Validation of SAG/RBX2/ROC2 E3 Ubiquitin Ligase as an Anticancer and Radiosensitizing Target

Lijun Jia, Jie Yang, Xinbao Hao, Min Zheng, Hongbin He, Xiufang Xiong, Liang Xu, and Yi Sun

Abstract

Purpose: Sensitive to apoptosis gene (SAG; also known as RBX2 or ROC2) was originally cloned as a redox-inducible antioxidant protein and was later characterized as a RING component of SCF E3 ubiquitin ligases. SAG overexpression inhibits apoptosis induced by many stimuli both in vitro and in vivo. SAG mRNA was overexpressed in human lung tumor tissues with a correlation to poor patient survival. To investigate whether SAG serves as an anticancer target, we determined the effect of SAG silencing on cell proliferation, survival, and radiosensitivity.

Experimental Design: SAG protein expression in human tumors was evaluated by immunohistochemical staining using tumor tissue arrays. SAG expression in cancer cells was knocked down by siRNA silencing. The anticancer effects of SAG silencing were evaluated by in vitro assays for cell growth and survival and by an in vivo orthotopic xenograft tumor model. Radiosensitization by SAG silencing of human cancer cells was determined by clonogenic survival assay. Apoptosis induction was evaluated by fluorescence-activated cell sorting analysis, caspase-3 activation assay, and Western blotting of apoptosis-associated proteins.

Results: SAG was overexpressed in multiple human tumor tissues compared with their normal counterparts. SAG silencing selectively inhibited cancer cell proliferation, suppressed in vivo tumor growth, and sensitized radiation-resistant cancer cells to radiation. Mechanistically, SAG silencing induced apoptosis with accumulation of NOXA, whereas SAG overexpression reduced NOXA levels and shortened NOXA protein half-life.

Conclusions: The findings showed that SAG E3 ubiquitin ligase plays an essential role in cancer cell proliferation and tumor growth and may serve as a promising anticancer and radiosensitizing target.

The ubiquitin-proteasome system controls protein turnover and regulates a variety of signaling pathways and cellular processes, from cell proliferation to differentiation to death (1). Recent studies showed that pharmacologic inhibition of the ubiquitin-proteasome system can be efficacious in the treatment of human cancers. Bortezomib (Velcade, formerly PS-341) represents the first Food and Drug Administration–approved proteasome inhibitor to treat multiple myeloma and hematologic as well as solid tumors (2). It mainly blocks the activation of NF-κB and induces the proapoptotic protein NOXA, rendering cells apoptotic (2, 3). The fast-track approval of bortezomib has spurred a great wave of interest in the development of anticancer reagents against the ubiquitin-proteasome system.

The Skp1-Cullin1-F-box-protein (SCF) E3 ubiquitin ligases are multiunit complexes and consist of scaffold proteins (cullin 1-cullin 7), RING-finger proteins (RBX1/ROC1 or RBX2/SAG), adaptor proteins (e.g., Skp1), and F-box proteins (e.g., Skp2 and Fbw7; refs. 4, 5). They mediate the transfer of ubiquitin molecules to substrates (substrate polyubiquitination) for subsequent recognition and degradation by proteasome. Because SCF E3 ubiquitin ligases control the degradation of a variety of protein substrates through the ubiquitin-proteasome system to regulate diverse cellular processes, SCF dysfunction could cause a variety of diseases, including cancer. For example, oncogenic F-box proteins Skp2 and β-TrCP, which promote the degradation of tumor suppressor p27 or IκB, respectively, were overexpressed in several human cancers, which is associated with a higher degree of malignancy and poor patient prognosis (6). On the other hand, mutation or deletion of tumor suppressor F-box protein Fbw7 caused the accumulation of several oncogenic protein substrates, such as c-Jun, c-Myc, cyclin E, and mammalian target of rapamycin, leading to accelerated tumor cell proliferation and tumorigenesis (7, 8). Most recently, we found that the...
SAG as an Anticancer Target

