associated with the induction of apoptosis (Fig. 5). A hypothetical scheme which explains the mechanism is proposed in Fig. 7. In normal hepatocytes, ligand-activated (9cRA) RXRs forms a heterodimer with other nuclear receptors and binds to the specific responsive element in the promoter region of target genes (3, 4). However, in HCC cells, Ras/MAPK is highly activated and phosphorylates RXRα. The accumulated nonfunctional p-RXRα interferes with the function of the remaining normal RXRs in a dominant-negative manner, thereby promoting the growth of HCC cells (6). Therefore, p-RXRα and its kinases may
be useful targets for inhibiting the growth of HCC cells. RTKs are one of the potent activators for Ras/MAPK (8, 9), and we showed that trastuzumab inhibited the activation of HER2 and its downstream ERK, Akt, and Stat3 proteins, thus inhibiting the phosphorylation of RXRα protein (Fig. 4). These new findings suggest that trastuzumab cooperatively restores the function of RXRα as a master regulator of nuclear receptors in HCC cells and this might be associated with the preferential inhibition of growth in HCC cells in comparison to normal hepatocytes (Fig. 2). In this context, the order of administration is important for such synergism, as shown in Fig. 3.

The advantageous effects of the combination of retinoids plus trastuzumab have been reported in breast cancer cells. Specifically, HER2-overexpressing breast cancer cells were resistant to retinoid-induced growth inhibition and apoptosis, but the inhibition of HER2 by trastuzumab resulted in the recovery of RARE and cell growth in HCC cells. In normal hepatocytes, RXRα protein is not phosphorylated and forms a heterodimer with other nuclear receptors (4). These dimers bind to the specific responsive element and regulate the expression of target genes which play roles in normal cell proliferation (6). In HCC cells, Ras/MAPK is highly activated and phosphorylates RXRα (C), thus impairing the function of this receptor and contributing to the development of HCC (D). Trastuzumab inhibits the activation of HER2 and its downstream signaling pathways, including MAPK/ERK, PI3K/Akt, and Jak/Stat3 (E). 9cRA also inhibits the activation of HER2 receptor (F). Therefore, retinoid and trastuzumab cooperatively suppress HER2-dependent signaling pathways, inhibit phosphorylation of RXRα, and restore the function of the receptor (G), subsequently activating RARE and RXRE. These effects may contribute to the growth inhibition of HCC cells.
Synergistic Growth Inhibition by 9-cis-Retinoic Acid Plus Trastuzumab in Human Hepatocellular Carcinoma Cells

Hideharu Tatebe, Masahito Shimizu, Yohei Shirakami, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/14/9/2806

Cited articles
This article cites 32 articles, 10 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/14/9/2806.full#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/14/9/2806.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.