Sperm DNA Integrity in Men Treated for Childhood Cancer

Patrik Romerius1,4,6, Olof Ståhl3,4,6, Christian Moëll1, Thomas Relander4, Eva Cavallin-Ståhl5, Kerstin Löfvander Thapper6, Katarina Jepson3, Marcello Spanò7, Thomas Wiebe1, Yvonne Lundberg Giwercman6, and Aleksander Giwercman4,6

Abstract

Purpose: It is not known whether childhood cancer and its treatment are associated with sperm DNA damage, which subsequently affects fertility and might be transmitted to the offspring. The aim of this study is to assess DNA fragmentation index (DFI) as an indicator of sperm DNA integrity in childhood cancer survivors (CCS), with treatment regimen taken into account.

Experimental Design: In 99 CCS and 193 age-matched healthy controls, DFI was assessed by using sperm chromatin structure assay.

Results: In the whole group of CCS, DFI was increased compared with the controls, with borderline statistical significance [mean difference, 1.8%; 95% confidence interval (95% CI), −0.0088%–3.7%]. Those treated with radiotherapy only (mean difference, 6.0%; 95% CI, 1.6–10%) or surgery only (mean difference, 2.9%; 95% CI, 0.083–5.8%) had statistically significantly higher DFI than the controls. The odds ratio (OR) for having DFI >20%, which is associated with reduced fertility, was significantly increased in CCS compared with the control group (OR, 2.2; 95% CI, 1.1–4.4). For the radiotherapy-only group, the OR was even higher (OR, 4.9; 95% CI, 1.3–18). DFI was not associated with dose of scattered testicular irradiation or type of chemotherapy given.

Conclusions: DFI was increased in CCS, with those treated with chemotherapy being the only exception. This sperm DNA impairment may be associated with the disease per se rather than due to the treatment, and may have negative consequences in terms of fertility and risk of transmission to the offspring.

Clin Cancer Res; 16(15); 3843–50. ©2010 AACR.

The survival rate of patients treated for childhood cancers has improved over the last decades due to the use of potent chemotherapy, improved surgical and radiation techniques, as well as diagnostic improvements. Close to 80% of patients survive childhood cancer (1, 2). Future treatment regimens must aim for survival of the highest possible number of patients, combined with the least impairment of their quality of life, including well-preserved reproductive function (3).

Irradiation and chemotherapy can have a persistent deleterious effect on reproductive function in both humans (4, 5) and animal models (6). The negative effects include impaired spermatogenesis, resulting in azoospermia or oligozoospermia (7–9). Increased number of both autosomal and sex chromosome aberrations in sperm samples after irradiation and chemotherapy have been reported in humans; however, data suggest that these changes are transient (10–14). Less is known about more subtle sperm DNA damage such as strand breaks. To our knowledge, the largest study focusing on sperm DNA integrity in CCS was based on 23 subjects only (9). In this study, using terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, no increase in the proportion of sperms with DNA damage was seen compared with healthy controls. However, due to the limited number of subjects included, no definitive conclusions could be drawn.

Sperm DNA impairment may have implications on the fertility of (15), and/or may be transmitted to, the offspring. The probability of achieving pregnancy in vivo is decreased when the DNA fragmentation index (DFI), as assessed by using sperm chromatin structure assay (SCSA), is >20% and is close to zero if DFI is >30% (16–18). Use of assisted reproduction, such as intracytoplasmic sperm injection, which seems to be the most efficient fertilization method if DFI is high (16), can bypass the natural selection mechanisms and potentially increase the risk of transmitting cancer or therapy-related sperm DNA damage to the offspring. The mutagenic effects of both radiotherapy and chemotherapy are well known from animal studies.
(19–22). Previous human studies indicated no increased risk of adverse pregnancy outcomes for the partners of male childhood cancer survivors (CCS; refs. 23–25). However, in two recent studies on children of men treated for cancer, an increase in malformation rate was seen (26, 27).

Apart from the negative impact of the treatment on sperm DNA, the disease per se might be associated with genomic instability (28–32) and, therefore, with sperm DNA defects—a hypothesis supported by reports connecting congenital anomalies to childhood malignancies.

