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tumor suppressor phosphatase and tensin homolog (PTEN) is a nonredundant phosphatase, coun-
ng one of themost critical cancer-promoting pathways: the phosphatidylinositol 3-kinase (PI3K)/Akt
ing pathway. In addition to the canonical function of dephosphorylation of phosphatidylinositol-
trisphosphate (PIP3), recent studies showed the intriguing roles of PTEN in regulating genomic
ility, DNA repair, stem cell self-renewal, cellular senescence, and cell migration and/or metastasis.
ally, PTEN mutations and deficiencies are prevalent in many types of human cancers. Severe PTEN
ncy is also associated with advanced tumor stage and therapeutic resistance, such as the resistance to
zumab, an anti-HER2 therapy. Currently, targeting the deregulated PI3K/PTEN-Akt signaling axis has
ed as one of the major tenets in anticancer drug development. In this review, we highlight our current
ledge of PTEN function and the recent discoveries in dissecting the PTEN signaling pathway. The de-
know

regulations of PTEN in cancers, clinical lessons, and new prospects of rationally designed PI3K/Akt-targeted
therapy for effective cancer treatment are also discussed. Clin Cancer Res; 16(17); 4325–30. ©2010 AACR.
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tumor suppressor phosphatase and tensin homolog
), also known as mutated in multiple advanced can-
(MMAC1), was discovered independently by two
s in 1997 (1, 2). The PTEN gene is located at chro-
me 10q23.31. Loss of heterozygosity at 10q23 occurs
ntly in many advanced-stage sporadic tumors; for
le, approximately 70% in glioblastomas and 60%
anced prostate cancers (2). Somatic mutations of
have been identified as a prevalent event in many
of tumors, particularly those of the endometrium,
skin, and prostate (3). Moreover, Cowden disease
ts harboring germline PTEN gene mutations have
ensity to develop breast, thyroid, and skin tumors
s its name suggests, the PTEN protein sequence is
homologous to protein phosphatases and a chick-

oskeletal protein tensin. Human PTEN protein con-
403 amino acids (Fig. 1A). The crystal structure of
revealed two major functional domains (a phos-
se domain and a C2 domain) and three structural
s [a short N-terminal phosphatidylinositol-4,5-
PIP2) binding domain, C-terminal tail con-
quences, followed with a PDZ interaction
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; ref. 5]. The tumor suppressor function of PTEN is
ted by two naturally occurring mutations on its
hatase domain: a C124S mutation that abrogates
lipid and protein phosphatase actively and a G129E
ion that abrogates only lipid phosphatase, but main-
protein phosphatase activity (4). Although the
inal phosphatase domain is principally responsible
EN’s physiological activity, approximately 40% of
tumorigenic mutations occur on the C-terminal C2
in and the tail sequence, suggesting an important role
C terminal in maintaining PTEN function (6). A
er of studies have shown that the C-terminal se-
e is critical formaintaining PTENprotein stability (7).
ly studies indicated that PTEN is a dual-specificity
in phosphatase with activity toward highly acidic
ates. PTEN dephosphorylates phosphorylated serine,
nine, and tyrosine residues in peptide substrates
o (8), protein substrate such as FAK (9), and the
yotic translation initiation factor 2 (10). Addition-
TEN also auto-dephosphorylates itself by its protein
hatase activity (11). Soon after PTEN was discov-
it was shown that PTEN possesses a potent phospha-
ctivity for the lipid-signaling second messenger
hatidylinositol-3,4,5-trisphosphate (PIP3), a lipid
ct of phosphatidylinositol-3-kinase (PI3K; ref. 12).
hydrolyzes the 3′-phosphate on PIP3 to generate
thereby directly antagonizing the PI3K function via
ation of PIP3-mediated activation of downstream
ing events, including PDK1 and Akt/mammalian tar-
rapamycin (mTOR). The lipid phosphatase activity
EN is the best-characterized physiological function
buting to the tumor suppressor function of PTEN.
other redundant and/or compensatory family mem-

ave been found, PTEN is the only known lipid
hatase counteracting the PI3K pathway. It is not
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sing that loss of PTEN has a substantial impact on
le aspects of cancer development.