Translational Relevance

The interest in the development of anticancer drugs against the ubiquitin-proteasome system has been spurred by the fast-track Food and Drug Administration approval of the proteasome inhibitor bortezomib (also known as Velcade or PS-341) for the treatment of relapsed and refractory multiple myeloma. Skp1-Cullin1-F-box-protein complexes, the largest multiunit E3 ubiquitin ligases, target a variety of substrates for degradation through the ubiquitin-proteasome system and regulate carcinogenesis and cancer progression. We show here that sensitive to apoptosis gene (SAG), the second member of the RBX/ROC RING component of Skp1-Cullin1-F-box-protein E3 ubiquitin ligases, is a promising anticancer target with the following observations: (a) SAG is overexpressed in several human primary cancers, particularly lung cancer; (b) SAG siRNA silencing selectively kills cancer in vitro and in vivo; and (c) SAG siRNA silencing selectively sensitizes radioresistant cancer cells to radiation. Thus, the development of small molecules or RNA interference–based therapy targeting SAG holds a promise for future treatment of human cancer.

RING-finger protein RBX1/ROC1 was overexpressed in diverse human primary tumors, and downregulation of RBX1 by RNA interference silencing inhibited cancer cell growth through activation of multiple cell killing pathways, including cell cycle arrest, apoptosis, and senescence (9). These findings suggested that the SCF E3 ubiquitin ligase complexes could function as anticancer targets.

Sensitive to apoptosis gene (SAG) was originally cloned in our laboratory as a redox-inducible antioxidant protein and was later characterized as the second member of the RBX/ROC RING component of SCF E3 ubiquitin ligases (10–12). As an antioxidant, SAG overexpression inhibits apoptosis induced by redox (10, 13), nitric oxide (14), ischemia/hypoxia (15), heat shock (16), neurotoxin, and 1-methyl-4-phenylpyridinium (17) in vitro and in vivo. When complexed with other components of SCF E3 ubiquitin ligase, SAG has E3 ubiquitin ligase activity and promotes the stage-dependent degradation of c-Jun and IκBα, thus regulating carcinogenesis and tumor growth in a 7,12-dimethylbenz(a)anthracene–12-O-tetradecanoylphorbol-13-acetate murine skin cancer model (18). In human lung cancers, SAG mRNA was significantly overexpressed in tumor tissues with a correlation to poor patient survival (19). The findings suggest that SAG E3 ubiquitin ligase may be required for human carcinogenesis or progression and serve as an anticancer target.

Here, we showed that SAG protein was overexpressed in multiple human primary tumor tissues, particularly in lung cancer. SAG siRNA silencing had no effect on normal cell growth, but inhibited the growth of cancer cells, both in vitro and in vivo by induction of apoptosis. Moreover, SAG silencing sensitized radiosensitive H1299 and U87 cells to ionizing radiation. Thus, SAG may serve as a target for anticancer therapy as well as radiosensitization.

Materials and Methods

Cell culture. H1299 human lung cancer cells, U87 human glioblastoma cells, PANC-1 human pancreatic carcinoma cells, and MRC-5 lung fibroblast cells were purchased from the American Type Culture Collection and cultured in DMEM with 10% fetal bovine serum (FBS). Normal bronchial epithelial cells, NL20, were grown in Ham's F-12 medium with 4% FBS and essential supplements, as previously described (20).

Immunohistochemical staining of human tumor tissue arrays. Multiple human tumor tissue arrays were stained and stained with purified SAG monoclonal antibody (mAb) by the University of Michigan Comprehensive Cancer Tissue Core. Briefly, 5-μm tissue array sections were dehydrated and subject to peroxidase blocking. SAG mAb [raised against the RING domain (AA44-113)] was added at a dilution of 1:100 and incubated at room temperature for 30 min on the DAKO AutoStainer using the DakoCytomation EnVision+ System-HRP (DAB) detection kit. The slides were counterstained with hematoxylin (SurgaPath). The stained slides were observed under a microscope (Olympus IX71) and images were acquired using software DP controller (ver. 3.1.1.267, Olympus).

Lentivirus-based siRNA and lentivirus infection. Construction and preparation of lentivirus-based siRNA against SAG (LT-SAG) and lentivirus expressing scrambled control siRNA (LT-CONT) were previously described (21). The target sequences are as follows: LT-SAG02-01, 5′-AACAGAGCAGGTGTTGCTTGTCACGAGAGCAGACCAAAACACAGTCTCTTGTGTTTTTTGT-3′; LT-SAG02-02, 5′-CTAGACAAAAAACAAGAGGAAGCAGTTGTGCTTGTCACGAACAAGGTGACTCGTCTTGTTTTTTGT-3′; LT-CONT-01, 5′-ATTGTATGGGATCGACATTTCAAGAGAATCTGCGCATCGCA- TACACATTTTTGT-3′; and LT-CONT-02, 5′-CTAGACAAAATATGTATGCGATCGACAGACTTTTCATTTT- GAAAAGTGGGATGGATGGATGG-3′.

