Smoking-Related Gene Expression in Laser Capture–Microdissected Human Lung

Xiang-Lin Tan, Tao Wang, Shengli Xiong, Shalini V. Kumar, Weiguo Han, and Simon D. Spivack

Abstract

Purpose: Interindividual differences in quantitative expression could underlie a propensity for lung cancer. To determine precise individual gene expression signatures on a lung compartment–specific basis, we investigated the expression of carcinogen metabolism genes encoding cytochromes P450 (CYP) 1B1, 2A13, GSTP1, and a tumor suppressor gene p16 in laser capture–microdissected samples of human alveolar compartment (AC) and bronchial epithelial compartment (BEC) lung tissue from 62 smokers and nonsmokers.

Experimental Design: Tobacco exposure was determined by plasma nicotine, cotinine, and smoking history. Precise mRNA expression was determined using our RNA-specific qRT-PCR strategy, and correlated with detailed demographic and clinical characteristics.

Results: Several correlations of mRNA expression included (a) CYP1B1 in AC (positively with plasma nicotine level, \(P = 0.008 \); plasma cotinine level, \(P = 0.001 \)), (b) GSTP1 in AC (positively with plasma cotinine level, \(P = 0.003 \)), and (c) GSTP1 in BEC (negatively with smoke dose, \(P = 0.043 \); occupational risk, \(P = 0.019 \)). CYP2A13 was rarely expressed in AC and not expressed in BEC. p16 expression was not correlated with any measured factor. For each gene, subjects showed expression that was individually concordant between these compartments. No clear association of mRNA expression with lung cancer risk was observed in this pilot analysis.

Conclusions: The association between lung mRNA expression and tobacco exposure implies that gene–tobacco interaction is a measurable quantitative trait, albeit with wide interindividual variation. Gene expression tends to be concordant for alveolar and bronchial compartments for these genes in an individual, controlling for proximate tobacco exposure.

The gene expression analysis of clinical tissue specimens has provided patterns of gene-environmental interplay associated with cancer, and suggests a broad range of potential candidate diagnostic and prognostic biomarkers of human cancer. Several reports have used gene expression profiling to discriminate primary lung cancers from noncancerous lung (1–5). Given that cigarette smoke creates a field of injury throughout the airway, several groups have applied gene expression profiles to identify smoking-associated markers in cytologically normal human airway epithelial cells brushed at bronchoscopy from smokers and nonsmokers (5–9). A recent study performed gene expression microarrays on 135 fresh frozen tissue samples of adenocarcinoma and paired noninvolved lung tissue from current, former, and never smokers (10). In these surgical resection studies, however, the inherent heterogeneity of primary tissues with an admixture of various cells might be a significant confounder affecting the outcome and interpretation of molecular studies (11).

Laser capture microdissection (LCM) entails microscopically visualizing the cells of interest from a stained tissue section, which can obtain pure populations of cells from a section of complex, heterogeneous tissue (11), thus overcoming some of the challenges of tissue complexity. The human bronchial epithelial compartment (BEC) lines the bronchial and bronchiolar Airways of the lung, and plays a key role in regulating the entry and metabolism of inhaled foreign compounds, or xenobiotics. The BEC represents a primary defense against inhaled pollutants, including polycyclic aromatic hydrocarbon procarcinogens and...
other organic chemicals (12). On the other hand, the cellular origins of peripheral lung adenocarcinomas are thought to be type II alveolar cells in the alveolar compartment (AC) or bronchial alveolar junction (13–15). To obtain more anatomically precise information of gene expression profiles of lung carcinogenesis, it would be useful to precisely assess the differential expression between human AC and BEC lung compartments, using the LCM technique.

Several groups have tried to compare the differential gene expression patterns in AC and BEC, using LCM and microarray analysis strategies (16–19). Although microarray data offers a global assessment of genetic alterations, dynamic range and accuracy is compressed when analyzing genes individually, compared with quantitative PCR. Moreover, there have been considerable differences in identified genes between the reports, and the roles of specific genes have still to be elucidated. In this study, we applied an LCM technique combined with a quantitative RNA-specific reverse transcription-PCR (RT-PCR) strategy (20, 21) to determine precise individual expression phenotypes for a candidate set of known carcinogenesis-relevant genes in the primary BEC and AC from 62 subject donors. The selection of candidate target genes was based on their known importance for metabolism of tobacco carcinogens and/or susceptibility to lung cancer, and their known or hypothesized levels in human lung.

