Hepatitis C Virus Proteins Modulate MicroRNA Expression and Chemosensitivity in Malignant Hepatocytes

Chiara Braconi1, Nicola Valeri1, Pierluigi Gasparini2, Nianyuan Huang1, Cristian Taccioli2, Gerard Nuovo3, Tetsuro Suzuki4, Carlo Maria Croce2, and Tushar Patel1

Abstract

Purpose: Hepatocellular cancer (HCC) is highly resistant to chemotherapy and is associated with poor prognosis. Chronic hepatitis C virus (HCV) infection is a major cause of HCC. However, the effect of viral proteins in mediating chemosensitivity in tumor cells is unknown. We postulated that HCV viral proteins could modulate therapeutic responses by altering host cell microRNA (miRNA) expression.

Experimental Design: HepG2 malignant hepatocytes were stably transfected with full-length HCV genome (Hep-394) or an empty vector (Hep-SWX). MiRNA profiling was done by using a custom microarray, and the expression of selected miRNAs was validated by real-time PCR. Protein expression was assessed by Western blotting, whereas caspase activation was assessed by a luminometric assay.

Results: The IC50 to sorafenib was lower in Hep-394 compared with Hep-SWX control cells. Alterations in miRNA expression occurred with 10 miRNAs downregulated >2-fold and 23 miRNAs upregulated >2-fold in Hep-394 cells compared with controls. Of these, miR-193b was overexpressed by 5-fold in Hep-394 cells. miR-193b was predicted to target Mcl-1, an antiapoptotic protein that can modulate the response to sorafenib. The expression of Mcl-1 was decreased, and basal caspase-3/7 activity and poly ADP ribose polymerase cleavage were increased in Hep-394 cells compared with controls. Moreover, transfection with precursors to miR-193b decreased both Mcl-1 expression and the IC50 to sorafenib.

Conclusions: Cellular expression of full-length HCV increases sensitivity to sorafenib by the miRNA-dependent modulation of Mcl-1 and apoptosis. Modulation of miRNA responses may be a useful strategy to enhance response to chemotherapy in HCC. Clin Cancer Res; 16(3); 957–66. ©2010 AACR.

Chronic hepatitis C virus (HCV) infection is the major cause of hepatocellular carcinoma (HCC) in the United States (1). The incidence of HCV-associated HCC is predicted to increase over the next several years as a result of the epidemic of chronic HCV (2). In patients with chronic HCV infection, HCC usually arises in the setting of cirrhosis or bridging fibrosis. However, the presence of HCV is an independent risk factor for HCC. The responses to chemotherapy in the treatment of HCC have been dismal (3, 4). In part, this reflects the lack of understanding of the mechanisms by which HCV contributes to tumor cell behavior. The multitargeted inhibitor sorafenib has been recently approved for the treatment of advanced HCC (5). Subgroup analysis of the SHARP trial suggests that sorafenib may be more effective for HCV-associated HCC, but this remains to be verified (6).

HCV can interact with host cells to modulate cell survival signaling, alter gene expression, and induce cell transformation (7). The modulation of gene expression in the liver by HCV has been implicated in malignant transformation, and viral proteins are frequently detected in HCV-associated cirrhotic liver and HCC cells (8, 9). Moreover, HCV-associated proteins have been shown to alter hepatocellular gene expression by transcriptional trans-regulation (10). Alteration of gene expression by HCV proteins as a mediator of resistance to IFN has also been reported (11). However, the contribution of HCV-associated proteins to chemosensitivity in HCC cells remains unknown.

Small noncoding RNA termed microRNAs (miRNA) have been recently shown to be potent modulators of gene expression. The expression of host cell miRNAs can be modulated by HCV. Furthermore, deregulated miRNA expression has been shown to influence the replication potential of HCV in liver cells (12, 13). Several recent studies have shown that the expression of miRNAs is altered in human HCC, implicating them in hepatocarcinogenesis (14–16). We have recently shown that tumor cell behavior can be modulated by altered miRNA expression (15, 17). Thus, altered hepatocyte miRNA expression may result in
Several different high-power fields were counted, and the condensation, and apoptotic bodies. At least 300 cells in thetoplasmic shrinkage, nuclear fragmentation, chromatin

In these studies, we show that hepatitis C virus (HCV) proteins can modulate the expression of microRNA (miRNA) and alter the sensitivity of hepatocellular carcinoma (HCC) cells to sorafenib. HCC is highly resistant to chemotherapy. Although sorafenib has been shown to have some efficacy, responses remain poor. The findings of this study indicate that HCV-expressing cells might respond better to sorafenib due to modulation of apoptosis by miRNA that are induced by viral proteins. These observations provide the rationale for the stratification of HCC patients according to their HCV positivity in therapeutic trials. Moreover, the modulation of miR-193b may be a reasonable strategy to improve therapeutic responses of HCC that warrants further evaluation.

