Human Leukocyte Antigen-G Protein Expression Is an Unfavorable Prognostic Predictor of Hepatocellular Carcinoma following Curative Resection

Ming-Yan Cai,1 Yong-Feng Xu,1 Shuang-Jian Qiu,1 Min-Jie Ju,1 Qiang Gao,1 Yi-Wei Li,1 Bo-Heng Zhang,1 Jian Zhou,1 and Jia Fan1,2

Abstract

Purpose: Human leukocyte antigen-G (HLA-G) is a tumor-associated immunosuppressive molecule involved in tumor escape mechanisms. The aim of this study is to elucidate its prognostic significance in hepatocellular carcinoma (HCC).

Experimental Design: Immunohistochemical staining of HLA-G expression as well as tumor-infiltrating FoxP3+ regulatory (Tregs) and CD8+ cytotoxic T cells was carried out on tissue microarrays containing 173 HCC tissue specimens. Membrane-bound HLA-G1 protein expression in five human HCC cell lines was detected by Western blot.

Results: HLA-G expression was associated with HCC prognosis, especially in early-stage diseases, with high expression independently associated with shortened overall survival (P = 0.041) and increased tumor recurrence (P = 0.023). HLA-G level was positively related to Tregs/CD8+ ratio and their combination served as a better prognosticator, patients having concurrent high levels of both variables at more than three times of risk of death and tumor relapse than those with concurrent low levels (both P < 0.001). In addition, HLA-G1 expression increased in a concordant manner with the increase of metastatic potential in human HCC cell lines.

Conclusions: Overexpression of HLA-G protein in HCC was an independent indicator for poor outcome especially in early-stage disease. The combination of HLA-G expression and Tregs/CD8+ ratio added the prognostic power to both variables, offering a possible strategy of tumor-stroma interaction-oriented cancer immunotherapy.

Surgery remains to be the mainstay to prolong survival of selected patients with hepatocellular carcinoma (HCC). However, the major hurdle for outcome following resection is tumor recurrence, which may even exceed 70% at 5 years (1), although researchers have endeavored for decades for the precise prediction of HCC recurrence, from determination of various clinicopathologic factors (2), to the alterations in oncogenes/oncogenic pathways or suppressor genes (3, 4), to the immune components of tumor microenvironment (5–7), and to the latest gene expression signatures (8–10). The applications of existing makers are yet unsatisfactory and the prognosis of HCC is still grave. From an immunobiologic perspective, tumor local immune response comprises two arms: antitumor immunity such as CD8+ T cells, natural killer (NK) cells, and NK T cells and protumor factors such as regulatory T cells (Tregs) and tumor-derived repressive factors (11). The balance between antitumor and protumor factors is important for tumor recurrence. Our previous study showed that a balance toward Tregs indicated weak antitumor activities and impaired outcome and vice versa (5). To explain the dual roles of local immune response, researchers raised the new concept of “immunoediting,” comprised by three phases: elimination (i.e., immunosurveillance), equilibrium, and escape (12). Recently, the escape mechanisms used by tumor cells attracted much more attention (11, 13). The immunosuppressive network at tumor microenvironment, mainly composed by tumor-associated factors and Tregs, is crucial to tumor progression (11), a more accurate molecular classification, a precise prognosticator, and the exploration of more effective therapeutic regimens (14). Our recent study revealed that programmed death ligand 1, a negative costimulatory signal expressed on tumor cells, was significantly associated with tumor aggressiveness and postoperative recurrence in HCC (15). Nevertheless, certain tumor-derived immunosuppressive factor (16, 17) even showed benefits to patients’ outcome in HCC (18). Large-scale studies with comprehensive clinical data illustrating
Translational Relevance

Hepatocellular carcinoma is a lethal disease with high frequencies of postsurgical recurrence and is highly refractory to existing adjuvant therapies. Recent years have witnessed the renaissance of tumor immunosurveillance concept and the expansion of the initial notion into “immunoediting,” among which the tumor escape phase attracts the most interest of researchers. Human leukocyte antigen-G (HLA-G) is a tumor-derived immunosuppressive molecule. We showed for the first time that overexpression of HLA-G protein impaired hepatocellular carcinoma outcome, especially in early-stage patients. Moreover, HLA-G expression was positively associated with tumor-infiltrating regulatory/effector T-cell ratio, another immunosuppressive indicator, and their combination was a superior prognostic factor. Thus, the combination of markers derived from tumor and stroma provides a comprehensive prognostic indicator and a possible tumor-stroma interaction-oriented cancer immunotherapy.