Cytochrome P450 (CYP) 1B1 is polycyclic aromatic hydrocarbons inducible, and the most abundantly expressed phase I oxidizing carcinogen metabolism gene in human lung (22). It serves as an indicator both for exposure to procarcinogens, and its cdS variants have been hypothesized to confer susceptibility to cancer (23). CYP2A13, a functional member of the human CYP2A gene subfamily, has been reported to be selectively expressed in the respiratory tract (24), and its protein has been detected in adult human lung (25, 26). CYP2A13-catalyzed α-hydroxylation is an important step in the activation of the tobacco-specific carcinogens 4-(methyleneimino)-1-(3-pyridyl)-1-butanone and (S)-N’-nitrosornicotine (26, 27).

Since our previous studies showed that CYP1A1, one of the most highly studied genes in the literature, is minimally expressed in human lung (21, 22), it was not investigated in this study. The glutathione S-transferase (GST) P1 is the major metabolic phase II enzyme in nonmalignant human lung, as evaluated by mRNA and protein expression (21, 28) and by activity (29). Knockout of GSTP1 in mice has been reported to lead to a significant increase in both carcinogen-induced and spontaneous tumorigenesis (30–32). p16 is a cell cycle regulatory pathway gene, commonly called a tumor suppressor gene, and has been observed as silenced or abnormal in ∼70% of non–small cell lung cancer (33). Therefore, the expression signature of these four candidate target genes (CYP1B1, CYP2A13, GSTP1, and p16) was explored and analyzed in a multivariate model for probing gene-environment interactions associated with lung carcinoma.

Translational Relevance

Little is known about compartment-specific interindividual differences in quantitative expression in the lung, and this is true for carcinogen and oxidant metabolism pathways that may underlie the development of lung phenotypes, such as cancer. A precisely executed study, entailing both plasma biomarkers of proximate tobacco exposure, laser-microdissected alveolar and bronchial compartments, and RNA-specific real-time qRT-PCR, showed the following: (a) Interindividual variation is very wide even within exposure strata; (b) Quantitative expression signatures tend to be characteristic of an individual, and manifest in both alveolar and bronchial compartments; and (c) Gene x Tobacco interaction is a measurable, individually unique quantitative trait in the lung. This study provides further translational insight into lung compartment-specific patterns of expression of tobacco carcinogen and oxidant metabolism genes in lung carcinogenesis.

Materials and Methods

Patient recruitment and sample collection. This study was comprised of 62 consenting individuals undergoing lung resectional surgery for clinically suspected carcinoma. As previously described (21, 28), recruits were part of the pulmonary medicine or thoracic surgery practices at Albany Medical Center and were otherwise destined for bronchoscopy or lung resectional surgery for clinical indications, under a protocol approved by Albany Medical Center and New York State Department of Health institutional review boards. After informed consent was obtained, the subjects were interviewed by a trained research nurse. The information on mainstream tobacco exposure history (type, amount, duration, and quitting date); environmental tobacco smoke exposure history; preexisting lung diagnoses (chronic obstructive pulmonary disease and interstitial lung disease); dietary history; occupational exposure history to asbestos, silica, or other known carcinogens; family history of cancer; and medication history were obtained prediagnosis/preoperatively by direct interview.

Additionally, 15 mL blood sample for each subject were collected, stored briefly at room temperature, and the plasma fraction was frozen and banked at -180°C for plasma nicotine and cotinine analysis. Lung tissue samples were snap frozen in liquid nitrogen within 15 min of surgical resection, and stored in −180°C tissue bank until analyzed. The assigned clinical surgical pathologist confirmed the diagnosis of lung cancer, per clinical routine, and classified the samples as adenocarcinoma, squamous cell carcinoma, mixed non–small cell carcinoma, or benign process of lung, according to the 1999 WHO histologic classification of lung and pleural tumors.

