Targeting GIPC/Synectin in Pancreatic Cancer Inhibits Tumor Growth

Michael H. Muders,1 Pawan K. Vohra,1 Shamit K. Dutta,1 Enfeng Wang,1 Yasuhiro Ikeda,1 Ling Wang,1 D. Gomika Udugamasooriya,4 Adnan Memic,4 Chamila N. Rupashinghe,2,4 Gustavo B. Baretton,5 Daniela E. Aust,5 Silke Langer,5 Kaustubh Datta,1 Michael Simons,3,6 Mark R. Spaller,2,4 and Debabrata Mukhopadhyay1

Abstract

Purpose: Various studies have shown the importance of the GAIP interacting protein, COOH-terminus (GIPC, also known as Synectin) as a central adaptor molecule in different signaling pathways and as an important mediator of receptor stability. GIPC/Synectin is associated with different growth-promoting receptors such as insulin-like growth factor receptor I (IGF-IR) and integrins. These interactions were mediated through its PDZ domain. GIPC/Synectin has been shown to be overexpressed in pancreatic and breast cancer. The goal of this study was to show the importance of GIPC/Synectin in pancreatic cancer growth and to evaluate a possible therapeutic strategy by using a GIPC-PDZ domain inhibitor. Furthermore, the effect of targeting GIPC on the IGF-I receptor as one of its associated receptors was tested.

Experimental Design: The in vivo effects of GIPC/Synectin knockdown were studied after lentiviral transduction of luciferase-expressing pancreatic cancer cells with short hairpin RNA against GIPC/Synectin. Additionally, a GIPC-PDZ–targeting peptide was designed. This peptide was tested for its influence on pancreatic cancer growth in vitro and in vivo.

Results: Knockdown of GIPC/Synectin led to a significant inhibition of pancreatic adenocarcinoma growth in an orthotopic mouse model. Additionally, a cell-permeable GIPC-PDZ inhibitor was able to block tumor growth significantly without showing toxicity in a mouse model. Targeting GIPC was accompanied by a significant reduction in IGF-IR expression in pancreatic cancer cells.

Conclusions: Our findings show that targeting GIPC/Synectin and its PDZ domain inhibits pancreatic carcinoma growth and is a potential strategy for therapeutic intervention of pancreatic cancer.

Ductal adenocarcinoma is the most common malignancy of the pancreas. Despite even the most aggressive therapies, the 5-year survival rate for patients diagnosed with pancreatic cancer is <4% (1). This clearly indicates that novel approaches to the management of patients with pancreatic cancer are urgently needed. The establishment of new targets in pancreatic cancer treatment is an important step toward longer survival and better prognosis. One of these new targets could be GAIP interacting protein, COOH-terminus (GIPC, also known as Synectin), a protein shown to be overexpressed in pancreatic and breast cancer (2, 3).

GIPC/Synectin was originally identified as a binding partner of the regulator of G protein signaling (RGS) protein GAIP (RGS 19), a GTPase activating protein for heterotrimeric G proteins (4). Recently, different studies have suggested an important role of GIPC/Synectin in the biology of normal and malignant cells (2, 4–20). Interestingly, we have also shown that GIPC/Synectin is important for insulin-like growth factor receptor I (IGF-IR) stability in pancreatic cancer cell lines (2).

In this study, we show that knockdown of GIPC/Synectin reduces tumor growth after orthotopic transplantation of different pancreatic cancer cell lines in nude mice. In conjunction with these efforts, we developed a small peptide that blocks the PDZ domain of GIPC. This led to decreased tumor growth of different pancreatic cancer cell lines in vitro.
In this study, the effect of targeting GIPC/Synectin on one of its associated growth factor receptors, IGF-IR. As expected, the octapeptide led to decreased association between IGF-IR and GIPC/Synectin in different pancreatic cancer cell lines. This, in turn, reduced IGF-IR protein levels in the cells. In essence, this study represents a first step towards developing a novel therapeutic for pancreatic adenocarcinoma treatment using a PDZ-inhibitor.