Materials and Methods

Patient cohort and clinical follow-up. According to the selection criteria described in our previous studies (15), 2,415 consecutive patients who underwent resection for HCC at Zhong Shan Hospital between January 2002 and September 2006 were identified as an unselected cohort. One hundred eighty patients with comprehensive clinicopathologic data were randomly selected as the study cohort after approval from the Institutional Review Board and informed consent. The Barcelona Clinic Liver Cancer (BCLC) staging system was applied to classify the disease stage (28). The histologic grade of tumor differentiation was determined by the Edmondson-Steiner grading system. Liver function was assessed by the Child-Pugh score system. Survival data, including survival time and time to recurrence (TTR; ref. 29), were determined on September 30, 2008. Overall survival (OS) was taken as date from primary surgical treatment to death or the last follow-up date. TTR was defined as the interval from primary surgical treatment to the first recurrence. Postoperative treatments and surveillance were carried out according to a uniform protocol as described in our previous studies (5, 7).

Tissue microarrays and immunohistochemistry. Tissue microarray blocks were constructed as previously described (5). In brief, for each case, we sampled three tissue cores of tumor at 1 mm in diameter together with different controls to construct the microarrays.

Immunohistochemical analysis of 4-μm tissue microarray sections was carried out as previously described (5, 15). A standard two-step protocol (Novolink Polymer Detection System) was applied with the following primary antibodies: mouse anti-human FoxP3 (1:100; AbD Serotec), HLA-G (clone MEM-G/1, 1:100; Santa Cruz Biotechnology), and CD8 (1:50; Dako).

Cell lines. Five human HCC cell lines were used, including four HCC cell lines (MHCC97L, MHCC97H, HCCLM3, and HCCLM6) from the same parental cell line with stepwise metastatic potential (30), initially established and preserved by our institute, and a nonmetastatic human HCC cell line (Hep3B) purchased from the American Type Culture Collection. All cell lines were cultured in DMEM high-glucose medium with 10% fetal bovine serum at humidified 37°C incubator supplied with 5% CO2.

Western blot analysis. Cell lysis and protein extracts were done using methods described previously (31). Lysates were separated by SDS-PAGE, and detection of membrane-bound HLA-G1 expression was done with mouse anti-human monoclonal antibody MEM-G/1 (1:500; Santa Cruz Biotechnology). Protein loading was assessed using anti-β-actin antibody (1:10,000). The ratio of HLA-G1 and β-actin was calculated as the relative quantitation. The results presented were representative of three experiments as previously described (15).

Evaluation of immunohistochemical staining. The density of HLA-G-positive staining was evaluated using a computerized image system, including a Leica DFC420 charge-coupled device camera and a Leica DM IRE2 microscope (Leica Microsystems Imaging Solution Ltd.). The capture of the photographs and measurement of HLA-G-positive staining density were described in detail previously (15, 32). In brief, three representative fields of each case were captured by the Leica QWin Plus v3 software under identical settings and magnification (×200). The integrated absorbance and the area in a photograph were measured by Image-Pro Plus v6.0 software (Media Cybernetics, Inc.). A uniform setting of color segmentation was loaded for counting the integrated absorbance of all the pictures. The mean HLA-G density was calculated as the product of integrated absorbance/total area.

The manual count of tumor-infiltrating lymphocytes (TIL) was described in our previous reports (5). The entire disc of each triplicate was selected for enumeration.