ATPlite cell proliferation assay. Cells were infected with LT-SAG or LT-CONT for 96 h, then split and seeded into 96-well plates with 3,000 cells per well in quadruplicate. At 24, 48, 72, and 96 h after cell plating, cell proliferation assay using the ATPlite 1 step luminescence ATP detection assay system (Perkin-Elmer) was done according to the manufacturer’s instruction (22).

Clonogenic survival assay. Cells were infected with LT-SAG or LT-CONT for 96 h, then split and seeded into six-well plates at 100 cells (H1299 and PANC-1) or 300 cells (U87) per well in triplicate, followed by incubation at 37°C for 9 d. The colonies formed were fixed with 10% acidic acid in methanol, stained with 0.05% methylene blue, and counted.

www.aacrjournals.org
Clin Cancer Res; 16(3) February 1, 2010
815

Downloaded from clincancerres.aacrjournals.org on October 16, 2017. © 2010 American Association for Cancer Research.
Fig. 1. The expression of SAG in human tumors and normal counterparts. A, SAG overexpression in multiple human primary tumor tissues. Tumor tissue arrays containing multiple normal and tumor tissues from different organs were stained with purified SAG mAb on the DAKO AutoStainer using the DakoCytomation EnVision+ System-HRP (DAB) detection kit and counterstained with hematoxylin (Surgipath). The stained slides were observed under a microscope (Olympus 1X71) and images were acquired using software DP controller. B, SAG staining in lung tissues, normal versus cancer. Lung tumor tissue arrays containing normal lung and tumor tissues were stained for SAG expression. Stained normal and tumor tissues were classified into four groups (+ to ++++) according to the staining intensity of each tissue. C, percentage of normal or tumor tissues in each staining group. Tissue samples with different staining intensity were grouped and tabulated.
SAG as an Anticancer Target

Soft agar assay. Ten thousand cells after lentivirus-based siRNA silencing were seeded in 0.33% agar containing 1× cell culture medium and 10% FBS in 60-mm Petri dish and grown at 37°C for 14 d. The cells were stained with β-iodonitrotetrazolium (1 mg/mL; Sigma) overnight and the colonies were counted (21).

Irradiation and radiosensitization assay. Cells, after lentivirus-based siRNA silencing, were seeded in six-well plates at three different cell densities in duplicate. The next day, cells were exposed to different doses of radiation followed by incubation at 37°C for 9 d. The colonies formed were fixed, and the surviving fraction was determined by the proportion of seeded cells following irradiation that formed colonies relative to untreated cells, as previously described (20).

Fluorescence-activated cell sorting analysis. H1299 and U87 cells were infected with LT-SAG, along with LT-CONT, for 96 h, then split and cultured for 72 h, followed by propidium iodide staining and fluorescence-activated cell sorting (FACS) analysis for apoptosis detection. Briefly, infected cells were harvested and fixed in 70% ethanol at −20°C for 4 h, stained with propidium iodide (18 μg/mL) containing 400 μg/mL RNase A (Roche), incubated with shaking for 1 h, and analyzed by flow cytometry for apoptosis and cell cycle profile, as previously described (22). Apoptosis was measured by the percentage of cells in the sub-G₁ population.

Western blotting analysis. Whole-cell lysates were prepared and subjected to immunoblotting analysis using antibodies against SAG [mAb raised against the RING domain (AA44-113)], Bax, Bad, clAP2 (Cell Signaling), pRB, Puma, Mcl-1 (Santa Cruz Biotechnology), XIAP, Bcl-XL, p21 (BD Transduction Laboratories), β-actin (Sigma), Bak (Upstate), Bim (Imgenex), NOXA (Oncogene Science), Bcl-2 (DAKO), and survivin (Novus Biocentials). The antibody specificity against SAG was validated by immunofluorescent staining to detect SAG in wild-type mouse embryonic stem cells, but not in SAG knockout embryonic stem cells.1 This specific mAb was then used to measure the SAG levels in human cancer tissues due to normal tissue contamination and tumor stromal cell infiltration. To precisely determine the expression status of SAG in human tumor tissues, we performed immunostaining analysis using a SAG mAb raised against purified human SAG RING domain (AA44-113) fused with glutathione S-transferase (Creative Biolabs). The antibody specificity against SAG was validated by immunofluorescent staining to detect SAG in wild-type mouse embryonic stem cells, but not in SAG knockout embryonic stem cells. This specific mAb was then used to measure the SAG levels in human cancer tissue microarrays. As shown in Fig. 1A, SAG was expressed weakly in several normal tissues (top) but was overexpressed in a panel of human tumor tissues, including carcinomas of the lung, colon, stomach, and liver.