LCM of lung tissue. Immediately before snap freezing in liquid nitrogen, the freshly resected malignant or nonmalignant lung tissues were embedded in Tissue-Tek optimal cutting temperature medium (Sakura Finetek USA, Inc.) in the “frozen section” room, immediately adjacent to the operating room. The frozen malignant or nonmalignant lung tissue was subjected to frozen microtome sectioning at −25°C, using a refrigerated cryostat, and the sections mounted on uncoated, cooled glass slides. The sections were immediately stained with hematoxylin, and were dehydrated by a series of 70% ethanol (30 s), 95% ethanol (30 s), 100% ethanol (30 s), and xylene (5 min) treatments. The optimal cutting temperature material was removed after sectioning during the rapid alcohol fixation and dehydration process, before immediately placing the section on the stage for microdissection. Once air dried, desired cells were microdissected onto CapSure transfer films (Arcturus Engineering) using PixCell IIe LCM system (Arcturus Engineering) for each sample. Distinguishing these two lung tissue compartments (AC versus BEC) could be done with confidence in these snap-frozen samples, given the quality of real-time images guiding microdissection.
We performed sampling of four areas of a frozen tissue section, using 200 pulses per area (each 30 μm pulse yielding approximately 2-4 cells), so that each cap (of a 500-μL tube containing a RNA extraction buffer, as described below) contained 1,600 to 3,200 cells for qualitative mRNA-PCR. The Arcturus Capsure cap was placed, immediately after tissue microdissection, in a 500-μL microfuge tube preloaded with 100 μL of RLT/β-ME buffer (Qiagen), inverted to submerge the tissue, and stored in -80°C until use.

RNA extraction and quantitative real-time RT-PCR. Total RNA was extracted from the microdissected samples using a RNAeasy Mini kit (Qiagen) as described previously (28). Reverse transcription (RT) was performed on a scale of 20 μL using SuperScript II Reverse Transcriptase (Life Technologies, Inc., Invitrogen) with our universal tagged RT primer (20, 21). Briefly, RNA (~100 ng), 1 μL universal RT primer (100 μmol/L), and 2 μL deoxynucleotide triphosphates (10 mmol/L) were combined in a PCR reaction tube, and RNeasy/DNase-free water was added to make up the final volume to 13 μL. The RNA was denatured at 65°C for 5 min and then at 4°C for 5 min. Four microliters of 5 × SuperScript II First-Strand buffer (Invitrogen) and 2 μL DTT (0.1 mol/L) were added. After 6 μL of the master mix/RT reaction was aliquoted, incubation at 42°C for 2 min was followed by the addition of 1 μL SuperScript II RT polymerase to each tube, and each tube was individually mixed gently by pipetting up and down, followed by incubation at 42°C for 60 min and then at 70°C for 15 min. All RT steps were done in a block thermal cycler (ABI 9700, Applied Biosystem).

Quantification of cDNA for CYP1B1, CYP2A13, GSTP1, and p16 by real-time PCR was done in the ABI Prism 7500HT sequence detection system (Applied Biosystems), using the previously published RNA-specific qRT-PCR strategy (20, 21). cDNA-specific amplification (versus genomic DNA amplification) was inherent to the strategy, and verified using RT-omission controls (20). A primer pair for each gene was designed by using online Primer 3.0 software based on the published sequences as following: CYP1B1, 5′-GCC ACT ACT ACT GAC ACT T-3′ (sense) and 5′-GCT GCC TCT TCG TTA TTA T-3′ (antisense); CYP2A13, 5′-ACC TCG TGA TGA CCA CCC-3′ (sense) and 5′-CGT GGA TCA CTG GGA CCG-3′ (antisense); GSTP1, 5′-TCT CCT CGT ACT AGT ACA AC-3′ (antisense); CYP2A13, 5′-TCT CCT CGT ACT ACA AGC-3′ (sense) and 5′-AAC AGG AGG ACG AGC ACA GAC-3′ (antisense); p16, 5′-GGA AGG TTC TCC AGA CAT CGC-3′ (sense) and 5′-AGG CTG CGA GGC TCGCAA G-3′ (antisense); and GAPDH, 5′-AGG CCC AGC AAC AAC ACA A-3′ (sense) and 5′-AAC GAG ACG AAC ACA G-3′ (antisense). Real-time PCR was done using a 96-well optical plate (Applied Biosystem), and with GoTaq Flexi DNA polymerase kit (Promega). In each well, the following were combined: 5 μL of the 5 × Colorless GoTaq Flexi buffer, 1.5 μL of 25 mmol/L MgCl₂, 14 μL of RNase/DNase-free H₂O, 1.6 μL of deoxynucleotide triphosphates (2.5 mmol/L each deoxynucleotide triphosphate), 1.25 μL SYBR Green dye (1:10,000; Applied Biosystem), 0.4 μL GoTaq Flexi DNA Polymerase, 0.25 μL of 50 μmol/L each primer pair, and 1 μL template cDNA from the RT reaction. PCR conditions included a denaturing cycle at 95°C for 30 s, 5 cycles of 95°C for 30 s, 66°C for 30 s, and 72°C for 30 s, followed by 50 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for 30 s. Melting analysis for one cycle was as follows: 95°C for 15 s, 60°C for 60 s, and then slow up-ramp for a continuous acquisition to 95°C. After the reaction, PCR products underwent electrophoresis on a 1.5% agarose-ethidium bromide gel, and visualized under UV light.