Statistics. Statistical analyses were carried out using Statistical Package for the Social Sciences 15.0 (SPSS). χ2 test, Fisher’s exact test, and Spearman’s rank correlation were done as appropriate. Univariate analyses were done using the Kaplan-Meier method and compared by
the log-rank test. Cox multivariate analysis applied in a stepwise backward likelihood ratio method was used to adjust for potentially confounding variables and to determine the independent prognostic factors. Receiver operating curve (ROC) analysis was used to compare the prognostic value of the parameters. P values (two sided) of <0.05 were considered statistically significant.

The optimal cutoff for dichotomizing HLA-G expression data was determined using X-tile 3.6.1 software (Yale University of New Haven; refs. 33, 34). The median values of FoxP3+ Tregs, CD8+ TILs, and their ratio were used as cutoffs.

Results

Characteristics of the patient cohort. From the 180 cases of the tissue microarray, 7 cases (3.9%) were excluded due to tissue loss. The clinicopathologic characteristics of 173 patients are shown in Supplementary Table S1. At last follow-up, 82 (47.4%) patients had died of recurrence (n = 39) or cirrhosis-related complications without recurrence (n = 43). The 1-, 3-, and 5-year OS were 84%, 55%, and 46%, respectively. Among the remaining 91 patients, the mean duration of follow-up was 37.2 months (range, 23.0-77.5 months; SD, 13.6). Altogether, 88 patients (50.9%) had recurrence, including intrahepatic recurrence (n = 63), distant metastasis (n = 13), or both (n = 12). Tumor recurrence probabilities at 1, 3, and 5 years were 35%, 52%, and 59%, respectively.

HLA-G expression and patient outcome. The expression pattern of HLA-G protein in tumor cells seemed to be very diffuse in most cases. The staining of HLA-G was mainly cytoplasmatic (Fig. 1A and B). Of the 173 tumors, 74 (43%) were ranked as low and 99 (57%) as high HLA-G expression as determined by the X-tile software.

On univariate analysis, higher HLA-G expression displayed relevance to poorer OS compared with low expression (median, 31.0 versus 63.5 months; P = 0.024; Fig. 2A; Table 1). The

Fig. 1. HLA-G expression in HCC tissue samples and its relation with Tregs and CD8+ cells. Representative HCC tumor specimens with low (A) and high (B) expression of HLA-G protein by immunohistochemical staining. C, consecutive sections of case 9 showed high CD8+ TILs, low Tregs, and low HLA-G staining. D, consecutive sections of case 151 showed low CD8+ TILs, high Tregs, and high HLA-G staining. Magnification, ×200.
univariate analysis also found a trend toward TTR decrease, with the median time not reached versus 18 months for low and high HLA-G groups, respectively ($P = 0.070$; Fig. 2A). Multivariate analysis showed that HLA-G expression was independently associated with OS [hazard ratio (HR), 1.987; 95% confidence interval (95% CI), 1.241-3.180; $P = 0.004$; Table 1]. Besides, BCLC stage, α-fetoprotein (AFP), and γ-glutamyl transferase level were also independent survival predictors ($P = 0.001$, 0.024, and 0.002, respectively). Early BCLC stage and complete tumor encapsulation were independently associated with decreased recurrence rate ($P < 0.001$ and $P = 0.015$, respectively).

Fig. 2. Kaplan-Meier curves of survival differences among HCC patients. Differences of OS and TTR between HLA-G high and low groups in all population (A) and in early-stage patients (B). C, illustrated OS and TTR differences in combined group of HLA-G expression and Tregs/CD8+ ratio.
Because BCLC stage was significant in multivariate analysis of both OS and recurrence and represented well the different stages of tumor progression, subgroup analysis was done for a comprehensive knowledge about HLA-G function within different stages. Patients with high HLA-G expression possessed shortened survival (52 months versus not reached, \(P = 0.012 \)) and significantly accelerated recurrence (52.5 months versus not reached, \(P = 0.038 \)) compared with those with low level in early HCC (BCLC stage 0 + A; Fig. 2B). In multivariate analysis, high HLA-G group was at high risk of poorer survival and recurrence in early HCC patients (HR, 3.145; 95% CI, 1.051-9.418; \(P = 0.041 \) and HR, 3.208; 95% CI, 1.176-8.750; \(P = 0.023 \), respectively; Table 1). The results in intermediate and advanced stages were not inspiring.