Statistical analysis. The statistical significance of differences between groups was assessed using the GraphPad Prism4 software (version 4.03). The unpaired two-tailed t test was used for the comparison of parameters between groups. The level of significance was set at P < 0.05.

Results

SAG is overexpressed in human primary tumor tissues. Overexpressed SAG was previously shown in human lung cancer tissues by reverse transcription-PCR (19) and in a subset of colon cancer by Western blotting (24). These studies might underestimate SAG overexpression in cancer tissues due to normal tissue contamination and tumor stromal cell infiltration. To precisely determine the expression status of SAG in human tumor tissues, we performed immunostaining analysis using a SAG mAb raised against purified human SAG RING domain (AA44-113) fused with glutathione S-transferase (Creative Biolabs). The antibody specificity against SAG was validated by immunofluorescent staining to detect SAG in wild-type mouse embryonic stem cells, but not in SAG knockout embryonic stem cells. This specific mAb was then used to measure the SAG levels in human cancer tissue microarrays. As shown in Fig. 1A, SAG was expressed weakly in several normal tissues (top) but was overexpressed in a panel of human tumor tissues, including carcinomas of the lung, colon, stomach, and liver.

1 Unpublished data.
To focus on lung cancer, we immunostained two sets of human lung cancer tissue arrays, consisting of 15 normal tissues and 102 tumor tissues of adenocarcinoma ($n = 56$) and squamous carcinoma ($n = 46$). Based on the intensity of staining, we classified the samples into four groups, with group 1 showing the least staining (+) and group 4 the highest staining (++++; Fig. 1B). We found that the SAG staining in normal tissues was under either group 1 (13 of 15, 87%) or group 2 (2 of 15, 13%), whereas most tumor tissues, regardless of tumor types, had a high SAG staining (mainly in cancer cells, but not in stromal cells) and were classified into groups 3 and 4 (73% for adenocarcinoma and 67% for squamous carcinoma; Fig. 1C). Thus, SAG is overexpressed in most human lung cancers. The overexpression of SAG in diverse primary human tumors suggests that SAG could play a role in carcinogenesis or in the maintenance of tumor cell phenotype.
SAG silencing inhibits the growth of human cancer cells. We next determined, using siRNA knockdown approach, the role of SAG in the regulation of cell proliferation of tumor versus normal cells by an ATPlite assay. As shown in Fig. 2A, SAG silencing by LT-SAG (21) caused a reduction in SAG expression of more than 90% in H1299 non–small cell lung carcinoma cells (blot 1), in U87 glioblastoma cells (blot 2), in NL20 normal bronchial epithelial cells (blot 3), and in MRC-5 lung fibroblast cells (blot 4). Consequently, cell proliferation was inhibited significantly in H1299 and U87 cells (Fig. 2B, graphs 1 and 2). Interestingly, the normal cells were rather resistant to SAG knockdown with very minor growth inhibition (Fig. 2B, graphs 3 and 4), indicating a tumor cell–selective growth suppression. We next determined the effect of SAG silencing on tumor cell survival by clonogenic assay. As shown in Fig. 2C, SAG silencing caused an 80% or 85% inhibition in survival of H1299 or U87 cells, respectively. Furthermore, the anchorage-independent growth of H1299 and U87 cells, as measured by soft agar assay, was inhibited by up to 75% on SAG silencing (Fig. 2D). These findings indicate that SAG silencing significantly suppresses the growth and survival of human cancer cells, but is rather inactive during normal cell growth.