Materials and Methods

Cell culture, cell infection, and immunofluorescence. MIA-PaCa2, PANCl, and AsPC1 were purchased from the American Type Culture Collection. To generate the lentivectors, 293T cells were cotransfected with gag-pol expression plasmid pCMVΔ8.91, VSVG envelope expression plasmid pMD-G, and vector plasmid pKO.1 encoding cDNAs for expression of GIPC/Synectin shRNA (5'-CAGCCGCAAATGAGCAAATGTCCTCACTCAGTGAAG-GGACAAT-TATTGCATTTGCTTTTTG-3') and firefly luciferase. GIPC/Synectin shRNA in pKO.1 was purchased from Open Biosystems. Supernatant was collected 48 h later and frozen at -80°C. MIA PaCa2 or AsPC1 cells were then infected with a multiplicity of infection of 8 overnight at 37°C, and they were injected after overnight infection. To ensure the efficiency of GIPC/Synectin knockdowns, protein lysates were analyzed by immunoblot for GIPC/Synectin and IGF-IR. Control cells were transduced with an shRNA

Generation of recombinant GIPC-PDZ targeting peptide.

The GIPC-PDZ targeting peptide was designed to specifically interact with the GIPC/Synectin PDZ domain. The sequence was used: Myr-ADSTLREK.

Double-strand DNA Preparation of T7 phage displaying GIPC-PDZ. Double-strand DNA encoding the PDZ domain of GIPC/Synectin was double-digested with EcoRI and HindIII, and the DNA (0.8 µL of a 45 nmol/L [77 ng/µL] solution) was used in the ligation reaction with the T7 Select 10-3 vector arms (Novagen, 0.5 µL), along with 10× ligase buffer (0.25 µL), ATP (10 mM, 0.25 µL), MgCl₂ (10 mM, 0.25 µL), DTT (100 µmol/L, 0.25 µL), and T4 DNA ligase (0.5 µL, 1 unit/µL). The sample was incubated at 16°C for 16 h. The T7 phage packaging reaction was done by adding packaging extract (Novagen, 12.5 µL, or half the manufacturer’s recommended amount) to the ligation reaction sample (2.5 µL) and allowing it to incubate for 2 h at room temperature. The reaction was stopped by the addition of a sterile Luria-Bertani Broth (LB) medium (135 µL). A plaque assay was done to determine the number of recombinant phage generated. Escherichia coli BTL5403 was grown at 37°C with shaking in LB/Amp medium (10 mL) until optical density (OD) at 600 nm reached 1.0. An aliquot of the recombinant phage generated was used to infect fresh MIA-PaCa2 cells (100 mL of 4×10⁶ cells). After 16 h of incubation at 37°C, the phage was pelleted by centrifugation, and the supernatant was used to infect fresh MIA-PaCa2 cells (2×10⁶ cells). The experiment was repeated three times.

In vivo GIPC/Synectin knockdown experiments and noninvasive imaging of tumor burden. All procedures involving animals were approved by and conducted according to guidelines of the Institutional Animal Care and Use Committee of the Mayo Foundation. For these experiments we used female nude mice (age 10 wk). 10×10⁶ control and GIPC/Synectin-negative MIAPaCa2 (n = 10 treatment, n = 10 control), resuspended in 50 µL of sterile PBS, were injected directly into the pancreas. To monitor tumor burden, the mice were imaged using the IVIS 200 Bioluminescence Imaging System (Xenogen Corp.). For imaging, 150 mg/kg D-luciferin (Xenogen) was applied ip. 10 min before scanning. Thirty-nine days after injection, the mice were euthanized. The final tumor volume was measured and calculated using the formula 0.5 × a × b², where a is the longest tumor axis and b is the shortest tumor axis. Procedures were adapted accordingly for the treatment of GIPC-expressing (n = 10) and GIPC shRNA-expressing AsPC1 (n = 10) pancreatic cancer cells. Not all tumors in this group were monitored by bioluminescence. This experiment was stopped at 14 d postimplantation. For another group of mice, GIPC/Synectin-negative (n = 5) and control MIAPaCa2 cells (n = 5) were implanted s.c. into the right flank of nude mice for detection of IGF-IR using immunoblot. After 55 d the mice were euthanized, and tumor tissue was evaluated for IGF-IR and GIPC/Synectin expression by immunoblot analysis. Selected tumors were evaluated with standard histology using H&E staining and for proliferation using Ki67 staining.