HLA-G expression in human HCC cell lines. A 38-kDa band corresponding to membrane-bound HLA-G1 protein was detected in human HCC cell lines. Strikingly, HLA-G1 expression displayed a concordant elevation with their stepwise metastatic potentials in cell lines MHCC97L, MHCC97H, HCCLM3, and HCCLM6 (Fig. 3; ref. 30). HLA-G1 protein shown in nonmetastatic cell line Hep3B was very weak (Fig. 3).

Correlations among HLA-G expression, clinicopathologic parameters, and TILs. HLA-G protein levels were found independent of other clinicopathologic parameters except for gender (\(P = 0.036 \); Supplementary Table S2). No correlation between HLA-G expression and Tregs was found, nor with CD8+ TILs. Intriguingly, a positive correlation was discovered between HLA-G expression and Tregs/CD8+ ratio (group A vs B vs C, \(P = 0.023 \)), with the high HLA-G patients showing higher Tregs/CD8+ ratios compared with low HLA-G patients (\(P = 0.013 \), Mann-Whitney U test; Figs. 1C and D and 4). High Tregs/CD8+ ratio was in close association with larger tumor size (\(P = 0.012 \)), vascular invasion (\(P = 0.002 \)), elevated AFP levels (\(P = 0.003 \)), and advanced BCLC stage (\(P = 0.001 \); Supplementary Table S3).

Significance of combination of HLA-G expression and Tregs/CD8+ ratio and ROC analysis. Tregs/CD8+ ratio was also an adverse indicator of patient outcome. Generally, patients with high Tregs/CD8+ ratio were more prone to tumor recurrence and decreased survival. Specifically, Tregs/CD8+ ratio was independently associated with recurrence in advanced-stage HCC (HR, 3.475; 95% CI, 1.510-7.998; \(P = 0.003 \)) other than early or intermediate stage. Given their statistical correlation, functional interactions (35, 36), and both showing adverse prognostic significance, the power of HLA-G-Tregs/CD8+ ratio combination for predicting patient outcome was evaluated. Patients were further divided into three groups according to this combination, namely, group A (both low, \(n = 46 \)), group B (either high, \(n = 68 \)), and group C (both high, \(n = 59 \)). When compared with group B or C, group A revealed significant higher OS (\(P = 0.001 \) and \(P = 0.011 \), respectively) and longer TTR (\(P = 0.031 \) and \(P < 0.001 \), respectively; Fig. 2C). Furthermore, this combination retained its significance in multivariate analysis for both OS (\(P = 0.001 \)) and TTR (\(P < 0.001 \)). Specifically, when group C was compared with group A, the corresponding HRs in multivariate analysis were 3.541 (95% CI, 1.777-7.056; \(P < 0.001 \)) for death and 3.050 (95% CI, 1.676-5.548; \(P < 0.001 \)) for recurrence, which were higher than