In view of the above-mentioned findings on a possible link between childhood cancer and its treatment and sperm DNA defects, the aim of our study was to elucidate whether the disease per se and/or its different modalities had an impact on sperm DFI in a group of men treated for childhood cancer.

Subjects and Methods

Subjects

This study was based on a cohort of consecutive CCS in the region of southern Sweden reported to the Swedish Tumor Registry in the period 1970 to 2002. The inclusion criteria were as follows: (a) male gender, (b) diagnosed before 18 years of age, (c) still alive in September 2004, (d) no active oncological treatment for the last 4 years, and (e) between 18 and 45 years of age at the start of the study in 2004.

Written invitation was sent to 407 CCS. Among them, 140 declined to take part in the study; 16 did not reply, despite being sent a reminder; and 161 gave their consent. Ten men were excluded, one as he previously had undergone vasectomy and nine because their disease was considered nonmalignant (e.g., carcinoid in the appendix or spinal hemangioma). Thus, a total of 151 men (38% of eligible subjects) were included.

Median age (range) at diagnosis was 10 years (0.1–17 years) and 30 years (20–46 years) at the time of examination. Background characteristics for the participants were collected from their medical records. The distribution of diagnoses for the 151 participants is presented in Fig. 1, along with corresponding numbers for the whole of Sweden (2003-NORDCAN; http://www-dep.iarc.fr/nordcan.htm).

To determine whether the cohort of participants was representative for the whole group of CCS, data on fertility of the participants and nonparticipants were extracted from the Swedish Multi-Generation Register. This register has information on the number of children for each index person. For those alive after 1990, the register is virtually

Translational Relevance

Childhood cancer per se and/or its treatment can influence reproductive ability by being associated with impairment of sperm production as well as sperm DNA damage. The finding of increased proportion of sperm with DNA strand breaks in childhood cancer survivors not treated with chemotherapy or radiotherapy points to genomic instability as being possibly associated with malignancy in early life. The risk of DNA damage seems to increase in those treated by irradiation but not chemotherapy. This is a matter of concern because sperm DNA breaks may have a negative impact on fertility and through use of powerful assisted reproduction tools can be transmitted to the offspring, possibly resulting in malformations or diseases later in life.
complete with respect to parents as well as offspring. Non-biological relations are flagged in the register. The distribution of men having 0, 1, 2, or 2+ children was 71%, 12%, 15%, and 3.1% among the participants and 73%, 9.5%, 13%, and 5.1% among the nonparticipants, respectively.

Through a questionnaire, we collected information regarding smoking habits and alcohol consumption. The study was approved by the Ethics Committee of Lund University, and all subjects provided written informed consent.

Cancer therapy groups
The subjects were allocated to four groups according to the type of treatment received: (a) surgery only, (b) radiotherapy only, (c) chemotherapy only, and (d) radiotherapy and chemotherapy combined (Fig. 2).

Controls
The control group comprised 193 Norwegian men from the general population, recruited for a study of seasonal variation in semen quality, which was not found among these men living north and south of the Arctic Circle (33). These men were not selected due to proven fertility or infertility, therefore representing semen quality in men in general. This group was similar in age and ethnicity compared with the study population. Median age (range) for the controls was 28 years (19–40 years).

Sample collection
The men were asked to deliver a semen sample by masturbation after an abstinence period of 2 to 3 days. The sample was analyzed within 1 hour after ejaculation, and semen quality was assessed as recommended by WHO (34).

Sixteen CCS were unable to provide an ejaculate. Of the remaining samples, 31 samples showed azoospermia, 3 samples contained too few sperms, and 2 samples had insufficient amount of semen for analysis. An aliquot of 200 μL was frozen and kept at −80°C for subsequent analysis of sperm DNA integrity by SCSA for the 99 samples from the CCS and all the controls.