For each target gene and the internal and external target reference gene, PCR was done in triplicate for each subject's alveolar and bronchial sample, in duplicate for both positive controls (transcript-specific vector cDNA and a mixed cDNA pool, below), and an H₂O blank as negative control in parallel. For scaling expression to any RNA degradation, the expression level of each gene was normalized to RNA content for each sample by using validated GAPDH transcript sequence as an internal “housekeeping” control transcript, in parallel uniplex reactions. For positive controls, transcript-specific positive parallel controls for run-to-run variability included quantitated cDNA from vectors containing the appropriate target sequence insert. Another transcript-specific positive control was cDNA derived from total RNA of a set of standard cell lines, chosen according to the characteristic expression patterns. For CYP1B1 and GAPDH, total RNA from dioxin-stimulated MCF-7 breast cancer cell line was used for a positive external control. For CYP2A13 and GSTP1, a positive external control was from human lung tissue derived total RNA (Clontech Laboratories, Inc.), whereas for p16, total RNA from NHBE cell lines was used. All positive control cDNAs were synthesized from 2.5 μg total RNA.

Plasma nicotine and cotinine analysis by gas chromatography/mass spectrometry. Plasma nicotine and cotinine levels were measured using an isotope dilution–high performance liquid chromatography/electrospray ionization tandem mass spectrometric method at the Wadsworth Center for Labs and Research, New York State Department of Health, as described previously (28, 34). The limits of detection for nicotine and cotinine were 0.25 and 0.05 μg/L plasma, respectively. Therefore, we considered the plasma nicotine level of <0.25 μg/L and cotinine level of <0.05 μg/L as 0 μg/L when we performed data analysis using the plasma nicotine/cotinine levels as continuous variables.

Data analysis. All successive replicate experimental RT-PCR on any given sample displayed appropriate negative and positive controls for that trial; otherwise the trial was not included in the data analysis. For quantitative analysis, the ratio of expression of target gene t in sample s relative to positive control samples c is given by

\[R_{tsc} = \frac{2^{Ct_{ts}} - C0_{ts}}{2^{Ct_{sc}} - C0_{sc}} \]

where r labels the reference gene used for normalization (35, 36). All mRNA expression data of CYP1B1, GSTP1, and p16 levels in BEC and AC were log₁₀ transformed for statistical analysis. Because only 6 of 62 AC samples expressed CYP2A13, it was excluded from further quantitative data analysis.

In the initial univariate analyses, endogenous variables (age, gender, histology, and family history of lung cancer) and exposure variables (plasma nicotine, cotinine, smoking status, smoking dose, consumption of fruit and vegetable, and occupation risk) were assessed individually as nine independent variables for their correlation with the individual mRNA expression of CYP1B1, GSTP1, and p16 in bronchial epithelial and alveolar cells, using Spearman’s correlation coefficient. When univariate comparison of independent variable to the outcome variable (gene expression) displayed P ≤ 0.05, the independent variable was taken to further explore the correlation of the gene expression between the bronchial epithelial and alveolar cells in the multivariate models.

Paired BEC and AC were compared using the Wilcoxon signed-rank test to determine the differential expression in paired samples. The Mann-Whitney test (for two categories) and Kruskal-Wallis test (for more than two categories) were used for testing the differences in median gene expression across the categories investigated. Odds ratios (OR) and their 95% confidence intervals (CI) were calculated using the associations of our gene expression data, as well as other risk factors, with risk for lung carcinoma were estimated using multivariable logistical regression models, using the PHREG procedure of the statistical software package SAS 9.1 (SAS Institute, Inc.). For these evaluations, considering the Bonferroni correction for multiple testing, the standard significance level of 5% was adjusted to α = 0.05/n, where n is the number of variables in the model for each gene.