Peptide design. GIPC is a PDZ domain–containing protein that interacts specifically with the COOH terminus of RGS-GAIP (4), a GTPase-activating protein for Gα, subunits located on clathrin-coated vesicles. The last eight residues (PSQSSSEEA) of the COOH-terminal sequence of GAIP were selected for preparation of linear peptide ligands. In order to enhance cell permeability, myristolation was done on the NH₂ terminus, where it would not interfere with the critical COOH-terminal binding epitope. An analog in which FITC was incorporated was prepared for visualization experiments. A third peptide ligand with a corresponding sequence, prepared with NH₂-terminal biotinylation, was used to conduct pull-down assays to prove the in vitro binding of this peptide to GIPC/Synectin via its single PDZ domain. As a control peptide, an octapeptide with the following sequence was used: Myr-ADSTLREK.

Preparation of T7 phage displaying GIPC-PDZ. Double-strand DNA encoding the PDZ domain of GIPC/Synectin was double-digested with EcoRI and HindIII, and the DNA (0.8 µL of a 45 nmol/L [77 ng/µL] solution) was used in the ligation reaction with the T7 Select 10-3 vector arms (Novagen, 0.5 µL), along with 10× ligase buffer (0.25 µL), ATP (10 mM, 0.25 µL), MgCl₂ (10 mM, 0.25 µL), DTT (100 µmol/L, 0.25 µL), and T4 DNA ligase (0.5 µL, 1 unit/µL). The sample was incubated at 16°C for 16 h. The T7 phage packaging reaction was done by adding packaging extract (Novagen, 12.5 µL, or half the manufacturer’s recommended amount) to the ligation reaction sample (2.5 µL) and allowing it to incubate for 2 h at room temperature. The reaction was stopped by the addition of a sterile Luria-Bertani Broth (LB) medium (135 µL). A plaque assay was done to determine the number of recombinant phage generated. Escherichia coli BTL5403 was grown at 37°C with shaking in LB/Amp medium (10 mL) until optical density (OD) at 600 nm reached 1.0. An aliquot of the recombinant phage generated was used to infect fresh MIA-PaCa2 cells (100 mL of 4×10⁶ cells). After 16 h of incubation at 37°C, the phage was pelleted by centrifugation, and the supernatant was used to infect fresh MIA-PaCa2 cells (2×10⁶ cells). The experiment was repeated three times.

ELISA protocol. Neutradivin plates (Pierce) were coated in duplicate with 100 µL of 10 µg/mL solutions of NH₂-terminal biotinylated peptides (PSQSSSEEA; from GAIP), KRETVE and KRETAV (two sequences that bind PDZ3 of PSD-95; ref. 21), and allowed to incubate for 1 h at 37°C (or overnight at 4°C) with mild shaking. The unbound peptides were washed away three times with TBS 0.5% Tween-20 (TBS/T) buffer. Blocking buffer was prepared by diluting bovine serum albumin (10 mg/mL) in TBS stock 2-fold in dH₂O (for a 5% bovine serum albumin final concentration) and free biotin (1 mmol/L). Alternatively, SuperBlock in PBS buffer (Pierce) with free CD44.
biotin (1 mmol/L) was used. The blocking buffer was added to each well and allowed to incubate for 30 to 60 min at 37°C with mild shaking. The blocking buffer was washed away with TBST by inverting the plate and tapping off the excess with each of the 4 to 5 washes. The GIPC/Synectin-PDZ T7 phage to be screened with the biotinylated peptides were prepared by adding phage stock derived from one of the eight plaques (discussed above) to freshly harvested BLT5403 E. coli at optical density – 1. Once lysis was observed, the cell debris was spun down and phage lysate was used in a plaque assay (as discussed above) to determine the titer (phage titer added to wells 5 × 10^6 pfu). GIPC/Synectin-PDZ phage (100 µL) were added to the wells and incubated for 1 to 2 h at 37°C (or overnight at 4°C) with mild shaking. The plates were then washed 3 to 4 times with TBST buffer to remove unbound phage. Primary monoclonal T7 tail antibody (Novagen) was added to each well at a 1:2,000 dilution in blocking buffer without biotin, and allowed to incubate for 1 h at 37°C with mild shaking. Unbound primary antibody was washed away 3 to 4 times with TBST buffer. Secondary antibody conjugated with alkaline phosphatase [Pierce; antibody host: rabbit anti-; antigen: mouse IgG (H+L)] was added to each well at a 1:5,000 dilution in blocking buffer without biotin; this was incubated at 37°C for 1 h with mild shaking. Unbound secondary antibody was washed 3 to 4 times with TBST buffer. Substrate for detection was prepared by adding diethanamide 5× concentrate to high performance liquid chromatography (HPLC) grade H2O in a 1:4 ratio (5 ml total volume), followed by dissolved a single para-nitrophenyl phosphate (PNPP) tablet (Pierce) with mild shaking. The substrate was added to each well, and the development was measured at 405 nm after 30 min, 1 h, and 2 h.

