Induction of Bim Expression Contributes to the Antitumor Synergy Between Sorafenib and Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Kinase Inhibitor CI-1040 in Hepatocellular Carcinoma

Da-Liang Ou,1 Ying-Chun Shen,1,2,3,5 Ja-Der Liang,4 Jun-Yang Liou,7 Sung-Liang Yu,6 Hsiang-Hsuan Fan,1 Da-Sheng Wang,8 Yen-Shen Lu,2 Chiun Hsu,2,4 and Ann-Lii Cheng2,4,5

Abstract

Purpose: Sorafenib has proved survival benefit for patients with advanced hepatocellular carcinoma (HCC). This study explored whether the efficacy of sorafenib can be improved by adding the mitogen-activated protein kinase/extracellular signal–regulated kinase (ERK) kinase (MEK) inhibitor CI-1040 to vertically block the Raf/MEK/ERK pathway. **Experimental Design:** The growth inhibitory effects of sorafenib and CI-1040 were tested in HCC cell lines (Huh-7 and Hep3B) and human umbilical vascular endothelial cells (HUVEC). The potential synergistic growth inhibitory effects were measured by median effect analysis. Apoptosis was measured by flow cytometry. The effects on ERK phosphorylation and levels of apoptosis regulatory proteins were measured by Western blotting. The in vivo antitumor activity of sorafenib and CI-1040 were tested in xenograft HCC models. **Results:** Combination of sorafenib and CI-1040 synergistically inhibited ERK phosphorylation and cell growth and induced apoptosis in both HCC cells and HUVECs. Increased expression of Bim protein, which correlated with the extent of ERK inhibition, was found in both HCC cells and HUVECs. Knockdown of Bim expression by small interfering RNA partially abrogated the synergistic proapoptotic effects of sorafenib and CI-1040. Combination therapy inhibited tumor growth significantly better than either single agent in the xenograft models. **Conclusion:** The antitumor effects of sorafenib in HCC can be improved by vertical blockade of Raf/MEK/ERK signaling with CI-1040. (Clin Cancer Res 2009;15(18):5820–8)

Molecular targeted therapy has emerged as a new treatment for advanced hepatocellular carcinoma (HCC; ref. 1). Sorafenib, an oral multitargeted kinase inhibitor targeting Raf kinase, vascular endothelial growth factor receptor-2 (VEGFR-2), VEGFR-3, and platelet-derived growth factor receptor (2), is approved for the treatment of advanced HCC because of its survival benefit shown in two randomized, placebo-controlled trials (3, 4). Sorafenib prolonged the overall survival of advanced HCC patients from 7.9 months to 10.7 months in the Western trial and from 4.2 to 6.5 months in the Asian trial.

The success of the sorafenib trials represents a major breakthrough in the treatment of advanced HCC. However, several important issues remain unresolved. First, most patients who received sorafenib treatment had tumor progression within relatively short periods. The median time-to-tumor progression was 5.5 and 2.6 months in the Asian trial, respectively. Therefore, combination with other systemic therapy to improve the efficacy of sorafenib is needed. Second, the role of Raf kinase as the molecular target of sorafenib treatment remains controversial. Sorafenib can inhibit Raf-1 and both wild-type and mutant B-Raf kinase activity, but in preclinical models, the antitumor activity of sorafenib did not correlate completely with its inhibitory effect on extracellular...
signal-regulated kinase (ERK) phosphorylation in cancer cells (2). Multiple signaling pathways other than Raf can activate ERK. It is thus reasonable to postulate that a more complete blockade of ERK activation in tumor cells may further improve the antitumor efficacy of sorafenib. Besides, sorafenib can also inhibit tumor angiogenesis. The antiangiogenic effect of sorafenib may contribute significantly to the antitumor effects in HCC (5, 6).