Translational Relevance

In this study, we show that hepatitis C virus (HCV) proteins can modulate the expression of microRNA (miRNA) and alter the sensitivity of hepatocellular carcinoma (HCC) cells to sorafenib. HCC is highly resistant to chemotherapy. Although sorafenib has been shown to have some efficacy, responses remain poor. The findings of this study indicate that HCV-expressing cells might respond better to sorafenib due to modulation of apoptosis by miRNA that are induced by viral proteins. These observations provide the rationale for the stratification of HCC patients according to their HCV positivity in therapeutic trials. Moreover, the modulation of miR-193b may be a reasonable strategy to improve therapeutic responses of HCC that warrants further evaluation.

Materials and Methods

Cell lines and culture. HepG2 human hepatocellular cancer cells were stably transfected with expression vectors encoding tDNA representing the entire open reading frame of HCV genotype 1b (Hep-394) or empty vector (Hep-SWX), and were validated as expressing HCV proteins by immunoblotting as previously described (11, 18). Huh-7 cells were infected with the replicon of HCV JFH-1 to achieve an HCV RNA level of 5×10^8 copies/mg of total RNA (19). The cells were maintained in DMEM (Life Technologies) containing 600 μg/mL G418 (Life Technologies). Normal human hepatocytes were obtained from ScienCell and were cultured following the manufacturer's instructions.

Cytotoxicity assay. Cells (10,000 per well) were plated in 96-well plates (BD Biosciences). Sorafenib or diluent control were added at concentrations ranging from 1×10^{-9} to 1×10^{-3} mol/L. Cell viability was assessed after 72 h using the CellTiter 96 AQueous assay kit (Promega) as previously described (20). The IC$_{50}$ value, at which 50% of the cell growth was inhibited compared with control, was derived using the XFit software (IDBS).

Apoptosis assays. Cells were plated in 35-mm dishes. At the specified time points, cells were stained with 27 μg/mL 4′,6-diamidino-2-phenylindole and then visualized with a fluorescence microscope (Nikon). Apoptotic cells were defined using morphologic criteria including nuclear and cytoplasmic shrinkage, nuclear fragmentation, chromatin condensation, and apoptotic bodies. At least 300 cells in several different high-power fields were counted, and the number of apoptotic cells reported as a percentage of total cells counted in the same fields. For caspase activation assay, cells (10,000 per well) were seeded in 96-well plate and caspase-3/7 activity was assessed after 72 h using a luminometric assay (Caspase-Glo 3/7 assay, Promega). Apoptotic cells were also detected by labeling DNA breaks through the terminal deoxynucleotide transferase dUTP nick end labeling assay (Invitrogen). Cells were processed as indicated by the manufacturer and were analyzed by flow cytometry with a BD FACSCalibur.

MIRNA isolation and expression profiling. RNA was extracted using Trizol reagent (Invitrogen). Total RNA (5 μg) was reverse transcribed using biotin end–labeled random octamer oligonucleotide primers. Hybridization of biotin-labeled complementary DNA was done using a custom miRNA microarray chip (OSU-CCC version 4.0), which includes 898 human miRNA genes and precursors, spotted in duplicates. The hybridized chips were washed and processed to detect biotin-containing transcripts by streptavidin–Alexa 647 conjugate, were scanned, and were quantitated using an Axon 4000B scanner (Axon Instruments) and the GenePix 6.0 software (Axon Instruments). Three samples were tested for each cell type.

Computational analysis. Average values of the replicate spots of each miRNA were background subtracted, normalized, and further analyzed. Normalization was done using the global median method. We selected the miRNAs measured as present in at least as many samples as the smallest class in the data set (50%). Absent calls were thresholded to 4.5 (log$_2$ scale) before statistical analysis, representing the average minimum intensity level detectable in the system. Differentially expressed miRNAs were identified using the Class Comparison Analysis of BRB tools version 3.6.0. This tool is designed to analyze data using the parametric tests t/F tests and random variance t/F tests. The criterion for inclusion of a gene in the gene list is a P value of <0.05.