ides through genetic mutations, the PTEN expression
anbe regulated throughmultiplemechanisms includ-
nscriptional and/or post-transcriptional regulations,
in-protein interactions and/or post-translational
ications, and alterations of subcellular localization

tration of cell-cycle regulator CHK1. 8, PTEN physically associates with
1B). Because of its important physiological func-
PTEN is constitutively expressed in normal tissues.

ing th
pathw

ancer Res; 16(17) September 1, 2010
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ber of factors have been shown to transcriptionally
te PTEN mRNA, including transforming growth
β (13), early growth regulated transcription factor
R1; ref. 14), insulin-like growth factor 2 (IGF-2;
5), peroxisome proliferation-activated receptor γ
γ; ref. 16), and p53 (17). More intriguingly, complex
talk exists between PTEN and other pathways, includ-

meres in the nucleus and maintains chromosome stability.
PTEN pathway and regulation. A, PTNE protein structure. PTEN protein contains: an N-terminal PIP2-binding motif, a phosphatase domain, a C2
, a C-terminal tail containing PEST sequences, and a PDZ interaction motif at the end (5). Two naturally occurring mutations on the phosphatase
disrupt PTEN's phosphatase activity: C124S mutation, which abrogates both lipid and protein phosphatase actively, and G129E mutation,
brogates only lipid phosphatase but not protein phosphatase activity. B, PTEN is regulated at different levels. 1, PTEN mRNA transcription is
d by EGR1, IGF2, PPARγ, p53, etc., and inhibited by MEK-mediated NF-κB activation. 2, PTEN mRNA is also post-transcriptionally regulated by
argeting miRs, including miR21, miR221/222, and miR25. PTEN protein is extensively regulated by post-translational modifications. 3, Protein
is primarily regulated by phosphorylation of C-terminal tail domains (Thr366, Ser370, Ser380, Thr382, Thr383, and Ser385). The phosphorylation
a “closed” state of PTEN and maintains PTEN stability. Dephosphorylation of the C-terminal tail opens the PTEN phosphatase domain, thereby

ing PTEN activity. 4, NEDD4-1 is an E3 ligase of PTEN, which mediates PTEN poly- and mono-ubiquitination. Polyubiquitin leads to proteasomal
ation of PTEN. Mono-ubiquitination of PTEN promotes its nuclear translocation. 5, Ubiquitin-specific protease HAUSP deubiquitinates PTEN in the
, and leads to PTEN nuclear exclusion. PTEN biological function includes membrane function and nuclear function. 6, On the cell membrane,
e RAS-mitogen-activated protein kinase (MAPK)
ay. The MAP/ERK kinase (MEK)-c-jun-NH-kinase
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pathway suppresses PTEN transcription via activa-
f nuclear factor κB (NF-κB), which directly binds
d suppresses the PTEN promoter (18); whereas
opposes JNK signaling independent of Akt inhibi-
(19). PTEN mRNA is also post-transcriptionally
ted by PTEN-targeting microRNAs (miR). For
ple, miR-21 regulates PTEN gene expression in
n hepatocellular cancer (20), and miR-221 and -
arget PTEN, contributing to tumor necrosis factor-
d apoptosis-inducing ligand (TRAIL) resistance (21).
tly, intronic miR-106b-25 cluster, has been shown to
therPTEN-targetingmiR locus in prostate cancer (22).
mentioned previously, numerous reports have
that PTEN interaction with other proteins and post-