Results

The clinical and demographic characteristics of study participants are listed in Table 1. As described in Table 1, precise
smoking status and exposure levels were verified by assay of plasma nicotine and cotinine. Plasma nicotine and cotinine were undetectable in never smokers, whereas the highest level of plasma nicotine and cotinine was observed in current smokers (40.8 ± 12.3 and 137.4 ± 15.7 μg/L, respectively).

There were no significant differences between smoking status with reference to age at diagnosis, fruit and vegetable consumption, occupation risk, preexisting lung disease, family history of lung cancer, or histologic parameters.

Typical microdissections for AC and BEC are depicted in Fig. 1. Univariate correlations between the clinical and demographic characteristics and the mRNA expression of CYP1B1, GSTP1, and p16 in AC and BEC are presented in Table 2. CYP1B1 gene expression in AC was positively correlated with the plasma nicotine and cotinine levels (r = 0.336, P = 0.008; and r = 0.413, P = 0.001, respectively). Additionally, GSTP1 gene expression in AC was positively correlated with the plasma cotinine level (r = 0.366, P = 0.003), was marginally positively correlated with the plasma nicotine level (r = 0.241, P = 0.054), and was marginally negatively with the family history of lung cancer (r = -0.248, P = 0.052). GSTP1 expression in BEC had a moderate inverse correlation with smoke dose (pack-years; r = -0.334, P = 0.043) and occupational exposure to lung carcinogens (r = -0.385, P = 0.019). p16 gene expression in BEC and AC was not correlated with any clinical or demographic characteristic investigated.

Table 1. Clinical and demographic characteristics of study participants

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Never smokers (n = 10)</th>
<th>Former smokers (n = 36)</th>
<th>Current smokers (n = 16)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis (y), mean ± SE</td>
<td>53.3 ± 4.6</td>
<td>63.3 ± 1.8</td>
<td>55.3 ± 3.2</td>
<td>0.075*</td>
</tr>
<tr>
<td>Gender, males/females</td>
<td>6/4</td>
<td>19/17</td>
<td>5/11</td>
<td>0.241†</td>
</tr>
<tr>
<td>Smoking dose (pack-years), mean ± SE</td>
<td>0</td>
<td>53.8 ± 6.4</td>
<td>43.7 ± 9.3</td>
<td><0.001*</td>
</tr>
<tr>
<td>Plasma nicotine (μg/L), mean ± SE</td>
<td>0</td>
<td>1.2 ± 0.8</td>
<td>40.9 ± 12.3</td>
<td><0.001*</td>
</tr>
<tr>
<td>Plasma cotinine (μg/L), mean ± SE</td>
<td>0</td>
<td>8.8 ± 2.1</td>
<td>137.4 ± 15.7</td>
<td><0.001*</td>
</tr>
<tr>
<td>Family history of lung cancer, yes/no</td>
<td>1/9</td>
<td>10/26</td>
<td>2/13</td>
<td>0.456†</td>
</tr>
<tr>
<td>Fruits and vegetable consumption (estimated servings/d), mean ± SE</td>
<td>2.9 ± 0.6</td>
<td>2.3 ± 0.2</td>
<td>2.7 ± 0.6</td>
<td>0.682*</td>
</tr>
<tr>
<td>Occupation risk, yes/no</td>
<td>3/7</td>
<td>7/29</td>
<td>1/14</td>
<td>0.368†</td>
</tr>
<tr>
<td>Preexisting lung disease, yes/no</td>
<td>1/9</td>
<td>11/25</td>
<td>3/12</td>
<td>0.385†</td>
</tr>
<tr>
<td>Histologic diagnosis, AdC/SqC/mixed/benign of lung</td>
<td>2/1/0/7</td>
<td>7/10/12/7</td>
<td>4/2/5/5</td>
<td>0.062†</td>
</tr>
</tbody>
</table>

Abbreviations: SE, standard error; AdC, adenocarcinoma; SqC, squamous cell carcinoma.
*Kruskal Wallis test.
†Fisher’s exact test.