Real-time PCR assay for mature miRNAs. Total RNA was isolated using Trizol reagent (Invitrogen) and the expression of specific mature miRNAs was confirmed by real-time PCR analysis using a Taqman human MicroRNA Assay kit (Applied Biosystems). MiRNA expression was normalized to RNU6 expression.

Western blotting. Immunoblot analysis was done as previously described (15). The primary antibodies used were as follows: goat polyclonal anti-actin (1:400; Santa Cruz Biotechnology), mouse monoclonal anti–Mcl-1 (1:500; Santa Cruz Biotechnologies), rabbit polyclonal anti–poly ADP ribose polymerase (PARP; 1:500; Santa Cruz Biotechnology), mouse monoclonal anti–raf-1 (1:200; Abcam), rabbit polyclonal anti-p38 (Santa Cruz Biotechnology), rabbit polyclonal anti–phospho-p38 (1:250; Abcam), mouse monoclonal anti–c-kit (1:200; Santa Cruz Biotechnology), rabbit polyclonal vascular endothelial growth factor (1:500; Upstate Millipore).

Transfections. Transfections were done by nuclear transfection using the Nucleofector system solution V program T28 (Amaxa Biosystems) and 100 nmol/L of the precursor to miR-193b (pre-miR-193b) or control pre-miR (Ambion). Transfected cells were then resuspended in culture medium containing 10% fetal bovine serum for 72 h before study. For silencing experiments, the anti-miR-193b and anti-miR control probes were obtained from Exiqon and were used at final concentration of 100 nmol/L.

Luciferase assay. The intact recognition sequence between miR-193b and the 3′ untranslated region (UTR) of Mcl-1 was cloned downstream of the firefly luciferase gene as follows. Total cDNA was obtained following reverse transcriptase using random primers. The following primers Mcl-1-3′-UTR-F:5′-GGACTAGTTTTGGGAAGTTATGGAGGAG-3′ and Mcl-1-3′-UTR-R:5′-TCCCCGCGGAGAGAGGAAAAAGCTTCCCTTG-3′ were used for amplification of the 3′-UTR of Mcl-1. The product was then digested with SpeI and SacII (New England Biolabs) and cloned into a pGL3 Control Vector (Promega) to generate the Mcl-1-WT reporter construct. A reporter construct with a deletion in the putative recognition sequence for miR-193b was also constructed (Mcl-1-MUT) by using the QuikChange site-directed mutagenesis kit (Stratagene), according to the manufacturer’s instructions. Primers used for mutagenesis were

![Fig. 1. A, Hep-G2 cells, stably transfected with full-length HCV (Hep-394) or empty vector (Hep-SWX), were plated in 96-well plates, and were incubated with varying concentrations of sorafenib. Cell viability was assessed by the CellTiter 96 AQueous assay kit after 72 h of exposure to drug or diluent control. IC_{50} values were calculated after curve fitting using the XLfit Software. Points, mean (n = 6); bars, SEM. B, cells were plated in 35-mm dishes and stained with 4′,6-diamidino-2-phenylindole at the indicated time points. Cells with morphologic changes of apoptosis were counted using a fluorescence microscope, and the number of apoptotic cells was expressed as a percentage of the total cells. Columns, mean; bars, SEM. *P = 0.03 (n = 3). C, Hep-SWX and Hep-394 were incubated in serum-free medium, and caspase-3/7 activation was assessed after 72 h using a luminometric assay. Columns, mean; bars, SEM. *P = 0.003 (n = 3). D, cell lysates from Hep-SWX and Hep-394 cells were obtained and evaluated for the expression of PARP by Western blotting. Representative blots are shown along with quantitative data representing the average and SEM from three separate experiments. The ratio of Mcl-1 to actin is expressed relative to that in Hep-SWX cells; P < 0.001.](image)
as follows: Mcl-1-MUT F:5′-CTTCTTGGAGAAACAG-GAAAGCCAGGCAAGTC-3′ and Mcl-1-MUT R:5′-CTTCTTGGAGAAACAG-GAAAGCCAGGCAAGTC-3′. All constructs were verified by sequencing. Cells were cotransfected with 1 μg Mcl-1-WT or Mcl-1-MUT construct and 0.1 μg pRL-TK Renilla luciferase expression construct followed by a precursor miR-193b or control precursor at 100 nmol/L final concentration using Lipofectamine (Invitrogen). Correspondingly luciferase assays were done 24 h after transfection using the Dual Glo Assay system (Promega) according to the manufacturer’s protocol in a multiwell plate luminometer (Veritas, Turner Biosystems).