ational modification of PTEN at C-terminal domains
e major mechanisms regulating PTEN protein stabil-
hich has been extensively reviewed elsewhere (see
3). In its inactive state, PTEN is phosphorylated
cluster of serine and threonine residues located on
terminal tail, including Thr366, Ser370, Ser380,
2, Thr383, and Ser385 residues. The phosphoryla-
ads to a “closed” state of PTEN and maintains PTEN
ty. As PTEN is being activated, dephosphorylation of
erminal tail opens its phosphatase domain, thereby
sing PTEN activity. Meanwhile, the open state of
is more susceptible to ubiquitin-mediated proteaso-
egradation (24). NEDD4-1 is a recently identified E3
of PTEN, which mediates PTEN mono- and polyu-
ination (25). A number of PTEN-interacting proteins
been shown to regulate PTEN level and activities.
hatidylinositol 3,4,5-trisphosphate RAC exchanger
-REX2a) is a PTEN-interacting protein identified re-
. Through direct binding to PTEN, P-REX2a inhibits
lipid phosphatase activity and activates the PI3K
ay (26). Tyrosine kinase Rak, a putative tumor sup-
r, physically interacts with PTEN and phosphorylates
on Tyr336, thereby protecting PTEN from interaction
3 ligase NEDD4-1 and subsequent degradation (27).
functionality of PTEN is also regulated by subcellular
ation. PTEN interacts with a number of membrane-
red proteins, for example, MAGI, PAR-3, NHERF, via
terminal PDZ domain, and dephosphorylation of
is facilitated through PTEN membrane recruitment
PTEN mono-ubiquitination controls PTEN nuclear
(25). The promyelocytic leukemia protein-herpes
associated ubiquitin-specific protease (HAUSP, also
n as USP7) network controls PTEN deubiquitination
TEN nuclear exclusion (28).
nonredundant PIP3 lipid phosphatase activity
PTEN one of the most important tumor suppres-
pon PTEN loss, excessive accumulation of PIP3 at
asma membrane recruits and activates Akt family
ers, potently driving cell proliferation, apoptosis re-
ce, angiogenesis, and metabolism machinery
gh phosphorylation and activation of Akt’s down-
signaling proteins, namely mTOR, GSK3, FOXO,
p27, etc. (29). PTEN mutations and hetero- or ho-
gous deletions are common phenomena in many

acrjournals.org

Research. 
on July 27, 20clincancerres.aacrjournals.org Downloaded from 
of human cancers, and have been reviewed exten-
(see refs. 3, 30, 31).
ddition to the readily apparent role of PTEN in reg-
g PI3K/Akt-driven tumor progression, PTEN also
other critical roles in multiple aspects of cancer
pment as follows (Fig. 1B):
Genomic instability: The recent study on the nuclear
function of PTEN revealed an intriguing function
of PTEN in maintaining genomic stability. PTEN
was found to be physically associated with centro-
meres. Disruption of PTEN leads to extensive centro-
mere breakage and chromosomal translocations
(32). Loss of PTEN triggers Akt-mediated cytoplas-
mic sequestration of cell-cycle regulator CHK1 via
phosphorylation and ubiquitination. Consequently,
disrupted G2-M cell cycle promotes genomic insta-
bility and accumulation of DNA double-strand
breaks (DSB) in tumor cells (33, 34). Consistently,
PTEN-null cells exhibit spontaneous DNA DSBs,
and nuclear exclusion of PTEN has been associated
with cancer progression (28). Clinically, PTEN loss
is a common event in breast cancers bearing DSB re-
pair gene BRCA1 deficiency (35).
Stem cell self-renewal: PTEN has essential roles in lin-
eage fate determination of hematopoietic stem cells
(HSC). In leukemia, PTEN loss promotes self-renewable
leukemia stem cells formation and leukemogenesis,
which lead to HSC depletion via a cell-autonomous
mechanism (36, 37). mTOR has been shown to be
the key mediator of this process, which implies a clin-
ical application of mTOR inhibitor rapamycin in
treatment of leukemia-initiating cells (38). Moreover,
PTEN negatively regulates neural stem cell self-renewal
by modulating G0-G1 cell-cycle entry (39). p53 and
PTEN cooperate in the regulation of normal and can-
cer stem and/or progenitor cell differentiation, self-
renewal, and tumorigenic potential (40).
Cellular senescence: A surprising finding from a gene
knockout study showed that acute and complete in-
activation of PTEN triggers growth arrest through the
p53-dependent cellular senescence pathway in vitro
and in vivo (41). p53-dependent cellular senescence
provides a favorable selection for cells that maintain
PTEN levels. Further studies showed that interactions
between PTEN and p53 are context-dependent.
PTEN can regulate p53 protein levels and activity
through phosphatase-dependent and -independent
mechanisms. PTEN loss leads to inactivation of
p53 in embryonic stem cells and brain tissues (42).
However, others reported that PTEN loss activates
p53 in prostate tumor and colorectal cancer cell
lines (41, 43).
Cell migration and metastasis: PTEN negatively regu-
lates intracellular levels of PIP3 in cells, which is crit-
ical for chemo-attractant gradient sensing (44).
PTEN accumulates at a contralateral subcellular side

