T-Cell Responses to Cyclin B1 Are Not Restricted to p53-Overexpressing Tumors

To the Editors: In their elegant study, Sorensen et al. showed the existence of a T-cell response to two cyclin B1–derived peptides in patients with advanced-stage breast cancer, confirming initial observations by Kao that cyclin B1 is an interesting target for immunotherapy (1, 2). However, the authors reported the absence of cyclin B1–specific T cells in 10 of 10 healthy donors and concluded that they are only present after tumor-driven immune activation in patients with p53/cyclin B1–overexpressing tumors. This is in contrast to our findings (3). We have characterized the cyclin B1 peptides 44(ALGDIGNKV), 204(ILDVLWVLQV), and 218(ILQETMYMVT) as immunogenic HLA-A*0201–binding amino acid sequences. Antigen-specific T cells were detected in five of six T-cell cultures in all of three healthy donors without the need for a heteroclitic modification.

How can this discrepancy be explained? The authors used a single stimulation with peptide-pulsed peripheral blood mononuclear cells. In our experience, repetitive use of purified, professional antigen-presenting cells is more efficient in expanding antigen-specific T cells. We therefore used an efficient expansion system based on CD40-activated B cells to identify cyclin B1 epitopes (3). Furthermore, the culture with high amounts of peptide (10 μmol) in combination with nonprofessional antigen-presenting cells potentially promotes the expansion of low-avidity T cells, which would be peptide specific but not tumor reactive (4, 5). Taken together, the different results can be explained by the methodology alone.

Nevertheless, it could be linked to the different epitope classes: peptides abundantly presented by MHC and thus efficiently elutable versus peptides identified by reverse immunology translating to differential thymic expression and deletion. However, for other cyclin family members, the absence of T cells in healthy donors had previously been suggested but seems to depend on the T-cell expansion system used (6), a major challenge in tumor antigen discovery (7).

Our findings suggest that cyclin B1–specific T cells are readily expandable in healthy individuals even if potentially at a lower frequency. For a tumor antigen, this is important. Why? First, cyclin B1 is overexpressed in several hematologic malignancies and thus could be targeted using ex vivo or in vivo expanded donor T cells in the context of allogeneic stem cell transplantation. Second, p53 mutation and thus cyclin B1 expression are events that occur early in tumorigenesis and are essential to tumor survival. Cyclin B1 is overexpressed in several major tumors. Thus, it has the hallmarks of an antigen for preventive cancer vaccination. If proven safe in advanced cancer patients, induction of a prophylactic cyclin B1–directed T-cell response would be an intriguing strategy at least in high-risk cancer families.

Michael S. von Bergwelt-Baidlon
Alexander Shimabukuro-Vornhagen
Laboratory for Tumor and Transplantation Immunology and Stem Cell Transplantation Program
Department I of Internal Medicine
University Hospital of Cologne
Cologne, Germany

Nela Klein-Gonzalez
Laboratory for Tumor and Transplantation Immunology
Department I of Internal Medicine
University Hospital of Cologne
Cologne, Germany

Eisei Kondo
Department of Hematology and Oncology
Okayama University Hospital
Okayama, Japan

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References

1 M.S. von Bergwelt-Baidlon, unpublished results.
Clinical Cancer Research

T-Cell Responses to Cyclin B1 Are Not Restricted to p53-Overexpressing Tumors


Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-09-1640

Cited articles
This article cites 7 articles, 4 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/15/22/7106.1.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.