Table 1. Differentially expressed miRNAs in Hep-394 versus Hep-SWX HCC cells

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Relative expression</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-130a</td>
<td>12.98</td>
<td><0.0001</td>
</tr>
<tr>
<td>miR-99b</td>
<td>7.88</td>
<td><0.0001</td>
</tr>
<tr>
<td>miR-181b</td>
<td>6.4</td>
<td>0.0006</td>
</tr>
<tr>
<td>miR-768-3p</td>
<td>6.2</td>
<td>0.002</td>
</tr>
<tr>
<td>miR-565</td>
<td>5.18</td>
<td><0.0001</td>
</tr>
<tr>
<td>miR-126*</td>
<td>3.64</td>
<td><0.0001</td>
</tr>
<tr>
<td>miR-146a</td>
<td>3.64</td>
<td>0.002</td>
</tr>
<tr>
<td>miR-193b</td>
<td>3.62</td>
<td>0.0005</td>
</tr>
<tr>
<td>miR-585</td>
<td>3.4</td>
<td>0.0004</td>
</tr>
<tr>
<td>miR-130b</td>
<td>3.3</td>
<td>0.0005</td>
</tr>
<tr>
<td>miR-100</td>
<td>3.12</td>
<td>0.002</td>
</tr>
<tr>
<td>miR-146b-5p</td>
<td>3.03</td>
<td>0.005</td>
</tr>
<tr>
<td>miR-181a</td>
<td>2.9</td>
<td>0.002</td>
</tr>
<tr>
<td>miR-148b</td>
<td>2.69</td>
<td>0.002</td>
</tr>
<tr>
<td>miR-548a-3p</td>
<td>2.61</td>
<td>0.001</td>
</tr>
<tr>
<td>miR-551b</td>
<td>2.55</td>
<td>0.01</td>
</tr>
<tr>
<td>miR-224</td>
<td>2.43</td>
<td>0.005</td>
</tr>
<tr>
<td>miR-483-3p</td>
<td>2.4</td>
<td>0.0009</td>
</tr>
<tr>
<td>miR-106b</td>
<td>2.31</td>
<td>0.005</td>
</tr>
<tr>
<td>miR-136</td>
<td>2.25</td>
<td>0.005</td>
</tr>
<tr>
<td>miR-660</td>
<td>2.19</td>
<td>0.0001</td>
</tr>
<tr>
<td>miR-135a</td>
<td>2.17</td>
<td>0.0002</td>
</tr>
<tr>
<td>miR-663</td>
<td>2.14</td>
<td>0.004</td>
</tr>
<tr>
<td>miR-206</td>
<td>0.2</td>
<td>0.01</td>
</tr>
<tr>
<td>miR-627</td>
<td>0.31</td>
<td>0.002</td>
</tr>
<tr>
<td>miR-196a</td>
<td>0.37</td>
<td>0.001</td>
</tr>
<tr>
<td>miR-192</td>
<td>0.43</td>
<td>0.0006</td>
</tr>
<tr>
<td>miR-570</td>
<td>0.47</td>
<td>0.01</td>
</tr>
<tr>
<td>miR-657</td>
<td>0.47</td>
<td>0.001</td>
</tr>
<tr>
<td>miR-668</td>
<td>0.48</td>
<td>0.03</td>
</tr>
<tr>
<td>miR-548c-3p</td>
<td>0.48</td>
<td>0.04</td>
</tr>
<tr>
<td>miR-425*</td>
<td>0.49</td>
<td>0.04</td>
</tr>
<tr>
<td>miR-345</td>
<td>0.5</td>
<td>0.008</td>
</tr>
</tbody>
</table>

NOTE: miRNA that were altered in expression by >2-fold, with a P value of <0.05 are listed.