Fig. 1. LCM from H&E-stained sections of alveolar (A1-A6) and bronchial epithelial (B1-B6) cells from human lung tissue. Histologic sections before capture (A1, A4 and B1, B4), captured cells on transfer film (A2, A5 and B2, B5), and histologic sections after capture (A3, A6 and B3, B6).
Differences in median gene expression across categorized plasma nicotine and cotinine levels are depicted in Fig. 2, using the cut-points of 0.25 and 0.05 μg/L, the respective assay limits of detection. Overall, CYP1B1 and GSTP1 gene expression in AC was significantly higher in the subjects with plasma cotinine level of ≥0.05 μg/L, compared with the subjects with plasma cotinine level of ≤0.05 μg/L (P = 0.002 and 0.004, respectively; Fig. 2C and G). Similarly, subjects with the plasma nicotine level of ≥0.25 μg/L had a higher CYP1B1 gene expression in AC, compared with the subjects with plasma nicotine level of ≤0.25 μg/L (P = 0.014; Fig. 2A). However, the expression difference based on plasma nicotine biomarker was not significant for GSTP1 gene expression in AC (P = 0.071; Fig. 2E), albeit it was positive for the longer half-life cotinine (P = 0.004). Furthermore, the categorization of tobacco exposure is further resolved (Fig. 2B, D, F, and H), and the dose-dependent response with plasma nicotine level was only found for CYP1B1 gene expression in AC (Fig. 2B). No differential expression in BEC across the categories of plasma nicotine and cotinine level was found for CYP1B1 and GSTP1 gene expression, nor for p16 gene expression in either AC or BEC (data not shown).

Based on the above univariate analysis, we assessed the intraindividual correlations between AC and BEC compartments in mRNA expression of CYP1B1, GSTP1, and p16, adjusting by plasma nicotine and cotinine levels, pack-years, occupational risk, and family history of lung cancer (Table 3). We observed a strong positive correlation between AC and BEC for CYP1B1 gene expression (r = 0.679, P < 0.001). A positive correlation between the gene expression in AC and BEC for GSTP1 and p16 was also present (r = 0.364, P = 0.04 and r = 0.380, P = 0.03, respectively). No correlation between different genes in either AC or BEC compartments was found.

Additionally, the differential expression in microdissected AC and BEC was estimated using the Wilcoxon signed-rank test in 38 paired samples. There was no significant difference between AC and BEC for mean expression of each of the expressed genes (of the three expressed genes CYP1B1, GSTP1, and p16; Fig. 3A). Individual gene expression patterns suggested a concordance between both compartments (i.e., AC and BEC) with exceptions (Fig. 3B).

Table 4 depicts the lack of obvious association of incident lung carcinoma with the gene expression signature of CYP1B1, GSTP1, and p16 in AC and BEC in a pilot case-control analysis. Age-adjusted association of GSTP1 gene expression in microdissected AC with incident lung carcinoma showed borderline significance, and this association was stronger when adjusted by age at diagnosis and smoke dose, or adjusted by age at diagnosis, smoke dose, and family history of lung cancer. However, there was marginal association between the GSTP1 gene expression signature in AC, and the risk of lung carcinoma after adjusting for multiple testing. No other gene expression signatures showed significant association with incident lung carcinoma.

Discussion

In this study, we have shown that the quantitative mRNA expression signature of CYP1B1 and GSTP1 in AC, but not BEC, is strongly associated with biomarkers of tobacco exposure. Additionally, we have shown an intraindividual correlation between AC and BEC compartments for the mRNA expression signature for each studied gene, suggesting regulatory signatures may be individual donor specific. Notably, there was no significant difference between AC and BEC in the mean expression of these four studied genes, suggesting that at a group level, carcinogen metabolism in one compartment may be somewhat mirrored in the other. We did not observe clear association of a quantitative gene expression signature of this gene set with the risk of lung cancer, accounting for other confounding factors.