of the migration leading edge and is required for
proper chemotaxis (45). Although PTEN controls
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cell migration, the exact role of PTEN in tumor inva-
sion and metastasis is still elusive.
Tumor microenvironment: A significant role of PTEN in
regulating the tumor microenvironment has been re-
cently reported. Genetic knockout of PTEN in fibro-
blasts of mouse mammary gland tumors creates a
tumor-permissive stroma, which accelerates the initi-
ation, progression, and malignant transformation of
mammary epithelial tumors (46).

al-Translational Advances

ting PI3K/Akt to Overcome PTEN
ional Loss
receptor tyrosine kinase (RTK)/PI3K/Akt pathway is
e most potent driving forces promoting tumor pro-
n. The major consequences of PTEN mutations and
encies are PI3K/Akt pathway hyperactivation. Be-
of the substantial role the hyperactivated PI3K path-
lays in cancer development, targeting PI3K signaling
of the most concentrated areas of anticancer drug
pment. More than 100 lead compounds targeting
ple nodes of PI3K signaling, including PI3K, Akt,
, etc., are in the preclinical drug-development pipe-
great number of promising agents have entered in-

e phase I, II, and III clinical investigations. At the
of writing this review, a total of 195 clinical trials
going for PI3K pathway-targeting agents in various
r types, including 33 trials for PI3K inhibitors, 68
for Akt inhibitors, and 95 trials for mTOR inhibitors
//www.ClinicalTrials.gov). Rapamycin and it ana-
hich inhibit the mTOR complex, are the clinically
advanced agents. Temsirolimus (CCI-779, Wyeth
aceuticals) was approved by the U.S. Food and
Administration (FDA) in 2007 for treatment of
ced renal-cell carcinoma.
ough PI3K signaling is an obvious target for cancer
y, given the redundancy and complex feedback reg-
n existing in the PI3K pathway, the clinical efficacy
ny PI3K pathway inhibitors is modest, which largely
rs the clinical usage of PI3K inhibitors as single
. Huge challenges facing us require more in-depth
standing of the pathway. Firstly, emerging evidence
dicated that different PI3K isoforms, besides gener-
elieved functional redundancy, have their own dis-
roles in cancer development. Collectively, recent
s have suggested that PTEN-null tumors are more
dent on PI3K isoform p110β but not p110α (47),
re thereby sensitive to p110β inhibitors (48). On the
hand, PTEN-loss tumors harboring gain-of-function
A mutations (e.g., H1047R and E545K) seem

more dependent on p110α. Because of this complex-
form-specific inhibitors and personalized treatment
early warranted in the clinic. With the recent ad-
s in dual- or multispecific-targeting drug design,
l agents such as NVP-BEZ235, which targets

ion-specific forms of PI3K as well as mTOR, have
red an exciting and promising preclinical efficacy