Results

HCV viral proteins alter chemosensitivity in malignant hepatocytes. To explore the effect of HCV proteins on chemosensitivity, we used HepG2 cells stably transfected to express the full-length genome of HCV (Hep-394), or control empty vector (Hep-SWX). Sorafenib induced cytotoxicity in a concentration-dependent manner (Fig. 1). The IC₅₀ for sorafenib was 3.54 ± 0.89 μmol/L in control Hep-SWX cells and was reduced by >50% to 1.07 ± 0.15 μmol/L in Hep-394 cells (P = 0.02). These findings indicated that the constitutive expression of viral proteins can modulate cytotoxicity in HepG2 cells.

Expression of HCV proteins can modulate apoptosis. Induction of apoptosis is a mechanism of cytotoxicity induced by sorafenib. To examine the effect of HCV protein expression on apoptosis, we examined morphologic and biochemical changes of apoptosis in HCC cells. The number of cells undergoing apoptosis as well as the expression of caspase-3/7 and PARP cleavage were increased under basal conditions in Hep-394 compared with Hep-SWX cells (Fig. 1). Thus, the expression of viral proteins can modulate the basal level of apoptosis and thereby potentially modulate responses to therapeutic agents. Indeed, an increased apoptotic rate was observed in Hep-394 cells compared with Hep-SWX in response to sorafenib (Fig. 1). Cell cycle analysis by flow cytometry in cells treated with sorafenib or diluent control showed a greater reduction of cells in phase S induced by sorafenib in Hep-394 compared with Hep-SWX (Supplementary Fig. S1).

Sorafenib has been shown to induce apoptosis through a downregulation of the antiapoptotic protein Mcl-1 in both solid and hematologic malignancies (22, 23).
role of Mcl-1 as an important determinant of response to chemotherapy has been studied in many other cancers (24). Mcl-1 expression was significantly decreased in Hep-394 cells compared with Hep-SWX controls (Fig. 1), indicating that viral proteins can modulate the cellular expression of this protein. Sorafenib is a multikinase inhibitor that can target several pathways. Therefore, we assessed the effect of HCV on expression of several cellular targets in Hep-SWX and Hep-394 cells, as well as in Huh-7 cells stably infected with HCV. Mcl-1 was consistently reduced in both HCV-expressing cell lines, whereas raf-1, c-kit, and vascular endothelial growth factor were not altered by HCV expression (Supplementary Fig. S2). These data suggest a role for alterations in Mcl-1 in mediating the altered sensitivity to sorafenib in HCV-expressing cells. Indeed, Mcl-1 expression was reduced by sorafenib and was decreased in Hep-394 cells compared with Hep-SWX control cells after treatment with sorafenib (Supplementary Fig. S2).

HCV viral proteins alter the expression of selected miRNAs. We postulated that the differential sensitivity to sorafenib in Hep-394 cells arose as a result of alterations in miRNA expression induced by HCV proteins. To test this hypothesis, we first profiled miRNA expression in Hep-394 and Hep-SWX cells using a custom microarray. Our analysis identified 75 miRNAs that were aberrantly expressed in Hep-394 cells compared with Hep-SWX cells, and thereby comprised a specific miRNA signature associated with HCV proteins. Of these, 29 miRNAs were reduced in expression with a ratio ranging between 0.2 and 0.7, whereas 46 miRNAs were increased in expression in Hep-394 with ratio ranging from 1.4 to 12.9. Of the latter, the expression of 23 miRNAs was >2-fold changed in Hep-394 cells compared with Hep-SWX controls (Table 1). To identify miRNA that may be associated with the cancer phenotype, we also profiled miRNA expression in nonmalignant human hepatocytes and compared miRNA expression to those in Hep-SWX cells. Of the 75 miRNAs previously associated with HCV, we identified 22 miRNAs whose expression was not changed significantly in Hep-SWX HCC cells compared with normal human hepatocytes (Fig. 2). This group thus includes miRNAs that are modulated by the expression of viral proteins, but are not altered in malignant cells. Among these, the expression of three miRNAs, miR-768-3p, miR-193b, and miR-585, was altered by >3-fold by HCV viral protein expression.