Sperm chromatin structure assay
The details of this method have previously been described (35). Briefly, the SCSA is based on the phenomenon that DNA with strand breaks has a tendency to be denatured when exposed to an acid detergent, whereas normal DNA remains stable. The SCSA measures the in situ ability of sperm DNA to be denatured using a metachromatic dye, acridine orange, which differentially stains double- and single-stranded nucleic acids. Upon blue-light excitation, acridine orange intercalated into the intact (double-stranded) DNA emits green fluorescence, whereas acridine orange bound to denatured (single-stranded) DNA emits red fluorescence. The extent of DNA-denaturing ability is expressed as the DFI, which is the ratio of red to total (red plus green) fluorescence intensity. DFI hereby expresses the proportion of cells containing denatured DNA (17).

Five thousand cells were analyzed by FACSort (Becton Dickinson).

DFI was calculated using the List View software (Phoenix Flow Systems). An intralaboratory coefficient of variation of 4.5% was found after repeated measurements of the same reference sample.

Gonadal radiation dose
The dose outside the radiotherapy target area, called peripheral dose, was calculated. The peripheral dose was used to estimate the scattered dose to the testes. The program Peridose, which distinguishes between orthogonal and tangential beams and accounts for the use of wedges and shielding blocks, was used (36). The separate contribution of leakage radiation and collimator scatter to the total peripheral dose was also calculated (37).

The model was verified using diode measurements of the dose outside the primary beam and compared with a simple model in a solid water phantom. The correspondence between the calculation and the measurement was within ±10%.

The treatment techniques for the CCS in our study have mainly been rectangular, perpendicularly incident beams with none or small shielding blocks. An exception is the large, irregular mantle field.

Data used for the calculations for each patient were collected from their medical charts, regarding photon energy, beam sizes, beam arrangement, dose to d_{max}, and target dose. For the estimation of the peripheral dose to the gonads, the distance between the lower level of the beam edge and the gonads was estimated for each treatment beam. This information was collected from the localization and verification films of each patient.

The scattered dose to the testes was only calculated for those patients who received irradiation only ($n=12$)
be associated with impairment of fertility both in assisted reproduction (16) and in natural conception (38).

Subsequently, we divided the CCS who had received chemotherapy only into three groups according to the known gonadotoxic effect of the drugs (39): (a) treatment with any kind of alkylating agent/cisplatin, regardless of additional therapy; (b) no treatment with alkylating agents, but with *Vinca* alkaloids, regardless of additional therapy; and (c) cytotoxic drugs other than alkylating agents or *Vinca* alkaloids. The OR for having DFI >20% was also calculated for these subgroups.

Finally, Spearman’s *r* was used to correlate DFI to the calculated gonadal radiation dose for the CCS who received irradiation only.

Statistical analysis was done using SPSS 17.0 software (SPSS).

Results

CCS versus controls

The samples from the CCS showed significantly lower sperm concentrations than the controls (mean difference, 14×10^6/mL; 95% CI, 0.61 $\times 10^6$–27 $\times 10^6$/mL, *P* = 0.04; Table 2). The DFI for the CCS was higher than in the control group; this difference was close to being statistically significant (mean difference, 1.8%; 95% CI, −0.0088% to 3.7%, *P* = 0.051; Table 3). The risk of having DFI >20% was significantly increased in CCS compared with the control group (OR, 2.2; 95% CI, 1.1–4.4, *P* = 0.032).

Impact of different treatment modalities

Surgery only. The group of CCS that was treated with surgery only had no significant difference in sperm concentration compared with the control group. However, this group had significantly higher DFI than the controls (mean difference, 2.9%; 95% CI, 0.083–5.8%, *P* = 0.04; Table 3). The OR for having DFI >20% was 2.7 (95% CI, 1.1–6.4, *P* = 0.03).

Radiotherapy only. CCS who had received radiotherapy only did not differ significantly from the controls in terms of sperm concentration. The DFI for these men was significantly higher than for the controls (mean difference, 6.0%; 95% CI, 1.6–10%, *P* = 0.008; Table 3). The difference was also significant when analyzed by the nonparametric test, which is not sensitive to inclusion of outliers. The OR for having DFI >20% was 4.9 (95% CI, 1.3–18, *P* = 0.017). There was no statistically significant difference in DFI between the radiotherapy-only and the surgery-only groups. Furthermore, there was no statistically significant correlation between the calculated testicular radiation dose and DFI (*p* = 0.55; *P* = 0.064). The patient characteristics for this group regarding the diagnoses, radiation doses and fields, as well as sperm parameters are given in Table 4.