<table>
<thead>
<tr>
<th>Variables</th>
<th>Univariate (P)</th>
<th>Multivariate analysis</th>
<th>Univariate (P)</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor number (single vs multiple)</td>
<td>NS</td>
<td>NA</td>
<td>NA</td>
<td>0.037</td>
</tr>
<tr>
<td>Tumor encapsulation (complete vs no)</td>
<td>NS</td>
<td>NA</td>
<td>NA</td>
<td>0.020</td>
</tr>
<tr>
<td>ALT level, units/L (>-40 vs >40)</td>
<td>0.013</td>
<td>NA</td>
<td>NA</td>
<td>0.037</td>
</tr>
<tr>
<td>Vascular invasion (no vs yes)</td>
<td><0.001</td>
<td>3.683 (1.547-8.771)</td>
<td>0.003</td>
<td><0.001</td>
</tr>
<tr>
<td>AFP level, ng/mL (<20 vs >20)</td>
<td>0.013</td>
<td>2.776 (1.233-6.249)</td>
<td>0.014</td>
<td>0.036</td>
</tr>
<tr>
<td>HLA-G (low vs high)</td>
<td>0.012</td>
<td>3.145 (1.051-9.418)</td>
<td>0.041</td>
<td>0.038</td>
</tr>
<tr>
<td>All patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor number (single vs multiple)</td>
<td>NS</td>
<td>NA</td>
<td>NA*</td>
<td>0.015</td>
</tr>
<tr>
<td>Tumor size, cm (<5 vs >5)</td>
<td><0.001</td>
<td>NA</td>
<td>NA*</td>
<td><0.001</td>
</tr>
<tr>
<td>Vascular invasion (no vs yes)</td>
<td><0.001</td>
<td>NA</td>
<td>NA*</td>
<td><0.001</td>
</tr>
<tr>
<td>Tumor encapsulation (complete vs no)</td>
<td>0.033</td>
<td>NA</td>
<td>NA</td>
<td><0.001</td>
</tr>
<tr>
<td>BCLC stage (0 + A vs B vs C)</td>
<td><0.001</td>
<td>1.577 (1.200-2.072)</td>
<td>0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>AFP level, ng/mL (<20 vs >20)</td>
<td>0.001</td>
<td>1.816 (1.082-3.048)</td>
<td>0.024</td>
<td>0.003</td>
</tr>
<tr>
<td>(\gamma)-GT, units/L (<54 vs >54)</td>
<td><0.001</td>
<td>2.176 (1.328-3.567)</td>
<td>0.002</td>
<td>0.013</td>
</tr>
<tr>
<td>HLA-G (low vs high)</td>
<td>0.024</td>
<td>1.987 (1.241-3.180)</td>
<td>0.004</td>
<td>0.070</td>
</tr>
<tr>
<td>Tregs/CD8+ ratio (low vs high)</td>
<td><0.001</td>
<td>2.005 (1.261-3.188)</td>
<td>0.003</td>
<td><0.001</td>
</tr>
<tr>
<td>Combination of HLA-G and Tregs/CD8+ ratio (group A vs B vs C)</td>
<td>Overall</td>
<td><0.001</td>
<td>NA</td>
<td><0.001</td>
</tr>
<tr>
<td>B vs A</td>
<td>0.001</td>
<td>3.407 (1.712-6.778)</td>
<td><0.001</td>
<td>0.031</td>
</tr>
<tr>
<td>C vs A</td>
<td><0.001</td>
<td>3.541 (1.777-7.056)</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 1. Univariate and multivariate analysis in total patients and early stage.

*Variables included in BCLC stage system were not assessed in multivariate analysis to avoid duplication.

Abbreviations: ALT, alanine aminotransferase; \(\gamma \)-GT, \(\gamma \)-glutamyl transferase; NA, not assessed; NS, not significant.

NOTE: Variables with \(P < 0.05 \) in univariate analysis were enrolled in multivariate analysis.

\(^{*} \)Variables included in BCLC stage system were not assessed in multivariate analysis to avoid duplication.

\(^{\dagger} \)Variables were analyzed in separate multivariate analyses as not to influence each others’ HR.

\(^{\dagger} \)Combination of HLA-G and Tregs/CD8+ ratio: group A (both low levels of HLA-G and Tregs/CD8+ ratio, \(n = 46 \)), group B (either high level of HLA-G and Tregs/CD8+ ratio, \(n = 68 \)), and group C (both high levels of HLA-G and Tregs/CD8+ ratio, \(n = 59 \)).
those of HLA-G or Tregs/CD8+ alone (Table 1). ROC analysis revealed that the combination outdone either Tregs/CD8+ ratio or HLA-G alone, with an area under the curve of 0.642 versus 0.619 versus 0.594 for death and 0.624 versus 0.607 versus 0.577 for recurrence (Table 2).