MiRNA modulation of Mcl-1 in HepG2 cells. We next investigated the involvement of miRNAs in the modulation of Mcl-1 expression by HCV proteins. The HCV-associated miRNAs (Fig. 2) were queried against several miRNA target prediction databases (Miranda, PicTar, Targetscan, and miRbase; refs. 25–28) to identify those with the potential to target Mcl-1. Mir-193b and mir-483-3p were predicted by more than one database. We focused on miR-193b given the high fold change and significance (Fig. 2). First, we

![Fig. 2. A, the ratio of expression of miRNAs in Hep-394 cells relative to Hep-SWX cells is shown, plotted against their P values. Only those miRNAs that were not differentially expressed in nonmalignant human hepatocytes compared with malignant Hep-SWX HCC cells are shown. miR-193b, miR-768-3p, and miR-585 were the most significant upregulated miRNAs in HCV-expressing cells compared with controls. miRNAs that are predicted to target Mcl-1 by at least one target prediction database are shown in bold. B, miRNA expression was evaluated by real-time PCR. The expression of miR-193b was normalized to that of U6 RNA. Columns, mean; bars, SEM. *, P < 0.001 (n = 3) relative to controls.](clincancerres.aacrjournals.org)
verified the expression of miR-193b by quantitative real-time PCR. The expression of miR-193b was increased by 5.0 ± 0.6-fold in Hep-394 cells compared with control Hep-SWX cells and by 2.7-fold in HCV-infected Huh-7 cells compared with noninfected controls (Fig. 2). To further investigate the role of this miRNA, we transfected Hep-SWX cells with 100 nmol/L of precursor-miR-193b or control-pre-miRNA constructs. The efficacy of these constructs to modulate their target miRNA expression was verified using real-time PCR after 72 hours (Fig. 3). We then assessed Mcl-1 expression in transfected cells by semiquantitative immunoblot analysis. Mcl-1 protein was reduced in cells transfected with pre-miR-193b (Fig. 3). To study whether the effect on Mcl-1 protein expression was the result of a direct interaction between miR-193b and the 3′-UTR of Mcl-1, we used a reporter construct–based assay in which the 3′-UTR of Mcl-1 was cloned downstream of the luciferase gene. The miR-193b recognition site in the 3′-UTR of Mcl-1 is illustrated in Fig. 3. Hep-SWX cells were transfected with the luciferase reporter construct (Mcl-1-WT-luc), the Renilla as loading control, and the pre-miR-193b or control pre-miRNA. Luciferase activity was reduced by 53.0 ± 1.8% in cells transfected with pre-miR-193b compared with controls. As confirmation of these data, no changes were observed in the luciferase activity when we used constructs with deletions in the putative recognition site (Mcl-1-MUT-luc) that prevented miR-193b from interacting with the 3′-UTR of Mcl-1. These data indicate that HCV proteins can increase the expression of miR-193b in HepG2 cells, and that an increase in miR-193b can alter Mcl-1 expression in HepG2 cells. miR-193b alters sensitivity to chemotherapy and induces apoptosis. Alterations in Mcl-1 can modulate sensitivity to sorafenib. To evaluate the effect of alterations in miR-193b on the sensitivity to sorafenib, Hep-SWX cells and Huh-7 cells were transfected with pre-miR-193b or
control-pre-miRNA and the IC$_{50}$ to sorafenib was determined after 72 hours. In Hep-SWX cells transfected with pre-miR-193b, the IC$_{50}$ to sorafenib was decreased compared with cells transfected with control precursors (2.1 ± 0.1 μmol/L versus 5.6 ± 1.0 μmol/L; Fig. 4). Notably, IC$_{50}$ to sorafenib was reduced by 28.0 ± 1.7% (P = 0.0001) in Huh-7 cells transfected with pre-miR-193b (Supplementary Fig. S3). Thus, these observations were consistent with our previously noted effects of this miRNA on Mcl-1 expression. To verify whether pre-miR-193b could sensitize HepG2 cells to sorafenib through the enhancement of apoptosis, we measured apoptosis in Hep-SWX cells transfected with either control precursor-miR or pre-miR-193b. Forty-eight hours after the transfection, cells were treated with 2 μmol/L sorafenib for 72 hours. Transfection with pre-miR-193b sensitized cells to sorafenib-induced apoptosis (Fig. 4). Next, we studied whether the inhibition of miR-193b in Hep-394 cells could alter the sensitivity of these cells to sorafenib. A reduction of 4-fold in miR-193b expression was observed in Hep-394 cells transfected with anti-miR-193b compared with controls. Consistently with our previous data, the IC$_{50}$ to sorafenib was increased from 0.4 to 1.5 μmol/L (P = 0.01; Fig. 4). Together, these data suggest that pre-miR-193b might modulate the sensitivity of HepG2 cells to sorafenib by altering cellular apoptosis.