For CYP1B1, the smoking-related induction of this bioactivating enzyme is consistent with previous reported findings (37, 38). Tobacco-induced expression of CYP1B1 in human lung has been suggested to vary widely interindividually (21, 39); we observed ranges of 1,000-fold to >10,000-fold differences, even when stratified by smoke exposure biomarkers nicotine and cotinine, where the respective half-lives of 2 to 24 hours (40–43) are compatible with transcription kinetics. The responsible regulatory factors for such variability are not yet elucidated, nor are the downstream (adduct and mutation) consequences as yet.
This level of precision in human exposure–gene expression correlation has not, to our knowledge, been reported before. We saw suggestions of CYP1B1 tobacco responsiveness only in the AC, a somewhat surprising phenomena, given the bronchogenic nature of many malignancies, but cannot exclude responsiveness in the bronchial epithelium given the limits of resolution and possibility of admixture of other cells when microdissecting bronchial walls of frozen sections. Additionally,

Table 3. Spearman’s correlation coefficients adjusted by plasma nicotine and cotinine levels, pack-years, occupational risk, and family history of lung cancer, for the association between AC and BEC in mRNA expression of CYP1B1, GSTP1, and p16

<table>
<thead>
<tr>
<th>Gene expression in AC</th>
<th>Gene expression in BEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CYP1B1</td>
</tr>
<tr>
<td>CYP1B1</td>
<td>0.257</td>
</tr>
<tr>
<td>GSTP1</td>
<td>0.252</td>
</tr>
<tr>
<td>P16</td>
<td>—</td>
</tr>
</tbody>
</table>

*P < 0.001.
†P < 0.05.
given that there were fewer samples available with bronchial epithelium (38 total, with 10 controls and 28 cases), there were clear statistical power limitations.

Previous studies showed that CYP2A13 gene is expressed in liver and a number of extrahepatic tissues, including nasal mucosa, lung, trachea, brain, mammary gland, prostate, testis, and uterus (24). We only found expression of CYP2A13 transcript in 6 of 62 AC samples; although acknowledging the hypothetical possibility of sensitivity limits of our anchored RNA-specific RT-PCR assay, our findings exclude high levels of CYP2A13 expression in either AC or BEC compartments.

GSTs appeared to be modestly tobacco responsive in the AC, uniquely. Gene expression of GSTP1 in alveoli, alveolar macrophages, and respiratory bronchioles is more abundant than that of GSTM and other GSTs (21, 44). It is therefore possible that GSTP1 may play an important role in local detoxification of xenobiotics in the lung, but is mostly noninducible to tobacco exposure, which we have observed in multiple in vitro studies (28, 45, 46). If true, this is biologically problematic, as this phase I versus phase II imbalance potentially favors mutagenesis, rather than mutagen quenching. A recent animal GSTP1 knockout study indicates that GSTP1 plays a key role in vivo in determining susceptibility to lung cancer following exposure to chemical carcinogens (32).

p16 has been reported to be silenced early in lung carcinogenesis (47, 48). It is an inhibitor of CDK4 and CDK6 and negatively regulates cyclin D–dependent phosphorylation of Rb gene product, thereby inhibiting cell cycle progression from G1 to S-phase by sequestration of E2F. We reasoned that low expressers might be at higher risk of lung cancer. However, no significant p16 expression differences were found with any of the lung cancer risk factors, nor with case-control status. This finding still remains compatible with epigenetic silencing of the gene as one step in carcinogenesis, which was not tested in this study.

Fig. 3. The relative mRNA expression levels of CYP1B1, GSTP1, and p16 in AC and BEC from paired tissues from 38 subjects. Paired AC and BEC were compared using the Wilcoxon signed-rank test to determine the differential expression in the paired samples. No overall significant differences were found for the relative mRNA expression of CYP1B1, GSTP1, and p16 between microdissected AC and BEC ($P > 0.05$; top). However, individual expression patterns (bottom) showed ordinal concordance between alveolar and bronchial compartments, for most individuals, particularly for CYP1B1 and GSTP1, with readily apparent exceptions.
transcripts do so at variable rates that are difficult to measure, studies (16–19) have often been lacking information on potentially redundant, so a small candidate gene set such as ours, although precise, may lose etiologic signatures. Indeed, tobacco smoke is a complex mixture of compounds, each of which is likely to have multiple targets. Second, tobacco use clusters with other human behaviors, which, if not accounted for, leads to confounding and biased estimates of association. Thus, the gene expression profile associated with smoking may also be associated with a pattern of other unmeasured behaviors (e.g., higher alcohol intake, lower exercise) that by themselves may influence gene expression. Third, we cannot exclude the possibility that the null relationships found in this pilot case-control analysis are not accounted for, leads to confounding and biased or misclassified estimates of association. First, we attempted to overcome these latter pitfalls with detailed covariate information (e.g., age, sex, occupation exposure risk, previous lung disease and family history of lung cancer, diet) and biochemical validation of the tobacco smoke exposure.