Chemotherapy only. Compared with controls, CCS who had received chemotherapy only had significantly lower sperm concentrations (mean difference, 31×10^6/mL; 95% CI, 12×10^6–50 $\times 10^6$/mL, *P* = 0.002; Table 2). No significant difference in DFI was seen between this group

Table 1. Background characteristics for the nonazoospermic CCS and controls

<table>
<thead>
<tr>
<th></th>
<th>CCS</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 99)</td>
<td>(n = 193)</td>
</tr>
<tr>
<td>Age at diagnosis (y)</td>
<td>9.4 (5.7)</td>
<td>NA</td>
</tr>
<tr>
<td>Age at examination (y)</td>
<td>30 (6.9)</td>
<td>29 (5.2)</td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smokers (%)</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>Weekly alcohol consumption, g/wk (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–99</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>100–199</td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>≥200</td>
<td>6.1</td>
<td>21</td>
</tr>
</tbody>
</table>

Abbreviation: NA, not applicable.
and the controls (mean difference, 0.97%; 95% CI, −1.8% to 3.7%; \(P = 0.48 \)).

None of the three groups, defined according to the gonadotoxicity of the chemotherapy given, showed significantly increased risk for having DFI >20%, compared with the controls, regardless if they had received chemotherapy only or if additional radiotherapy had been given.

Radiotherapy and chemotherapy combined. Sperm concentration was significantly decreased (mean difference, 23 × 10⁶/mL; 95% CI, 4.4 × 10⁶−41 × 10⁶/mL, \(P = 0.015 \); Table 2), whereas there was no significant difference in DFI between the group that had received chemotherapy in combination with radiotherapy and the control group (mean difference, 0.79%; 95% CI, −1.8% to 3.4%; \(P = 0.55 \)). Furthermore, the OR for having DFI >20% was not significantly increased in this group.

Discussion

In this study on sperm DNA integrity in 99 CCS, we found increased DFI in all patient categories, except in those treated with cytotoxic drugs. Looking at the two groups with impairment of sperm DNA integrity, we found that the increase in DFI was somewhat more pronounced in CCS who received irradiation only compared with those who were treated with surgery only; however, this difference did not reach the level of statistical significance. The same was true for the association between the scattered irradiation dose and the DFI, which was only borderline significant, possibly due to the limited number of subjects included. These results show that childhood cancer per se is associated with increased level of sperm DNA damage. Furthermore, our results might indicate that the level of DFI might be additionally increased by irradiation and reduced by cytotoxic treatment.

In the only previous study on sperm DNA integrity in CCS, no increased sperm DNA damage was observed (9). The discrepancy between the two studies might be explained by differences in the methods to detect sperm DNA damage. Another reason could be the significantly higher power of the present investigation, which comprises four times as many subjects as the first study.

The increased DFI in the group that received neither radiotherapy nor chemotherapy might imply that childhood cancer patients have some kind of genomic instability. Defects in the DNA repair mechanisms have been shown to be associated with the risk of childhood cancer (40), and these mechanisms could also be responsible for the increased proportion of sperm DNA breaks in CCS. Results from some epidemiologic studies also seem to support this hypothesis. For example, in a recent register study, an increased risk of congenital malformations was found in the offspring of cancer survivors, even in those treated with surgery only (27). Another study pointing in this

| Table 2. Sperm concentration for controls and for CCS in relation to treatment modalities |
|---|---|---|---|---|---|
| **n** | **Median sperm concentration \(\times 10^6/\text{mL (range)} \)** | **Mean sperm concentration \(\times 10^6/\text{mL (SD)} \)** | **Mean difference\(^*\), \(\times 10^6/\text{mL} \)** | **95% CI\(^*\), \(\times 10^6/\text{mL} \)** | **P \(^*\)** |
| Controls | 193 | 59 (2.0–270) | 67 (48) | Reference group |
| CCS (all) | 99 | 34 (0.5–296) | 58 (65) | −14 | −27 to −0.61 | 0.04 |
| CT−, RT− | 30 | 36 (4.0–296) | 76 (81) | −0.057 | −21 to 21 | 1.0 |
| CT−, RT+ | 12 | 64 (7.0–283) | 91 (86) | 9.8 | −21 to 40 | 0.53 |
| CT+, RT− | 26 | 27 (3.0–183) | 35 (36) | −31 | −50 to −12 | 0.002 |
| CT+, RT+ | 31 | 34 (0.5–223) | 46 (50) | −23 | −41 to −4.4 | 0.015 |