Small-molecule mitogen-activated protein kinase/ERK kinase (MEK) inhibitors have been developed for cancer therapy (7). Specificity of this class of inhibitors is high because they bind noncompetitively to a specific binding pocket adjacent to the ATP binding site of MEK. CI-1040 is the first small-molecule MEK inhibitor tested in clinical trials for cancer treatment. In the phase I trial of CI-1040, disease stabilization was shown in 20 of 66 evaluable patients (1 with partial response and 19 with stable disease; ref. 8). Inhibition of ERK phosphorylation in peripheral blood mononuclear cells stimulated by phorbol 12-myristate 13-acetate can be seen at plasma levels exceeding 100 ng/mL. The most common toxicities of CI-1040, mostly grade 1 or grade 2, include diarrhea, asthenia, rash, nausea, and vomiting. The favorable safety profile and potential antitumor efficacy of CI-1040 make it a good candidate for trials of novel combination molecular targeted therapy for HCC.

Sorafenib can induce apoptosis of cancer cells through regulation of multiple proapoptotic and antiapoptotic factors, including Bad, Bax, Bim, myeloid cell leukemia-1 (Mcl-1), and X-linked inhibitor of apoptosis (9). Expression of these factors may be regulated at either transcriptional, translational, or posttranslational levels and may involve mechanisms independent of ERK activity. For example, inhibition of Mcl-1 expression, which accounted for sorafenib-induced apoptosis in multiple cancer types, was found independent of Raf/MEK/ERK inhibition (10). Recently, the proapoptotic factor Bim was found to play an important role in sorafenib-induced apoptosis (11). Bim has three major splice variants: the short (BimS), the long (BimL), and the extra long (BimEL) variants. Raf/MEK/ERK pathway regulates Bim expression primarily through phosphorylation of BimEL (12). The phosphorylated BimEL is then degraded by proteasomes (13). Therefore, Bim may be an important mediator linking ERK inhibition to apoptosis induction by sorafenib in cancer cells.

In this study, we explored the potential antitumor synergism between sorafenib and CI-1040 in HCC. We hypothesized that the efficacy of sorafenib can be improved by a
more complete and sustained inhibition of ERK activation through inhibition of multiple steps along the Raf/MEK/ERK signaling pathway.

Materials and Methods

Cell culture. The HCC cell lines Huh-7 and Hep3B were cultured in DMEM (Life Technologies) containing 10% fetal bovine serum (Life Technologies), penicillin (100 units/mL), streptomycin (100 μg/mL), l-glutamine (2 mmol/L), and sodium pyruvate (1 mmol/L; Invitrogen). Primary human umbilical vascular endothelial cells (HUVEC) were cultured in M199 medium (Life Technologies) supplemented with 20% fetal bovine serum, endothelial cell growth supplement, 20 μM heparin, and 2 mmol/L L-glutamine. HUVECs were used for experiments within five passages. The cells were cultured at 37°C in a humidified incubator containing 5% CO2.

Chemicals and other reagents. Sorafenib and CI-1040 were provided by Bayer Pharmaceuticals Corporation and Pfizer Global Research and Development, respectively. For in vitro experiments, the chemicals were dissolved in DMSO and the final concentration of DMSO was kept below 0.1%. For in vivo experiments, sorafenib and CI-1040 were dissolved in Cremophor EL/95% ethanol (50:50, Sigma).

Cell viability assay. Cell viability was assessed using the MTT assay. HCC cells and HUVECs (seeded at 2000-4000 cells per well in 96-well plates) were cultured overnight, treated with the drugs at the indicated concentrations for 72 h, and assessed for viability as follows [i.e., MTT added to each well (final concentration, 0.4 mg/mL), incubation at 37°C for 2.5 h, solubilization of the reduced MTT dye in DMSO, and measurement of absorbance by spectrophotometry at 540 nm with a microplate reader (DTX 800, Beckman Coulter), and determination of cell viability by calculating relative changes of absorbance].

Western blot analysis. After drug treatment, the HCC cells and HUVECs were lysed by lysis buffer (50 mmol/L Tris-Cl (pH 8.0), 150 mmol/L NaCl, 1% NP40, 0.5% sodium deoxycholate, 0.1% SDS) plus a protease inhibitor cocktail (Roche Applied Science). The protein concentrations were measured using a bicinchoninic acid protein assay kit (Pierce). Equal amounts of proteins from each sample were subjected to SDS-PAGE and then transferred to nitrocellulose or Immobilon-P membranes (Amersham). After overnight incubation at 4°C with the primary antibodies, the membranes were washed with TBS-T, incubated with a horseradish peroxidase–conjugated secondary antibody, and developed using enhanced chemiluminescence horseradish peroxidase substrate (Millipore) according to the manufacturer's instructions.