As clinical specimens deteriorate, they and the attendant transcripts do so at variable rates that are difficult to measure, such that mRNA measurements must include valid internal reference transcript controls, allowing one to scale the target transcript amount to that of the internal reference, each assumed to degenerate at similar rates. Furthermore, because many of the internal standard mRNA "housekeeper" transcripts (β-actin, glyceraldehyde-3-phosphate dehydrogenase, 36B4, others) are highly homologous to (pseudogene) sequences in contaminating genomic DNA in the tissue RNA extract, their measurement can be overestimated inadvertently in many clinical extracts. For these reasons, we went to considerable lengths to use a reference RNA-specific qRT-PCR strategy (20, 21), and used both validated internal (glyceraldehyde-3-phosphate dehydrogenase) and external reference (pooled quantitated total RNA, and quantitated insert–containing cDNA insert–containing vector) controls, to bolster our ability to precisely quantitate expression.

In sum, this exposure-coupled gene expression profiling study provides further insight into lung compartment–specific patterns of expression of genes known to be involved in tobacco carcinogen and oxidant metabolism in lung carcinogenesis. The data suggest that widely varying expression signatures exist, there is tobacco-responsiveness on a gene- and compartment-specific basis, and concordance of expression between the two main lung epithelial compartments is common. The regulatory determinants of the wide interindividual differences in expression of this and other gene sets warrant further study.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank the Wadsworth Center analytic chemistry core at the New York State Department of Health (Albany, NY) for nicotine and cotinine assays, the surgeons Riivo Ilves (Albany Medical College Hospital, Albany, NY) and Darroch Moores (St. Peter’s Hospital, Albany, NY) for their cooperation, the respective pathology departments at the two Albany hospitals, and the invaluable aide of Albany research nurses Angela Sheehan, Ann Venezia, and Kathy Mokhiber.

Table 4. Adjusted ORs and their 95% CIs for the association of lung cancer case-control status with mRNA expression levels of *CYP1B1*, *GSTP1*, and *p16* in AC and BEC

<table>
<thead>
<tr>
<th>Gene expression in AC</th>
<th>Gene expression in BEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR (95% CI)</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>CYP1B1</td>
<td>CYP1B1</td>
</tr>
<tr>
<td>Crude</td>
<td>0.92 (0.63-1.33)</td>
</tr>
<tr>
<td>Age adjusted</td>
<td>0.95 (0.61-1.50)</td>
</tr>
<tr>
<td>Age + smoking dose</td>
<td>0.83 (0.46-1.48)</td>
</tr>
<tr>
<td>Age + smoking dose + FH</td>
<td>0.84 (0.46-1.52)</td>
</tr>
<tr>
<td>GSTP1</td>
<td>GSTP1</td>
</tr>
<tr>
<td>Crude</td>
<td>1.50 (0.83-2.70)</td>
</tr>
<tr>
<td>Age adjusted</td>
<td>2.06 (0.96-4.41)</td>
</tr>
<tr>
<td>Age + smoking dose</td>
<td>3.05 (0.99-9.35)</td>
</tr>
<tr>
<td>Age + smoking dose + FH</td>
<td>4.19 (1.24-14.12)</td>
</tr>
<tr>
<td>p16</td>
<td>p16</td>
</tr>
<tr>
<td>Crude</td>
<td>0.98 (0.62-1.54)</td>
</tr>
<tr>
<td>Age adjusted</td>
<td>0.92 (0.50-1.69)</td>
</tr>
<tr>
<td>Age + smoking dose</td>
<td>1.18 (0.58-2.43)</td>
</tr>
<tr>
<td>Age + smoking dose + FH</td>
<td>1.36 (0.61-3.00)</td>
</tr>
</tbody>
</table>

Abbreviation: FH, family history of lung cancer.

Clinical Cancer Research

Smoking-Related Gene Expression in Laser Capture–Microdissected Human Lung

Xiang-Lin Tan, Tao Wang, Shengli Xiong, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-09-1694

Cited articles
This article cites 48 articles, 17 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/15/24/7562.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/15/24/7562.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.