SAG silencing sensitizes H1299 and U87 cells to radiation. SAG was previously shown to have antioxidant activity and protected cells from redox compound–induced apoptosis (10, 12). Because a common mechanism by which radiation induced cell killing is through production of reactive oxygen species (25), we determined if SAG silencing would confer radiosensitivity to otherwise radioresistant cancer cells. Two radioresistant cell lines, H1299 and U87 (20, 26), were tested in a standard clonogenic assay. As shown in Fig. 3, SAG silencing significantly sensitized them to radiation with sensitizing enhancement ratios of 1.28 and 1.43, respectively (top and middle). To test whether normal cells are also sensitive to radiation on SAG silencing, we performed a comparable assay in MRC-5 cells. As shown in Fig. 3 (bottom), SAG silencing did not sensitize normal cells to radiation with a sensitizing enhancement ratio of 1.02. The findings suggest that SAG silencing selectively sensitizes cancer cells to radiation.

SAG silencing induces apoptosis with an accumulation of proapoptotic protein NOXA. To investigate the potential mechanism of cell growth suppression induced by SAG silencing, we performed FACS analysis to profile the cell population at the sub-G₁ (apoptotic population) or other phases of cell cycle in H1299 and U87 cells. As shown in Fig. 4A, 20% of the H1299 and U87 cell population underwent apoptosis on SAG silencing, compared with <5% of the population seen in LT-CONT control cells. The apoptotic induction of these cells on SAG silencing was further confirmed by the activation of caspase-3 (Fig. 4B). No significant cell cycle disturbance was induced by SAG silencing in both cell lines (data not shown). Furthermore, only a small fraction of SAG-silenced cells underwent senescence, as shown by senescence-associated β-gal staining, but without a significant difference from the control cells (data not shown). These results clearly show that apoptosis induced by SAG silencing is the major mechanism for the inhibition of cell growth and survival.

To further understand how SAG silencing induced apoptosis, we analyzed the expression of a panel of proapoptotic proteins (Bax, Bak, Puma, Bim, Bad, and NOXA), antiapoptotic proteins (Bcl-2, Mcl-1, survivin, XIAP, Bcl-XL, and cIAP2), and known SCF E3 ligase substrates (β-catenin, cyclin D, cyclin E, IκBα, p21, and pRB; refs. 4, 5). As shown in Fig. 4C, among the apoptosis regulatory

Fig. 3. SAG silencing sensitizes cancer cells to radiation. Cells, after lentivirus-based siRNA silencing, were seeded in six-well plates at three different cell densities in duplicates. The next day, cells were exposed to different doses of radiation followed by incubation at 37°C for 9 d for colony counting. The surviving fraction was calculated and plotted after comparison with the corresponding controls (0 Gy). The sensitizing enhancement ratio (SER) was calculated as the ratio of the inactivation dose under scrambled siRNA control conditions divided by the inactivation dose after SAG silencing. Points, mean from three independent experiments; bars, SEM.
proteins tested, proapoptotic NOXA was the only protein significantly accumulated in both H1299 and U87 cells on SAG silencing. Other SCF E3 ligase substrates were either unchanged or undetectable, except pRB, which was accumulated in U87 cells as well as A549 cells, but not in H1299 cells (Supplementary Fig. S1). In addition, the expression of these proteins on SAG silencing was also determined in another lung cancer cell line, A549. Consistently, on SAG knockdown, NOXA was accumulated, whereas the other proteins were unchanged (Supplementary Fig. S1).

SAG overexpression reduces NOXA levels and shortens its protein half-life, whereas SAG knockdown extends NOXA half-life. As a RING component of SCF E3 ubiquitin ligases, SAG knockdown by siRNA would disrupt the