Discussion

Herein, we reported for the first time that high HLA-G expression was associated with reduced survival and increased recurrence in HCC. The prognostic value of HLA-G elucidated in this study is concordant with the main stream of previous observations from other cancers (22–24). Albeit HLA-G group was only significant in OS by multivariate analysis in all patient population, its independent power was enhanced in predicting both survival and recurrence in early HCC patients indicated by a sharply increased HR (3.145 versus 1.987) for death and a gained significance for recurrence. Its independent prognostic significance in early HCC patients is of clinical importance because among intermediate to advanced stages of HCC, multinodularity (37) and the presence of vascular invasion (38) have already been well-established adverse prognostic predictors after liver resection, while the prognosis of early-stage HCC is far from homogenous and its lack of those clinicopathologic indicators and existing classification systems have shown limitations on precise prediction of patients’ outcome (39). With the shift of more patients diagnosed at earlier stages, establishment of novel prognostic markers is more important for early than advanced stages and our results meet this requirement to refine the prognosis of early-stage patients. The varied predictive value between different stages of HCC may also indicate the complicated role of HLA-G in the dynamic process of cancer immunoediting (40). From a therapeutic view, it suggests that molecular therapies targeting at HLA-G in early-stage HCC could possibly block tumor progression.

A positive correlation was unraveled between HLA-G and Tregs/CD8+ ratio. Coincidently, both of them had adverse effect on patients’ outcome and were related to dampening the antitumor immunity in tumor microenvironment (19, 41). Taking together their functional interactions (35, 36), we evaluated the prognostic power of HLA-G expression and Tregs/CD8+ ratio. This combination was independently related to survival and recurrence of HCC patients. Patients with concurrent high levels of Tregs/CD8+ ratio and HLA-G expression were at more than three times of risk of death and recurrence than concurrent low levels ones. Moreover, its predictive power was superior to that of HLA-G or Tregs/CD8+ ratio alone on ROC analysis. These observations gave us a clue that there existed a synergy between HLA-G and Tregs/CD8+ ratio, and this might be attributed to the capacity of HLA-G on TIL regulation to dampen the antitumor activities. Intensive in vitro experiments supported the following hypothesis: (a) HLA-G can induce Tregs through distinct processes (19) and Tregs can further impair CD8+ T-cell functions (41) and (b) soluble HLA-G induces apoptosis in T and NK CD8+ cells and inhibits cytotoxic T-cell activity through CD8 ligation (35). More importantly, through our stratified analysis, we found that either HLA-G or Tregs/CD8+ ratio was independently associated with TTR in specified groups (i.e., early HCC or advanced HCC, respectively). When they were combined, their predictive power was independent of HCC stages. Therefore, we propose that the decisive component of tumor escape mechanisms might shift from tumor-derived factors to host-related factors (e.g., from HLA-G to Tregs/CD8+ ratio) during the progression of HCC according to the variance of their prognostic power in different tumor stages. However, the three steps of immunoediting are an interdependent other than an independent process (42). Thus, the combination of HLA-G and Tregs/CD8+ ratio added to our knowledge of how different escape mechanisms acted and interacted, meanwhile offering a more precise look at the immune status and resulting in a better predictive indicator.

In our in vitro observation, the protein load detected in Western blot analysis was consistent with the metastatic
Considering its prognostic value and effect on immune cells, using HLA-G as a target molecule in specific immunotherapy against tumor has already been under consideration. Most recently, a pilot study was done to use HLA-G16-154 peptide as a promising candidate in peptide-based immunotherapy for HLA-A24+ renal cell carcinoma (46).