In vivo PSQSSEA experiments. When the tumor reached about 5 to 15 mm in diameter after s.c. transplantation of MIAPaCa2 cells (n = 10 treatment, n = 10 control) or AsPC1 cells (n = 10 treatment, n = 10 control) into the mouse right flank, the mice were treated with 500 jL of PBS with 80% DMSO. The peptide was applied directly into the tumor. The control group was treated with PBS solution which contained the same amount of DMSO as the peptide group (80% DMSO). In the MIAPaCa2 group female nude mice (10 wk old) were used; in the AsPC1 group female SCID mice (10 wk old) were used.

Western blot, plasmid transfection, immunoprecipitation, and proliferation/ viability assays. Whole cell lysates were prepared as previously described (22) and separated by SDS-PAGE. Goat polyclonal antibodies against the NH2 terminus of GIPC (clone N19; Santa Cruz Biotechnology), rabbit polyclonal antibodies against the β-Chain of IGF-IR (clone C20, Santa Cruz Biotechnology), and antibodies against β-actin and polypeptide fusion tag (FLAG) (Sigma) were used for immunodetection, followed by a horseradish peroxidase–conjugated secondary antibody (Santa Cruz Biotechnology) and the SuperSignal West Pico substrate (Pierce Biotechnology). Immunoprecipitations were done as previously described (22). Proteasome inhibitor I (Calbiochem) was used at a concentration of 25 µmol/L. Plasmid transfection was done using the Effectene Kit (Qiagen) according to the recommendation of the manufacturer. The procedures and plasmids have been described earlier (2). Human recombinant human IGF-I was purchased from RnD Biosystem. Viability of the cells was measured using a colorimetric 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium salt (MTS) assay (Promega). For proliferation, a thymidine incorporation was used. Densitometry analysis of immunoblots was executed by Adobe Photoshop CS2.

Histology and immunohistochemistry. H&E staining and immunostaining for Ki67 (n = 6 treatment, n = 7 control) were done as described by the manufacturer. For evaluation, the Zeiss Axiosplan 2 microscope was used. Photos were made with Zeiss AxioCam. For photos, 10×, 20×, or 40× objectives were used. Nuclear Ki67 staining was evaluated in 10 high power field (HPF). The image capturing software was KS400.

Statistical analysis. Data are presented as means and differences in means with 95% confidence intervals for the differences. Tests for statistical differences were done using t-tests and Mann-Whitney-Wilcoxon tests. For the *in vivo* experiments, at least 10 mice were used each group. Because the overall sample size was small and outcome variables could have a nonnormal distribution, the nonparametric Mann-Whitney test was used to detect statistically significant differences in each group. P < 0.05 was considered to be significant. The significance of the tumor take rates was calculated by using a Wilcoxon-test. Asterisks (*) in the figures represent statistically significant results (probability P < 0.05). Tumor take rates were compared using the univariate logrank test and visualized by Kaplan-Meier diagrams.