Determination of Bim expression by quantitative reverse transcription-PCR. Cells were lysed in Trizol reagent (Invitrogen) and stored at -20°C, and RNA was extracted according to the manufacturer's instructions. cDNAs were synthesized from total RNA (1 μg) using the Applied Biosystem High-Capacity cDNA Archive kit according to the manufacturer's instructions. cDNAs from 50 ng of total RNA were quantified using the Taqman Universal or SYBR Green PCR Master Mix (Applied Biosystems) on an ABI PRISM 7900 Sequence Detection System (Perkin-Elmer/Applied Biosystems). The primer sequences of the Bim gene in the current study were purchased from Applied Biosystems (ABI Taqman assay ID: Hs00197982_m1). The hypoxanthine phosphoribosyltransferase (HPRT) gene was used as an endogenous control. The primer sequences of the HPRT gene for real-time reverse transcription-PCR in the current study were sense 5′-TGA CAC TGG CAA AAC AAT GCA-3′ and antisense 5′-GGT CCT TTT CAC CAG -3′.

Fig. 2. Median dose effect analysis of synergistic growth inhibitory effects between sorafenib and CI-1040. Huh7, Hep3B, and HUVECs cells were treated with sorafenib and CI-1040 in a fixed ratio (5:1) for 72 h. Growth inhibition was measured by MTT assay. CI was calculated using the CI-isobologram method by Chou and Talalay. CI = 1, additive effect; CI < 1, synergistic effect; CI > 1, antagonistic effect.
Proportions of apoptotic cells are indicated by the percentages of Annexin V, surviving cells after drug treatment was measured by MTT assay. The target gene/endogenous control gene (HPRT) was calculated using the

\[\Delta C_t (\text{threshold cycle}) \text{ method as follows: relative expression} = 2^{-\Delta C_t} \]

where \(\Delta C_t = C_{\text{t (target gene)}} - C_{\text{t (HPRT)}} \).

Small interfering RNA knockdown of Bim expression. Bim small interfering RNA (siRNA) and scrambled nonspecific (negative control) siRNA were purchased from Ambion, Inc. The sequences for Bim siRNA are as follows: si-Bim-a sense 5'-CCUCCUGAUGUAGUGUCU-3'; antisense 5'-AGAGUAUCAUCAUCAUGT-3'; si-Bim-b sense 5'-CCUCCUCUUCAGAGCC-C-3'; antisense 5'-GGCCGUCCUUGUAGGUGCt-3'. Cells were transfected with Bim or scrambled siRNA using the siPORT NeoFX siRNA transfection reagent (Ambion) according to the manufacturer's instructions, treated with the drugs (indicated concentrations, 48 h), and collected for Western blot analysis or terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay.

Tumor xenograft experiment. The protocol of the in vivo studies was approved by the Institutional Animal Care and Use Committee of College of Medicine, National Taiwan University. Male BALB/c athymic (nu/nu) mice (6-8 wk old) were purchased from the National Laboratory of Animal Breeding and Research Center, Taipei, Taiwan. The mice were inoculated s.c. at the right flank with 1 × 10^6 Huh-7 cells or Hep3B cells in serum-free medium containing 50% Matrigel (BD Biosciences; final volume 0.1 mL). The tumor volume was calculated using the following formula: volume (mm^3) = (width)^3 × length × 0.5. When the tumor volume reached ~100 mm^3, the mice were randomized into four treatment groups (n ≥ 5 in each group): (a) vehicle (control), (b) sorafenib 5 mg/kg/d, (c) CI-1040 10 mg/kg/d, and (d) sorafenib 5 mg/kg/d plus CI-1040 10 mg/kg. Drug treatment was given daily by gavage. Tumor volume and body weight were recorded every 2 d.