In conclusion, we have shown that overexpression of HLA-G in HCC was a significant independent prognosticator for poor outcome especially in early-stage diseases. The prognostic superiority of the combination of HLA-G expression and Tregs/CD8+ ratio conferred that the combined efforts on HLA-G blockade, Treg depletion, and cytotoxic T-cell stimulation might be promising, representing a combined tumor-stroma–targeted cancer therapy.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

1. Llovet JM, Burroughs A, Bruix J. Hepatocellular carci-
lowing resection of hepatocellular carcinoma. Gastro-
3. Lee JS, Thorgersson SS. Genome-scale profiling of gene expression in hepatocellular carcinoma: classifi-
cation, survival prediction, and identification of thera-
6. Ito Y, Monden M, Takeda T, et al. The status of Fas and Fas ligand expression can predict recurrence of hepa-
7. Li JW, Qiu SJ, Fan J, et al. Tumor-infiltrating macro-
phages can predict favorable prognosis in hepatocel-
8. Lemmer ER, Friedman SL, Llovet JM. Molecular diag-
nosis of chronic liver disease and hepatocellular carci-
9. Wang SM, Ooi LL, Hui KM. Identification and valida-
tion of a novel gene signature associated with the re-
11. Croci DO, Zacarias Fluck MF, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG. Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvi-
12. Dunn GP, Koebel CM, Schreiber RD. Interferons, immu-
eness and postoperative recurrence in human hepatocel-
nostic value of indoleamine 2,3-dioxygenase expres-
17. Ito K, Yamamoto E, Shibata K, et al. Reverse correla-
tion between tumoral indoleamine 2,3-dioxygenase expression and tumor-infiltrating lymphocytes in en-
dometrial cancer: its association with disease pro-
18. Ishii T, Goto S, Taha K, Tone S, Kawano K, Kitano S. Immunoreactive role of indoleamine 2,3-dioxy-
genase in human hepatocellular carcinoma. J Gastro-
22. Ye SR, Yang H, Li K, Dong DD, Lin XM, Ye SM. Human leukocyte antigen G expression: as a signifi-
23. Ye SM, Yang H, Ye SR, Li K, Dong DD, Lin XM. Ex-
pression of human leucocyte antigen G (HLA-G) is associated with prognosis in non-small cell lung can-
24. Yie SM, Yang H, Ye SR, Li K, Dong DD, Lin XM. Ex-
27. Rebmann V, Nuckel H, Duhrens U, Grosse-Wilde H.

Table 2. ROC analysis in all patients

<table>
<thead>
<tr>
<th>Variables</th>
<th>Survival AUC</th>
<th>Survival 95% CI</th>
<th>Survival SE</th>
<th>Recurrence AUC</th>
<th>Recurrence 95% CI</th>
<th>Recurrence SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tregs/CD8+ ratio</td>
<td>0.619</td>
<td>(0.535–0.703)</td>
<td>0.043</td>
<td>0.607</td>
<td>(0.523–0.691)</td>
<td>0.043</td>
</tr>
<tr>
<td>HLA-G</td>
<td>0.594</td>
<td>(0.509–0.678)</td>
<td>0.043</td>
<td>0.577</td>
<td>(0.449–0.662)</td>
<td>0.042</td>
</tr>
<tr>
<td>Combination*</td>
<td>0.642</td>
<td>(0.560–0.724)</td>
<td>0.042</td>
<td>0.624</td>
<td>(0.541–0.707)</td>
<td>0.042</td>
</tr>
<tr>
<td>BCLC stage</td>
<td>0.629</td>
<td>(0.546–0.712)</td>
<td>0.042</td>
<td>0.677</td>
<td>(0.597–0.757)</td>
<td>0.041</td>
</tr>
</tbody>
</table>

Abbreviation: AUC, area under the curve.
*Combination of HLA-G and Tregs/CD8+ ratio.

Human Leukocyte Antigen-G Protein Expression Is an Unfavorable Prognostic Predictor of Hepatocellular Carcinoma following Curative Resection

Ming-Yan Cai, Yong-Feng Xu, Shuang-Jian Qiu, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/15/14/4686

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2009/06/16/1078-0432.CCR-09-0463.DC1

Cited articles
This article cites 46 articles, 15 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/15/14/4686.full.html#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
/content/15/14/4686.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.