Results

Lentiviral GIPC/Synectin shRNA transduction inhibits tumor cell growth in vivo. To evaluate the effect of GIPC/Synectin in the *in vivo* tumor growth of pancreatic cancer, we injected GIPC shRNA–expressing MIA-PaCa2 tumor cells orthotopically into the pancreas of 20 nude mice. The viability of these cells was carefully checked prior to transplant. Green Fluorescent Protein tagged vectors were used to ensure a high transduction efficiency (data not shown). GIPC/Synectin were evaluated by immunoblot, showing a clear reduction of GIPC/Synectin (Fig. 1A). In order to monitor tumor growth by bioluminescence, all carcinoma cells were additionally transfected with a luciferase vector. Tumor development was monitored at different time points after application of n-luciferin (Fig. 1B). The experiment was stopped 39 days after tumor transplantation. Throughout the entire time course and by the end of the experiment, we significantly suppressed primary tumor growth (P = 0.04; Wilcoxon test) in mice that received tumor cells expressing GIPC shRNA. At the end of the experiment, only 5 of 10 animals were tumor-bearing in the GIPC knockdown group, compared with 8 of 10 animals in the control group (Fig. 1C). No metastasis was found in either group (Fig. 1B). To address the heterogeneity of pancreatic cancer we implanted 1 × 106 control and GIPC shRNA–expressing AsPC1 pancreatic cancer cells orthotopically into 20 nude mice. As expected, this experiment also showed significantly reduced tumor growth (P = 0.03; Mann-Whitney test) in the GIPC knockdown group compared with the control group (Fig. 1D).

A GIPC-PDZ binding octapeptide reduces cancer cell proliferation in vitro. To illustrate the use of GIPC/Synectin as a therapeutic target, we developed a peptide that binds to the PDZ domain. This domain is important for the function of GIPC in receptor clustering and intracellular protein transportation. To initiate the development of this GIPC-targeting compound, we evaluated peptide sequences derived from different proteins known to bind the PDZ domain of GIPC/Synectin. We finally selected a peptide derived from GAIP, a regulator of RGS. A short stretch of the COOH-terminal sequence has been identified as the specific functional binding site for the PDZ domain of GIPC/Synectin. Because the binding affinity for a given binding partner is often found within the first five or six residues of the domain – although additional residues may contribute – we prepared corresponding peptides, utilizing standard Fmoc-based solid-phase peptide synthesis techniques, with at least eight residues of the GAIP sequence (Fig. 2A). Analysis of this peptide sequence in a phage ELISA shows significantly enhanced binding to the PDZ domain of GIPC/Synectin over that of PDZ domain motifs of different other proteins and a negative control (Fig. 2B). The GAIP octapeptide...
was tagged with FITC to visualize its localization by confocal microscopy and myristoylated to ensure that the peptide entered the cells, as shown in Fig. 2C. In a next step, we tested the influence of the designed peptide on the viability and proliferation of different human pancreatic carcinoma cells. Viability was inhibited in a dose-dependent fashion in a concentration range from 0 to 300 μmol/L as tested with a MTS assay in different pancreatic carcinoma cell lines (Fig. 3A). A thymidine incorporation assay clearly showed that this decrease in viability can be attributed to the reduction in proliferation (Fig. 3B). In Fig. 3C the time dependency of the peptide effect is shown.

The GIPC-blocking octapeptide leads to a significant reduction of tumor growth in mice. To evaluate the in vivo efficiency of the peptide, we s.c. injected 1 × 10⁷ MIA-PaCa2 or 5 × 10⁶ AsPC1 pancreatic cancer cells into 20 nude or SCID mice and injected a total of 500 μg per mouse per day of the peptide into the developing tumor. All tumors were subjected to histologic evaluation (Fig. 4A). During the whole course of treatment the PDZ domain inhibitor did not show any toxicity in the rodents. No weight loss in one of the two groups was detected. At the end of treatment (22 days in the AsPC1 group or 27 days in the MIAPaCa2 group), we sacrificed the mice and compared tumor growth between peptide-treated mice (n = 10) and the control group (n = 10) that received buffered saline solution mixed with DMSO. The PDZ inhibitor–treated mice had significantly smaller tumors than had the control group (P = 0.009 in the AsPC1 group; P = 0.01 in the MIAPaCa2 group, Mann-Whitney test; Fig. 4A). The evaluation of the proliferation marker Ki67 showed a significantly lower proliferation activity in the treatment group compared with the control group in the...
GIPC/Synectin as a Target in Pancreatic Cancer

AsPC1 (P = 0.02; t-test; Fig. 4B) and the MIAPaCa2 group (P = 0.013; t-test; Fig. 4C).