(60).
nation

ancer Res; 16(17) September 1, 2010

Research. 
on July 27, 20clincancerres.aacrjournals.org Downloaded from 
atment for tumors bearing gain-of-function PIK3CA
ions (49). Secondly, extensive feedback loops and
talk have been well noted between the signaling
rks driving tumor progression. The mTOR down-
protein p70S6K is a negative regulator of PI3K

ing, through inhibition of insulin receptor substrate
aling. Inhibition of mTOR could release this inhibi-
nd trigger a positive feedback to reactivate PI3K
ing (50). A recent study also suggested additional
talk between the PI3K pathway and the RAS-mediated
pathway. Blockade of PI3K signaling may shift the

r survival signaling to a RAS-MAPK-dependent man-
1). With the above notion in mind, the next gener-
dual-specific inhibitors or clinical trials of novel
inatorial therapy targeting both PI3K signaling and
signaling are highly expected to counteract the

ling cross-talk and maximize the efficacy of anti-
pathway inhibitors.
itionally, PI3K signaling inhibitors may be used
vely to overcome the resistance to anti-RTK therapies
hemotherapies. PTEN is the key antagonist of
I3K/Akt pathway. Loss of PTEN in many types of
r has been shown to correlate not only with tumor
opment but also with clinical resistance to many
ncer drugs, especially targeted therapies for the
athway. In breast cancer, the anti-HER2/ErbB2
dy trastuzumab represents one of the most success-
amples of rationally designed targeted therapies in
r treatment. However, in the clinic, 30% of patients
de novo resistance to trastuzumab (52). Our group
howed that PTEN loss in breast tumors confers
icant trastuzumab resistance (53). This concept has
further validated in a different patient cohort
ng hyperactivation of the PI3K/Akt axis as a result
EN loss, and PIK3CA gain-of-function mutation
47R and E545K) led to worse patient response to
zumab (54). Similarly, hyperactivation of PI3K/Akt
as been associated with poor sensitivity to anti-
rmal growth factor receptor (EGFR) therapies (cetux-
and gefitinib) in colon and lung cancer patients
6). Although the efficacy of the dual HER2 and
inhibitor lapatinib seems to be independent of
status (57), the overall lapatinib response is still
y affected by the activity of PI3K pathway (58).
dition, PTEN loss leads to upregulation of anti-
totic protein expression, for example, Bcl-2 and
which render resistance to traditional chemotherapy
he apoptosis-inducing agent TRAIL (21, 59). To
me the resistance of anti-RTK therapy, the current
of rationally designed combinatorial therapy favors
mbination of anti-RTK drugs, such as trastuzumab,
inhibitors targeting the compensatory signaling
ay, such as PI3K. For example, our preclinical stud-
owed that the combination of trastuzumab with
Akt inhibitor or mTOR inhibitor are effective in

oming PTEN-loss-induced trastuzumab resistance

Currently, multiple trials of trastuzumab in combi-
with either a PI3K inhibitor (e.g., XL147, Exelixis)
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OR inhibitor (e.g., RAD001, Novartis) are under
l evaluation. Similarly, clinical trials combining a
pathway inhibitor with current first-line anti-EGFR
y are designed for better treatment of EGFR-driven
rs. These trials include XL147 plus erlotinib in the
ent of non-small cell lung cancer (NSCLC) and
01 plus cetuximab-gefitinib in the treatment of me-
ic pancreatic cancer and prostate cancer, among
(http://www.ClinicalTrials.gov).
arly, more basic and preclinical mechanistic
s are needed to further elucidate the complexity
e cancer-signaling pathway networks. Evolution
r knowledge of the PI3K/PTEN pathway will
mor suppressor and anti-inflammatory actions of PPARγ
nists are mediated via upregulation of PTEN. Curr Biol 2001;
764–8.
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