miR-193b expression is increased in HCV-positive HCC tissues. We next analyzed the expression of miR-193b by in situ hybridization in a series of 57 HCC tissues. Mir-193b was expressed in 36 samples. Next, we assessed the expression of HCV by immunohistochemistry. Thirty-one samples were positive for HCV. miR-193b and HCV were both positive in 46% of HCC, whereas they were both negative in 28% of cases. More interestingly, HCV often colocalized with miR-193b in the same cells as shown in Fig. 5. These data are in line with previous findings showing an increase of miR-193 in hepatitis-infected cirrhotic liver compared with noninfected, noncirrhotic liver (29). Furthermore, an analysis of the raw data by Jiang et al. (29) showed an increased mean miR-193 expression in HCV-positive HCC samples compared with HCC of other etiologies (4.2 ± 0.4 versus 2.8 ± 0.4).

Discussion

Pharmacologic treatment options for HCC continue to evolve, and therapeutic agents that have some benefit have recently become available or are being developed. The selection of treatment for HCC, however, has not been based on etiologic considerations but rather on tumoral factors such as size, number, and extension, as well as patient factors such as performance status and underlying liver disease. HCV infection is a major risk factor for HCC, but its effect on the chemosensitivity of HCC cells is not well understood. In this study, we examined the role of miR-193b in the chemosensitivity of HCC cells.

In summary, our study provides new insights into the role of miR-193b in the chemosensitivity of HCC cells. The increased expression of miR-193b in HCV-positive HCC tissues suggests that this miRNA may play a role in the development of HCC. Further studies are needed to elucidate the mechanisms by which miR-193b modulates the chemosensitivity of HCC cells.
disease (30). However, HCC is a heterogeneous cancer and can arise as a result of causes as diverse as environmental toxins, chronic infections, or metabolic derangements within the liver (4). Genomic expression profiling studies in HCC have identified varying gene expression profiles for HCC associated with HBV or HCV infection (31–33), thereby suggesting that hepatocarcinogenesis may reflect distinct molecular mechanisms based on the underlying etiologic agent. Such changes may be expected to affect a broad range of cellular effects within host cells.

The relationship between HCV and miRNA expression is of considerable interest given that miRNAs can target many host cell genes. A distinct group of miRNAs that are associated with HCV was identified in our studies. Of these, miR-193b was one of the most significantly altered in expression. Randall et al. (13) studied the HCV-dependent modulation of miRNA expression and showed an upregulation for miR-322, miR-197, miR-532-5p, and miR-374 in HCV-expressing Huh-7 cells. miR-21, miR-122 were unaffected by HCV. miR-122 is highly prevalent in the liver, and is downregulated in HCC. Consistent with Randall et al. (13), we also did not notice any effect of viral protein expression on miR-122 expression. The differences in miRNA expression between their studies and our observations may be due to differences in cell lines or in miRNA assays. By a cloning strategy, Tuschl and colleagues (34) identified an increased frequency of several miRNAs such as miR130a, 181b, and 26a associated with the expression of HCV in Huh-7 cells. Other miRNAs, such as miR-16, miR-192, and miR-196b, were reduced similar to our findings. Studies of miRNA expression in liver tissues of HCV-infected patients by Varnholdt et al. (35) showed increased expression of miR-122, miR-100, miR-10a, miR198, and miR-145 in HCC tissues when compared with normal adjacent tissues, suggesting that the underlying HCV infection can modulate the expression of miRNAs in cancer. However, it is not possible to speculate on any direct HCV-induced effects in these studies as comparisons with HCV-negative HCCs were not reported. The mechanism by which HCV proteins can modulate the expression of miRNAs is also of interest. HCV core protein can suppress the activity of

Fig. 5. Paraffin-embedded, formalin-fixed HCC tissues were incubated with locked nucleic acid–anti-miR-193b and antibody against HCV. A, the proportion of cases of HCC-positive for miR-193b and HCV expression is depicted in the columns. B, picture of a representative case was taken with the Nuance system that converts the RGB-based signal to a fluorescent-based signal. Blue, miR-193b; red, HCV; and yellow, overlapping (colocalization) of blue and red.
Dicer, the enzyme involved in the procession of miRNAs and thus alter the production of mature miRNAs (36). The nonstructural NS5B protein, as a viral RNA-dependent RNA polymerase, could use miRNAs as primers to synthesize dsRNA and then amplify the process of RNA interference (37).