The tumor samples after drug treatment were collected to measure the status of ERK phosphorylation and apoptosis in tumor cells and tumor angiogenesis. The samples were fixed in 10% formalin, embedded in paraffin, and sectioned (5 μm) for immunohistochemistry and TUNEL assay. For immunohistochemical study, the tumor sections were incubated (65°C, 1 h), deparaffinized, steamed (100°C, 120 atmospheres, 40 min) for antigen retrieval, treated with 3% H2O2 in methanol for 10 min, blocked with goat serum (diluted 1:20 in antibody diluent buffer; DAKO), incubated with the primary antibodies (overnight, room temperature), stained using the Envision Plus Horseradish Peroxidase (3,3'-diaminobenzidine) System (DAKO) according to the manufacturer's instructions, and counterstained with hematoxylin. For TUNEL assay, the tumor sections were treated using the DeadEnd Fluorometric TUNEL System according to the manufacturer's instructions.

The numbers of CD31-positive and TUNEL-positive cells in tumors were counted manually under a light microscope and fluorescence microscope, respectively. Microvessel density (MVD), the average of microvessel counts from at least four high power (200×) fields, was used to represent tumor angiogenesis activity. An average of positive TUNEL cells from at least four 200× fields was used to represent the extent of apoptosis of tumor cells.

The difference in tumor blood flow after drug treatment was monitored using Power Doppler sonography (Toshiba Xario System; Toshiba, Co. Ltd.) equipped with a 12-MHz PLT-1202S probe (multifrequencies from 7 to 14 MHz). Power Doppler sonography mode and dynamic flow mode, which were adjusted to optimize visualization of the tumors, were used to show the arterial vascular signal of the tumors. At least three sets of images were obtained for each tumor. The vessels with arterial signal were confirmed with duplex sonography. The vasculature was analyzed by assessment of peritumoral vessels and intratumor vessels. The level of tumor vascularity was arbitrarily divided into (+/-) faint signal, (+) one to two vessels, (++) more than two vessels, and (+++) prominent vessels having branches.

Statistical analysis. All data were representative of at least three independent experiments. Quantitative data are expressed as mean ± SD. Comparisons were analyzed using the Student's t test and ANOVA. Significance was defined as P < 0.05.
Results

Effects of sorafenib and CI-1040 on ERK phosphorylation and cell growth. The changes in ERK phosphorylation, indicating activity of the Ras/Raf/MEK signaling pathway, after sorafenib or CI-1040 treatment are shown in Fig. 1. ERK phosphorylation started to decrease after 30 minutes of treatment with sorafenib alone but gradually returned to baseline (in HUVECs) or even rebounded (in Huh-7 and Hep3B cells). Inhibition of ERK phosphorylation was more complete and sustained in all cells treated with sorafenib combined with CI-1040. The effect of sorafenib and CI-1040 on VEGFR phosphorylation is shown in Supplementary Fig. S1. Sorafenib dose-dependently reduced VEGFR phosphorylation. However, CI-1040 alone did not affect VEGFR phosphorylation significantly nor did it enhance the effect of sorafenib on VEGFR phosphorylation.

The synergistic growth inhibitory effects of sorafenib and CI-1040, as measured by median effect analysis, are shown in Fig. 2. The concentrations of each drug tested and the individual CI values of each experiment were listed in Supplementary Table S1. In both HCC cells and HUVECs, The CI values were <1 in most of the concentrations tested, indicating significant synergistic effects between sorafenib and CI-1040 on HCC and HUVEC cell growth.

Effects of sorafenib and CI-1040 on apoptosis induction and expression of apoptosis-related proteins. To determine the mechanism of this drug synergy, HCC cells and HUVECs treated with sorafenib or CI-1040 were examined by MTT assay and flow cytometry. Sorafenib and CI-1040 synergistically inhibit cell viability (Fig. 3A). The most prominent synergistic effect was on the induction of apoptosis, as shown by a significant increase in cells in the sub-G₁ fraction (Fig. 3B) and by the Annexin V assay (Fig. 3C). No consistent changes in cell cycle distribution were found (data not shown).