*Adjusted for age, smoking, and alcohol consumption.

| Abbreviations: CT, chemotherapy; RT, radiotherapy. |

| Table 3. DFI for controls and for CCS in relation to treatment modalities |
|---|---|---|---|---|---|
| **n** | **Median DFI, % (range)** | **Mean DFI\(^*\), % (SD)** | **Mean difference\(^*\), %** | **95% CI\(^*\), %** | **P \(^*\)** |
| Controls | 193 | 9.2 (2.0–49) | 11 (7.5) | Reference group |
| CCS (all) | 99 | 10 (3.0–50) | 13 (7.5) | 1.8 | −0.0088 to 3.7 | 0.051 |
| CT−, RT− | 30 | 13 (3.0–45) | 14 (7.4) | 2.9 | 0.083 to 5.8 | 0.044 |
| CT−, RT+ | 12 | 15 (5.0–50) | 17 (7.5) | 6.0 | 1.6 to 10 | 0.008 |
| CT+, RT− | 26 | 10 (3.0–27) | 12 (6.6) | 0.97 | −1.8 to 3.7 | 0.48 |
| CT+, RT+ | 31 | 10 (3.0–34) | 12 (6.9) | 0.79 | −1.8 to 3.4 | 0.55 |

*Adjusted for age, smoking, and alcohol consumption.
In contrast to the finding of increased DFI in CCS treated with irradiation or surgery only, patients treated with chemotherapy only or with radiotherapy and chemotherapy did not differ from controls in terms of sperm DNA integrity. The observation of sperm DFI-lowering effect of chemotherapy is in line with previous observations of lower DFI and improved chromatin packaging in men given cytotoxic drugs for testicular germ cell cancer (42, 43). The biological mechanism behind this association is not known. However, one could speculate whether cytotoxic compounds might increase apoptosis and, thereby, elimination of germ cells with increased levels of DNA strand breaks. Apart from the biological aspects of our findings, discussed above, the results of this study also have some clinical implications. Although the study includes almost 100 CCS, the heterogeneity of diagnoses and the treatments given, along with the considerable variation in age at diagnosis, does not allow a more refined analysis on the impact of specific treatment modalities and/or age at puberty, on sperm DNA integrity. Even when dividing the material into the main therapeutic groups—surgery, irradiation, and chemotherapy—the cohorts were still relatively small, implying the risk of type II error for some of the comparisons done in this study. This might also be the reason why we did not find a statistically significantly higher DFI in those men treated with irradiation only compared with CCS who received neither chemotherapy nor radiotherapy.

Another weak point of our current study was that only 38% of the eligible patients accepted to take part. Nevertheless, from a fertility point of view, the participants were representative of the whole group of CCS survivors, and the distribution of diagnoses among the participants was similar to the cancer incidence in Sweden. Therefore, we do not believe that our results are due to selection bias.

In conclusion, we found that the proportion of DNA

Table 4. Details of diagnosis, radiation treatment, and sperm parameters for the 12 CCS treated with radiotherapy but not chemotherapy