Targeting the PDZ domain of GIPC alters IGF-IR levels. Previously, we showed that GIPC/Synectin is associated with IGF-IR. This interaction has been proven to be important for the IGF-I receptor stability and to be mediated by the PDZ domain.

To test whether the peptide blocks the association between IGF-IR and GIPC/Synectin, we transfected MIA-PaCa2 cells with a FLAG-tagged wild-type GIPC/Synectin plasmid, and blotted against IGF-IR after immunoprecipitation for FLAG. After treatment with the peptide and blockage of the proteasomal degradation of IGF-IR to ensure similar IGF-IR protein levels, the association between IGF-IR and GIPC/Synectin was significantly reduced (Fig. 5A). These results proved that the small peptide was effective in inhibiting the association between IGF-IR and GIPC/Synectin. As a second step, we evaluated the effects of the inhibitor treatment on IGF-IR expression in more detail. In our previous study, we showed that RNA interference for GIPC/Synectin also suppressed protein levels of IGF-IR. This effect could be reversed by proteasomal inhibition, suggesting that GIPC/Synectin affects protein stability of IGF-IR. Accordingly, we examined IGF-IR expression by Western blot after GIPC-PDZ inhibitor treatment. The immunoblots clearly showed decreased protein levels of IGF-IR in MIAPaCa2 and AsPC1 pancreatic cancer cells (Fig. 5B). Proteasome inhibitor treatment prevents the IGF-IR protein reduction (Fig. 5C). Reversing the reduction of IGF-IR protein levels in GIPC shRNA—expressing MIAPaCa2 pancreatic cancer cells in vivo (Fig. 6A), treatment with the GIPC-PDZ—blocking peptide also led to a significant reduction of
IGF-IR protein levels in both experimental groups, the AsPC1 (Fig. 6B) and the MIAPaCa2 group (Fig. 6C).

Discussion

The main focus of this study was to examine the *in vivo* effect on tumor growth after GIPC/Synectin inhibition and its effect on one of the associated growth factor receptors, IGF-IR. We used two approaches: (a) *ex vivo* transduction of pancreatic cancer cells with lentiviral shRNA followed by orthotopic transplantation; and (b) blocking GIPC/Synectin with a PDZ inhibitor by intratumoral injections into an established tumor.

Here, we have shown that knocking down GIPC/Synectin, a protein highly expressed in pancreatic adenocarcinoma (2), inhibits pancreatic cancer growth in an orthotopic mouse model. This supports the data of our prior study that described a prominent inhibition of pancreatic cancer cell proliferation after GIPC/Synectin down-regulation *in vitro* (2). The high expression of GIPC/Synectin in pancreatic adenocarcinoma and the important function for the proliferation of pancreatic cancer cells make it a target for therapeutic intervention. Accordingly, we developed an octapeptide that can block the...
function of GIPC/Synectin. This blocking peptide can significantly reduce tumor growth, and inhibits the proliferation of pancreatic cancer cells. This confirms the importance of GIPC/Synectin as a central protein in pancreatic cancer cells.

GIPC/Synectin has shown to be important for protein trafficking and receptor stability, which gives the blocking peptide PSQSSSEA a lot of opportunities to disrupt important cell functions: a role of GIPC/Synectin in cancer cell invasion and metastasis has been shown already (23). Also, GIPC/Synectin is associated with different integrins (24) and Syndecan-4 showing a role for GIPC/Synectin in cancer progression (5, 6). GIPC is also recruited by APPL to TrkA endosomes (18). TrkA phosphorylation plays a role in nerve growth factor–mediated growth of MIA PaCa2 (25). Moreover, a recent report suggested that APPL is important for the correct localization of Akt/PKB inside the cell (26). It will be important to evaluate the effect of the GIPC-PDZ–blocking peptide on these different pathways in detail. In our previous work we found that GIPC/Synectin is associated with IGF-IR and is important for IGF-IR stability (2, 27). Accordingly, we focused on the effect of the peptide treatment on IGF-IR, an important growth-promoting receptor in cancer cells.