Anticancer drugs exert their effect, at least in part, by triggering apoptosis (38). In vitro studies showed that HCV proteins can cause massive apoptosis in HCC cells by activation of the mitochondrial pathways of apoptosis and sensitization to TRAIL or Fas ligand, and can inhibit DNA replication in normal hepatocytes (32, 39). Our studies show a propensity for HCV viral protein–expressing cells to undergo apoptosis and alter sensitivity to therapeutic agents such as sorafenib. Thus, targeting the modulation of apoptosis by HCV is a reasonable approach to enhance therapeutic drug sensitivity in HCC. Whether the same apoptotic activation occurs in nontransformed hepatocytes is less clear. Moreover, immune mechanisms are key determinants of viral clearance in HCC infection as variation in genes involved in the immune response can contribute to the ability to clear the virus (40).

The relationship of miRNAs to chemotherapy responses is likely to be complex. For example, we have shown that gemcitabine can modulate the expression of miRNAs (17). Indeed miRNA expression has been shown to correlate with chemosensitivity (41). IFN can exert anti-HCV effects by inducing miRNAs that have sequence-predicted targets within the HCV genomic RNA (42). Thus, further study of the miRNA responses to chemotherapeutic agents is necessary. Identifying miRNAs that are modulated by chemotherapeutic agents and that may have additional benefits on viral replication is likely to be helpful in the treatment of HCC-associated HCC.

Several lines of evidence indicate that Mcl-1 is an important mediator of chemosensitivity in HCC. Mcl-1 is overexpressed in HCC cell lines and in 50% of human HCC tissues compared with normal adjacent tissues (43, 44). Overexpression of Mcl-1 is associated with chemoresistance (43, 45). Modulation of Mcl-1 has been implicated in HCC cell death by sorafenib but the mechanisms by which sorafenib modulates Mcl-1 has not been elucidated (22, 23). Recent studies have shown that Mcl-1 expression can be modulated by miRNAs (46, 47). Therapeutic approaches that manipulate miRNA expression are being developed, and use of mir-193b mimics that alter the expression of miR-193b and target Mcl-1 will provide a novel and exciting approach to modulate chemosensitivity in HCC. Based on our studies, the expression of mir-193b warrants further evaluation as a potentially useful biomarker of response to sorafenib in HCV-associated HCC.

The potential contribution of the presence of HCV to chemotherapy responses is likely to become of importance as new agents become available. The recent success with sorafenib has prompted interest in identifying new agents for HCC. Previously, Leung et al. (48) noted a correlation between positive HCV serology and response to polychemotherapy regimens. In large multicenter phase II and phase III trials that proved the activity of sorafenib in HCC, more than a half of the patients were infected with HCV (5, 49). In a randomized controlled trial of sorafenib for hepatocellular cancer, patients were not stratified based on HCV status. However, a subgroup analysis in HCV-positive patients showed a median overall survival of 14 months in patients treated with sorafenib compared with 7.9 months in the placebo group, with similar trends in the time to progression (6). Interestingly, the median overall survival in the placebo group was similar between the overall population and the HCV-positive subgroup, suggesting that sorafenib might achieve better results specifically in the HCV subgroup. Based on our observations, future trials of chemotherapeutic agents in HCC should be stratified according to their hepatitis C status.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

American Italian Cancer Foundation (N. Valeri).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 8/7/09; revised 11/9/09; accepted 12/2/09; published OnlineFirst 1/26/10.

References

Clinical Cancer Research

Hepatitis C Virus Proteins Modulate MicroRNA Expression and Chemosensitivity in Malignant Hepatocytes

Chiara Braconi, Nicola Valeri, Pierluigi Gasparini, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-09-2123

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2010/01/26/1078-0432.CCR-09-2123.DC1

Cited articles
This article cites 48 articles, 10 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/16/3/957.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/16/3/957.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.