The expression of the bcl-2 family proteins after treatment with sorafenib or CI-1040 was examined by Western blotting. As shown in Fig. 4, sorafenib can increase the expression of Bad (proapoptotic) and decrease the expression of Mcl-1 (antiapoptotic) and Bax (proapoptotic). The increase in Bad and decrease in Mcl-1 expression have been shown in previous reports and are thought to account for sorafenib-induced apoptosis. However, these phenomena were not enhanced by the addition of CI-1040 and were not correlated with the change of ERK phosphorylation after sorafenib or CI-1040 treatment (Fig. 1). Therefore, the relationship between the change in Bad or Mcl-1 and Raf/MEK/ERK signaling activity remained undetermined. On the other hand, the expression of the proapoptotic protein Bim, especially the BimEL isoform, was increased in both HCC cells and HUVECs after sorafenib and CI-1040 treatment and the extent of increase was best correlated with the change in ERK phosphorylation. Because BimEL has been reported to be regulated directly by the ERK signaling pathway and is responsible for Bim-related apoptosis induction (12, 13), we hypothesized that the increase in BimEL expression may account for the drug synergy between sorafenib and CI-1040.

Effects of knockdown of Bim expression on apoptosis induced by sorafenib and CI-1040. To test our hypothesis, we tried to suppress Bim expression by siRNA. As shown in Fig. 5A, Bim mRNA was significantly increased after treatment with sorafenib plus CI-1040 but not with either drug alone. The Bim siRNAs successfully suppressed Bim mRNA expression in both HCC cells and HUVECs (Fig. 5A). si-Bim-a seemed to have better efficacy and was used in all the subsequent experiments.
These findings indicated that BimEL could partially abrogate apoptosis induced by sorafenib plus CI-1040 in HUVEC cells (Fig. 5B and Supplementary Fig. S2) and can par-}

Knockdown of BimEL can be achieved in both HCC and HUVEC cells (Fig. 5B and Supplementary Fig. S2) and can partially abrogate apoptosis induced by sorafenib plus CI-1040 (Fig. 5C). These findings indicated that BimEL could account, at least in part, for the drug synergy.

Because it was reported that inhibition of ERK enhances FOXO3a, which can transcriptionally activate Bim (15), we examined the change of FOXO3a expression after sorafenib and CI-1040 treatment by Western blotting. Both cytoplasmic and nuclear levels of FOXO3a were checked because previous studies indicated that the nuclear/cytoplasmic ratio of FOXO3a may be the most important determinant of FOXO3a activity in cancer cells (16). As shown in Supplementary Fig. S3, neither total nor phosphorylated FOXO3a changed significantly in the nuclei or cytoplasm of HCC cells after treatment with sorafenib or CI-1040. Therefore, other transcription factors may play a more important role in the regulation of Bim expression in HCC cells after treatment with sorafenib or CI-1040.

Effects of sorafenib and CI-1040 on in vivo tumor growth and tumor angiogenesis. The Huh-7 and Hep3B xenograft models were used to test the in vivo activity. Combination of sorafenib and CI-1040 inhibited tumor growth significantly better than either drug alone (Fig. 6A) but the change in animal body weight was similar in different treatment groups (Supplementary Fig. 4), suggesting no additive toxicity of these two agents. Combination of sorafenib and CI-1040 also yielded significantly more inhibition of ERK phosphorylation (Fig. 6B), increase in Bim expression (Fig. 6B), induction of apoptosis (TUNEL assay; Fig. 6C), and reduction of tumor MVD (Fig. 6D). The correlation between the in vivo and in vitro studies of these biomarkers supported synergistic antitumor effects between sorafenib and CI-1040.

Representative figures of immunohistochemical staining for phosphorylated ERK and CD31 and TUNEL assay were shown in Supplementary Fig. S5. The data indicate that the combination enhances both the direct antitumor and antiangiogenic effects. The enhancement of the antiangiogenic effects of sorafenib by CI-1040 was also supported by the sonographic finding of almost no detectable vascular signals in tumors from mice treated with sorafenib or sorafenib plus CI-1040 (Table 1).

To address the toxicity issues, mice (6–8 weeks old) without tumor implantation were treated with either vehicle (n = 4) or combination of sorafenib 5 mg/kg/d plus CI-1040 10 mg/kg/d (n = 4) for 60 days. In addition to measuring body weight during treatment, hemogram and blood chemistry values were examined at the end of drug treatment. Neither the body weight nor the blood test values differed significantly between the two groups (Supplementary Table S2; Supplementary Fig. S6). The results indicated that combination of sorafenib and CI-1040 at the dosage tested had no significant toxicity.