Our previous results prove that GIPC/Synectin is important in IGF-IR protein expression. These functions were proven to be PDZ domain–dependant. In confirmation of these results we showed that blocking GIPC/Synectin with a cell-permeable GIPC-PDZ inhibitor reduced protein levels of IGF-IR significantly in vitro and in an animal model. To address the mechanism of IGF-IR reduction after peptide treatment, we inhibited the proteasomal pathway. It has already been shown that the proteasomal pathway plays a role in IGF-IR receptor turnover (28). Proteasomal inhibition following the application of PSQSSSEA recovers IGF-IR. These data suggest a protective function of the GIPC/Synectin–IGF-IR-interaction in maintaining IGF-IR levels.

Because GIPC is an adaptor molecule for the binding to Myosin VI (29), it is very probable that knocking down GIPC/Synectin disturbs the transportation machineries of IGF-IR after binding its ligand. Alternatively, Varsano et al. have recently shown that SEA, part of the blocking octapeptide, is also a binding motif for APPL (18). APPL itself is associated with Rab5 (Ras related in brain 5) and is important for the GIPC/Synectin transport to the endosome. Therefore, blocking the SEA domain may inhibit binding of APPL to GIPC/Synectin. This, in turn, may inhibit the transport of GIPC/Synectin to the endosome and ultimately, to IGF-IR, leading to less GIPC/Synectin available for IGF-IR binding. This mechanism may also reduce the chance of an interaction between IGF-IR and GIPC/Synectin, which synergizes with the direct inhibition of the interaction by blocking the GIPC-PDZ domain.

There seems to be another important role of GIPC in IGF-IR function that is independent of transportation processes. Recently, a study in Xenopus showed that knocking out GIPC/Synectin inhibits eye development by disturbing IGF-IR signaling; this study, however, did not report any reduction of IGF-IR protein levels (30). Therefore, GIPC/Synectin may have another important function in connecting the tyrosine kinase receptor IGF-IR to G-protein signaling pathways (27). At this point, it is not possible to comment on the contribution of the different GIPC-associated proteins for the growth inhibition, which results after blocking GIPC. Accordingly, future studies should evaluate the importance of the GIPC associated molecules like IGF-IR, Neuropilin, TrkA, and APPL for the function of this octapeptide.

With their size of approximately 90 residues and their modular nature, PDZ domains are considered as typical protein

![Fig. 5.](image-url)
interaction domains. PDZ domains are elements in a large mosaic of binding networks that crisscross the cell both temporally and spatially. This shows how complex the biological effect of a GIPC-PDZ blocker might be (31). To achieve specificity we focused on specific domains within the PDZ domain of GIPC that are responsible for the interaction with the COOH-terminal end of receptors and intracellular proteins. This approach allows greater specificity of the generated PDZ blocker. According to nature and importance of PDZ domains in cell interactions with other proteins are possible and might even enhance the effectiveness of the GIPC-PDZ blocker. To address this complexity of PDZ domain interaction network further studies are necessary to understand the cross talk with other cell signaling pathways.

In conclusion, this study has shown that targeting GIPC/Synectin with short interfering RNA or an inhibitory PDZ domain–targeting peptide substantially reduced pancreatic adenocarcinoma growth in vivo. In any case, this peptide now represents a lead compound that can be subjected to a variety of peptidomimetic or organic modifications. These may impart improved efficacy and bioavailability properties to the next generation of such PDZ domain–targeting inhibitors in future in vivo investigations.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Dr. Ascoli for the GIPC expression plasmid and Julie Lau for proofreading.
References

Clinical Cancer Research

Targeting GIPC/Synectin in Pancreatic Cancer Inhibits Tumor Growth

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/15/12/4095

Cited articles
This article cites 31 articles, 18 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/15/12/4095.full.html#ref-list-1

Citing articles
This article has been cited by 7 HighWire-hosted articles. Access the articles at:
/content/15/12/4095.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.