Fig. 4. SAG silencing induces apoptosis with NOXA accumulation. H1299 and U87 cells were infected with LT-SAG, along with LT-CONT, for 96 h, then split and cultured for 72 h, followed by propidium iodide staining and FACS analysis for apoptosis detection, caspase-3 activity assay, cell cycle profile, and Western blotting for the levels of apoptosis-associated proteins. A, induction of apoptosis by SAG silencing. Apoptotic cells were determined by sub-G₁ fraction in FACS analysis. B, caspase-3 activation on SAG silencing. Caspase-3 activity in infected cells was determined by caspase-3 activity assay. Columns, mean of three independent experiments; bars, SEM. C, expression of apoptosis-associated proteins. The status of a panel of apoptosis-associated proteins including proapoptosis proteins and antiapoptosis proteins were detected by Western blotting, with β-actin as the loading control.
SCF complex and inactivate its ligase activity, leading to the accumulation of its substrates, whereas SAG overexpression would likely promote the degradation of its substrates. We next characterized NOXA as a potential substrate of SAG SCF E3 ubiquitin ligases in U87 cells. Indeed, SAG overexpression eliminated endogenous NOXA (Fig. 5A), as well as reduced the level of ectopically overexpressed NOXA (Fig. 5B). Furthermore, SAG overexpression significantly shortened the protein half-life of NOXA from 2.7 to 1.2 hours (Fig. 5C). Finally, we evaluated the effects of SAG knockdown on the half-life of endogenous NOXA and found that SAG silencing significantly extended the half-life of NOXA from about 0.25 to 1.2 hours (Fig. 5D). Thus, NOXA seems to be a novel substrate of SAG E3 ligase.

SAG silencing inhibits the in vivo tumor growth in an orthotopic mouse model of pancreatic cancer. We next assessed the potential effect of SAG silencing on in vivo tumor growth using an orthotopic pancreatic tumor xenograft model because it is more physiologically relevant and far superior than subcutaneously implanted tumor models. We first confirmed that SAG expression...
was indeed knocked down by LT-SAG in human pancreatic cancer PANC-1 cells by ~80% (Fig. 6A). Consistent to observations made in H1299 and U87 cells, SAG knockdown caused a 50% inhibition of PANC-1 cell survival in vitro (Fig. 6B). The SAG-silenced PANC-1 cells (LT-SAG), along with scrambled control cells (LT-CONT), were implanted into the pancreata of nude mice (five mice per group). After 5 weeks of in vivo growth, tumors were bioluminescence imaged. As shown in Fig. 6C (left), the strength of luminescent signal emitted from SAG-silenced tumors was, on average, much weaker than that from the control tumors. More precisely, each individual tumor was harvested and weighed. SAG silencing reduced overall tumor mass by 50%, which is statistically significant ($P < 0.05$; Fig. 6C, right). Finally, we determined the level of NOXA in available tumor tissues harvested and found that NOXA was accumulated in SAG-silenced tumors (Fig. 6D). Thus, the orthotopic in vivo growth of PANC-1 pancreatic cancer cells was significantly inhibited on SAG silencing, and NOXA accumulation may contribute to this process.

Discussion

Ideal cancer targets should have the following features: (a) they play an essential role in carcinogenesis, and/or are required for the maintenance of cancer cell phenotype, and/or are survival proteins that confer resistance to cancer cells against apoptosis; (b) they are overexpressed in cancer cells, which is associated with a poor prognosis of patient survival; (c) inhibition of their expression or activity induces growth suppression and/or apoptosis in cancer cells, but not in normal cells, achieving a potential therapeutic window; and (d) it is “druggable,” that is, it is an enzyme (e.g., kinase) or a cell surface molecule (e.g., membrane-bound receptor) that can be easily screened for small-molecule inhibitors or being targeted by a specific antibody (27, 28).

In this study, we validated SAG, a dual-function protein with antioxidant and ligase activities, as a potential anticancer target. We showed here that (a) SAG is overexpressed in several human cancers originated from different organs, particularly in lung cancer tissues; (b) SAG silencing, while having no effect on normal cell growth, dramatically inhibits proliferation and survival through apoptosis induction.
in multiple cancer cell models in \textit{in vitro} and in a pancreatic cancer orthotopic xenograft model \textit{in vivo}; \(c\) SAG silencing also sensitizes radioresistant cancer cells to radiation. In combination with our previous studies that SAG, when overexpressed, protects cells from apoptosis induced by a variety of stimuli \((10, 11, 15, 29)\) and promotes \textit{in vivo} tumor growth also by inhibiting apoptosis \((18)\) and the fact that SAG is a druggable E3 ubiquitin ligase, SAG seems to be a promising anticancer target as well as a target for radiosensitization.