Discussion

In this study, synergistic activity of sorafenib with the MEK inhibitor CI-1040 was shown against HCC. The results support our hypothesis that the antitumor effects of sorafenib can be improved by a more complete and more sustained inhibition of cellular ERK signaling activity. We also found that Bim may play an important role in the synergistic induction of apoptosis by sorafenib plus CI-1040.

Identification and inhibition of key signal transduction pathways in cancer cells represent a major advancement in anticancer drug development. However, drug resistance with single-agent therapy remains the most difficult issue. Recently, combination of trastuzumab [anti-human epidermal growth factor receptor-2 (HER-2) antibody] with lapatinib (a HER-1 and HER-2 tyrosine kinase inhibitor) showed synergistic activity against the growth of HER-2 overexpressing breast cancer (17). Preclinical studies suggested that the trastuzumab-lapatinib synergy resulted mainly from their combined inhibition of
HER-2 signaling (18). The above findings support the hypothesis that vertical blockade at two different points along the same signaling pathway in cancer cells may enhance the antitumor effect.

Our data indicate that by adding a specific MEK inhibitor, the strategy of vertical blockade can also improve the therapeutic efficacy of sorafenib in HCC. Several MEK inhibitors have been developed in early-phase clinical trials. The results of these trials indicated that (a) these inhibitors are generally well tolerated, (b) plasma concentration of these inhibitors can readily exceed the in vitro IC_{50} of MEK inhibition, and (c) inhibition of ERK activation can be shown in either tumor specimens or peripheral blood mononuclear cells from patients who receive MEK inhibitor treatment (19). However, the antitumor effects of single-agent MEK inhibitor therapy are modest. In both preclinical models and clinical trials, MEK inhibitors often show cytostatic rather than cytotoxic effects (20–22). It has been shown that cancers with mutated B-Raf may be especially sensitive to MEK inhibitor therapy (23). Although B-Raf mutation is rare in HCC, our data suggest that MEK inhibitors may still have important roles in the treatment of HCC.

The proapoptotic factor Bim exerts its proapoptotic activity through binding with antiapoptotic bcl-2 proteins (24). Inhibition of Raf/MEK/ERK activity decreases Bim degradation and therefore increases its proapoptotic activity. In addition, Bim expression may also be regulated at the transcriptional level under different stress conditions, such as cytokine deprivation or endoplasmic reticulum stress (15, 25). Activation of Ras/Raf/MEK signaling by a constitutively active MEK can suppress both Bim mRNA and Bim protein expression (26). Our data indicate that sorafenib and CI-1040 can increase Bim expression through both transcriptional and posttranslational control. Further studies are warranted to clarify the key mediators that link Raf/MEK/ERK signaling to regulation of Bim expression.

Mcl-1 has been found to be an important regulator of apoptosis in HCC cells (27). Our data indicate that inhibition of Mcl-1 expression in both HCC cells and HUVECs cannot be enhanced by CI-1040. The mechanisms accounting for Mcl-1 inhibition by sorafenib may be cell type specific, and both ERK-dependent and ERK-independent mechanisms have been reported (28, 29). Sorafenib can also inhibit phosphorylation of eukaryotic initiation factor 4E, which may lead to decreased translation of antiapoptotic factors such as Mcl-1 and cFLIP, and inhibit the nuclear translocation of the apoptosis-inducing protein Bim.

Fig. 6. Effects of sorafenib and CI-1040 on in vivo tumor growth, ERK phosphorylation, and tumor angiogenesis. About 1 × 10^6 Huh-7 or Hep3B cells were injected s.c. into the right flank of male BALB/c athymic nude mice. Mice were treated as indicated (V, vehicle; S5, sorafenib 5 mg/kg/d; CI10, CI-1040 10 mg/kg/d; S5 + CI10, sorafenib 5 mg/kg/d + CI-1040 10 mg/kg/d) daily by gavage. A, tumor volume was recorded every 2 d. The results are representative data from three independent experiments. B, inhibition of ERK phosphorylation and increase in Bim expression measured by Western blotting of tumor lysates. C, quantification of apoptosis induction measured by TUNEL staining. D, quantification of tumor angiogenesis measured by immunohistochemical staining of MVD. Quantification of apoptosis and MVD was done by manual counting of TUNEL (+) cells and CD31 (+) microvessels, respectively, under high power field (200×). Three tumor samples in each group were analyzed, and the numbers were the average of counting 4 HPFs in each sample. **, P < 0.01, compared with the control (vehicle treated) group.
factor (30, 31). These phenomena were also independent of inhibition of Raf/MEK/ERK activity.