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Age at diagnosis (y)</th>
<th>Age at examination (y)</th>
<th>PTV-1 Radiation dose to PTV-1 (Gy)</th>
<th>PTV-2 Radiation dose to PTV-2 (Gy)</th>
<th>Sperm concentration (x10⁶/mL)</th>
<th>Sperm DFI (%)</th>
<th>Dose to testicles (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teratoma</td>
<td>15</td>
<td>38</td>
<td>Pineal gland</td>
<td>48 Craniospinal</td>
<td>32</td>
<td>50</td>
<td>0.1</td>
</tr>
<tr>
<td>Ependymoma</td>
<td>9.2</td>
<td>35</td>
<td>Spine (L5-St)</td>
<td>55 Craniospinal</td>
<td>30</td>
<td>19</td>
<td>28</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>0.13</td>
<td>31</td>
<td>Right side of neck</td>
<td>20 —</td>
<td>—</td>
<td>7.2</td>
<td>27</td>
</tr>
<tr>
<td>Pinealocytoma</td>
<td>14</td>
<td>38</td>
<td>Pineal gland</td>
<td>50 Craniospinal</td>
<td>35</td>
<td>63</td>
<td>26</td>
</tr>
<tr>
<td>Glioma</td>
<td>2.7</td>
<td>34</td>
<td>Brain stem</td>
<td>40 —</td>
<td>—</td>
<td>86</td>
<td>17 0.02</td>
</tr>
<tr>
<td>(relapse)</td>
<td>16</td>
<td>—</td>
<td>—</td>
<td>30 —</td>
<td>—</td>
<td>—</td>
<td>0.015</td>
</tr>
<tr>
<td>Germinoma</td>
<td>15</td>
<td>33</td>
<td>Pineal gland</td>
<td>55 Craniospinal</td>
<td>35</td>
<td>9.9</td>
<td>16 0.2</td>
</tr>
<tr>
<td>Germinoma</td>
<td>18</td>
<td>30</td>
<td>Pineal gland</td>
<td>45 Craniospinal</td>
<td>30</td>
<td>190</td>
<td>15 0.2</td>
</tr>
<tr>
<td>Hodgkin's lymphoma</td>
<td>6.8</td>
<td>40</td>
<td>Left side of neck</td>
<td>40 Upper mantle</td>
<td>40</td>
<td>65</td>
<td>10</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>2.1</td>
<td>36</td>
<td>Brain stem</td>
<td>35 —</td>
<td>—</td>
<td>63</td>
<td>8.1 0.03</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>13</td>
<td>46</td>
<td>Left frontal lobe</td>
<td>45 —</td>
<td>—</td>
<td>200</td>
<td>8.0</td>
</tr>
<tr>
<td>Malignant melanoma</td>
<td>17</td>
<td>21</td>
<td>Left eye</td>
<td>100 —</td>
<td>—</td>
<td>78</td>
<td>7.0</td>
</tr>
<tr>
<td>(locally)</td>
<td>16</td>
<td>21</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>280</td>
<td>5.0 0.0</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>13</td>
<td>31</td>
<td>Right temporal lobe</td>
<td>58 Cerebrum</td>
<td>40</td>
<td>280</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Abbreviations: PTV, planning target volume (44); PTV-1, (boost volume) contains the demonstrated tumor and its local estimated subclinical extension; PTV-2, PTV-1 and estimated subclinical extensions at a distance.
strand breaks in spermatozoa from men treated for childhood cancer was significantly increased in men who had not received chemotherapy. From the clinical point of view, the study shows that impairment of DNA integrity may contribute to infertility problems in CCS. Furthermore, our data might indicate that childhood cancer is associated with genomic instability, and the consequences of possible transmission of sperm DNA damage to the offspring need to be considered.

Disclosure of Potential Conflicts of Interest

None of the authors have any financial or personal relationships with people or organizations that could inappropriately influence the work.

References

Acknowledgments

We thank Monica Nilsson for assisting in the recruitment of patients as well as the whole laboratory staff at the Reproductive Medicine Centre, Malmö University Hospital, for performing the semen analyses.

Grant Support

Swedish Childhood Cancer Society (grants 05/056 and RKT04/001), Swedish Cancer Society (grant 4857-805-03XCC), The Gunnar Nilsson Cancer Foundation, Malmö University Hospital Foundation for Cancer Research, and Swedish Government Funding for Clinical Research.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 01/18/2010; accepted 05/03/2010; published OnlineFirst 06/02/2010.
Sperm DNA Integrity in Men Treated for Childhood Cancer

Patrik Romerius, Olof Ståhl, Christian Moëll, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-10-0140

Cited articles
This article cites 39 articles, 10 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/16/15/3843.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/16/15/3843.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.