Cancer cells tend to obtain apoptosis-escaping mechanisms by inactivating apoptosis signaling pathways through downregulation of proapoptotic proteins or upregulation of antiapoptotic proteins. Thus, reactivation of cellular apoptotic signaling has become a major effort toward the development of anticancer therapies \((30, 31)\). In this study, we found that SAG silencing induced apoptosis, which was associated with the accumulation of proapoptotic NOXA. Further characterization revealed that SAG overexpression promoted the degradation of NOXA and shortened its protein half-life, whereas SAG knockdown delayed the degradation of NOXA and extended its half-life. Consistently, others have recently reported that NOXA was accumulated or upregulated after treatment with the proteasome inhibitor bortezomib \(\text{(also known as Velcade, PS-341)}\) in melanoma cells \((32)\), and that NOXA, with a protein half-life of \(<2\) hours in lymphoblastic leukemia cells, was subjected to ubiquitin-proteasome-mediated degradation, which is inhibited by a proteasome inhibitor, MG132 \((33)\). Taken together, our study suggested that NOXA may be a novel substrate of SAG-SCF E3 ligase and its accumulation on SAG silencing could contribute to apoptosis induction. Future studies are directed to the identification of the F-box protein that recognizes NOXA for further biochemical characterization of NOXA as a novel substrate of SAG-SCF E3 ligase. Finally, given the fact that SAG is a RING component of SCF E3 ligases, required for ubiquitination and subsequent degradation of a variety of protein substrates, one could anticipate that alterations of multiple protein substrates would contribute to the induction of apoptosis following SAG silencing. Mechanistic characterization of more than \(350\) potential SCF E3 ligase substrates, identified through global protein stability profiling, which are closely involved in the regulation of apoptosis, cell cycle, and cell signaling \((34, 35)\), would certainly broaden our understanding of how SAG-SCF E3 ligases regulate cell proliferation and apoptosis.

Radioresistance is a major obstacle for effective cancer treatment. Particularly in cases of glioblastoma multiforme and non–small cell lung cancer, radiotherapy is very ineffective due to the extreme radioresistance of cancer cells, contributing to poor patient survival rate \((36, 37)\). Here, we showed that SAG silencing sensitized H1299 non–small cell lung cancer cells and U87 glioblastoma cells, two radioresistant lines, to radiation with the sensitizing enhancement ratio comparable with the silencing of TRAF2, a well-known cellular survival protein \((20)\). Mechanistically, SAG silencing–mediated radiosensitization could be attributable to the loss of reactive oxygen species–scavenging activity that blocks radiation-generated reactive oxygen species \((25)\). It has been previously shown that SAG overexpression protects cells or tissues against damages induced by the redox compound 1,10-phenanthroline or zinc ion \((10, 13)\), nitric oxide \((14)\), ischemia/hypoxia \((15)\), neurotoxin and 1-methyl-4-phenylpyridinium \((17)\), heat shock \((16)\), and UV irradiation \((38)\). On the other hand, radiosensitization on SAG silencing could result from the accumulation of a panel of yet-to-be-identified radiation-sensitizing substrates as a result of the inactivation of SAG SCF E3 ligase activity.

In summary, we validated SAG as a promising anticancer target as well as a target for radiosensitization on the basis of the following findings: \(a\) SAG is overexpressed in several human primary tumor tissues, particularly lung cancer; \(b\) SAG silencing selectively kills cancer cells, but not normal cells, \textit{in vitro} and \textit{in vivo}; and \(c\) SAG silencing sensitizes cancer cells to anticancer radiation. The future challenges will be \((a)\) to identify specific inhibitors of SAG E3 ligases \((27, 28)\) and to develop them as a novel class of anticancer agents and radiosensitizers, and \((b)\) to develop siRNA-based therapy against radioresistant cancer using nanoparticle-packaged SAG siRNA \((39, 40)\).

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Drs. Dafydd Thomas and Thomas Giordano for providing us the primary human cancer tissue microarrays.

Grant Support

National Cancer Institute grants CA111554 and CA118762 \(\text{(Y. Sun)}\). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked \textit{advertisement} in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 6/26/09; revised 10/22/09; accepted 11/19/09; published OnlineFirst 1/26/10.

References

Validation of SAG/RBX2/ROC2 E3 Ubiquitin Ligase as an Anticancer and Radiosensitizing Target

Lijun Jia, Jie Yang, Xinbao Hao, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-09-1592

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2010/01/26/1078-0432.CCR-09-1592.DC1

Cited articles
This article cites 40 articles, 12 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/16/3/814.full#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/16/3/814.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.