Inhibition of tumor angiogenesis is another important mechanism of sorafenib. HCC is typically a hypervascular tumor, and the use of antiangiogenic therapy in the treatment of HCC has been extensively studied. The antiangiogenic activity of sorafenib has been shown in various preclinical models, as well as in clinical trials (32). The response rate to sorafenib plus the anti-VEGF antibody bevacizumab, which may be considered a “vertical” blockade along the VEGFR signaling pathway, was impressive (52%) with a median time to progression of 11.2 months in patients with metastatic renal cell carcinoma (33). Sorafenib plus low-dose, “metronomic” chemotherapy has also shown promising antitumor activity in patients with metastatic HCC (34). The full potential of these combination strategies should be tested in larger scale clinical trials.

The usefulness of xenograft models in predicting efficacy of anticancer drugs is still under debate (35). The histology of the xenograft may not reflect the real features of human tumors. Moreover, the stroma, the blood supply, and the neovascularization of the artificial s.c. compartment are different from that in humans. However, several studies indicated that xenograft tumor models can help predict the clinical efficacy of chemotherapeutic agents if the pharmacology of the tested agents in humans. How, several studies indicated that xenograft tumor models can help predict the clinical efficacy of chemotherapeutic agents if the pharmacology of the tested agents in humans is known and the clinically relevant dosage can then tested (36–38). The doses of sorafenib and CI-1040 used in our in vivo studies were significantly lower than previously reported studies and should be more clinically achievable (2, 5, 39). Even at these lower doses, combination of sorafenib and CI-1040 can achieve a more complete inhibition of ERK phosphorylation, increase in Bim expression, and induction of apoptosis, similar to those seen in the in vitro studies. Therefore, results of our in vivo studies should have direct translational significance and further clinical trials of this combination in HCC are warranted.

In conclusion, our study shows that sorafenib and the MEK inhibitor CI-1040 have significant synergistic activity against HCC. The use of vertical blockade along the Raf/MEK/ERK pathway may further improve the therapeutic efficacy of sorafenib in HCC.

Table 1. Tumor perfusion detected by Doppler sonography in Huh-7 xenograft model of HCC after sorafenib or CI-1040 treatment

<table>
<thead>
<tr>
<th>Tumor vascularity</th>
<th>Vehicle (n = 3)</th>
<th>Sorafenib 5 mg/kg (n = 3)</th>
<th>CI-1040 10 mg/kg (n = 3)</th>
<th>Sorafenib 5 mg/kg + CI-1040 10 mg/kg (n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to ± (no signal or faint signals)</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1+ (1-2 vessels)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2+ (>2 vessels)</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: Numbers in each cell indicate the numbers of mice tested.

References

Disclosure of Potential Conflicts of Interest

A. Cheng is a consultant for and a member of the speaker’s bureau of Bayer and Pfizer; C. Hsu is a member of the speaker’s bureau of Bayer.

Acknowledgments

We thank Wei-Chung Lee and Sheng-Chieh Liao, National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, for technical support.

Induction of Bim Expression Contributes to the Antitumor Synergy Between Sorafenib and Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Kinase Inhibitor CI-1040 in Hepatocellular Carcinoma

Da-Liang Ou, Ying-Chun Shen, Ja-Der Liang, et al.

Updated version Accessed the most recent version of this article at: doi:10.1158/1078-0432.CCR-08-3294

Supplementary Material Accessed the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2009/09/09/15.18.5820.DC1

Cited articles This article cites 39 articles, 16 of which you can access for free at: http://clincancerres.aacrjournals.org/content/15/18/5820.full.html#ref-list-1

Citing articles This article has been cited by 4 HighWire-hosted articles. Access the articles at: /content/15/18/5820.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.