Dasatinib Inhibits the Growth of Molecularly Heterogeneous Myeloid Leukemias

Bella S. Guerrouahen1,5, Muneyoshi Futami7, Christos Vaklavas1,4, Jukka Kanerva1, Zakary L. Whichard7, Kenechi Nwawka1, Elisabeth G. Blanchard1, Francis Y. Lee8, Lisa J. Robinson9, Robert Arceci10, Steven M. Komblaú3, Eric Wieder3, Yvon E. Cayre6, and Seth J. Corey1,2,7

Abstract

Purpose: Dasatinib is a dual Src/Abl inhibitor recently approved for Bcr-Abl+ leukemias with resistance or intolerance to prior therapy. Because Src kinases contribute to multiple blood cell functions by triggering a variety of signaling pathways, we hypothesized that their molecular targeting might lead to growth inhibition in acute myeloid leukemia (AML).

Experimental Design: We studied growth factor–dependent and growth factor–independent leukemic cell lines, including three cell lines expressing mutants of receptor tyrosine kinases (Flt3 or c-Kit) as well as primary AML blasts for responsiveness to dasatinib.

Results: Dasatinib resulted in the inhibition of Src family kinases in all cell lines and blast cells at \(\sim 1 \times 10^{-9} \) mol/L. It also inhibited mutant Flt3 or Kit tyrosine phosphorylation at \(\sim 1 \times 10^{-6} \) mol/L. Mo7e cells expressing the activating mutation (codon 816) of c-Kit were most sensitive to growth inhibition with a GI50 of \(5 \times 10^{-5} \) mol/L. Primary AML blast cells exhibited a growth inhibition of \(<1 \times 10^{-6} \) mol/L. Cell lines that showed growth inhibition at \(\sim 1 \times 10^{-6} \) mol/L showed a G1 cell cycle arrest and correlated with accumulation of p21 and p27 protein. The addition of rapamycin or cytotoxic agents enhanced growth inhibition. Dasatinib also caused the apoptosis of Mo7e cells expressing oncogenic Kit.

Conclusions: Although all of the precise targets for dasatinib are not known, this multikinase inhibitor causes either growth arrest or apoptosis in molecularly heterogeneous AML. The addition of cytotoxic or targeted agents can enhance its effects.

Cancer Therapy: Preclinical

The treatment of acute myeloid leukemia (AML) remains challenging (1). Molecular profiling has correlated well with its phenotypic diversity (2). Nonetheless, AML results from two profound disturbances in hematopoiesis:

The treatment of acute myeloid leukemia (AML) remains challenging (1). Molecular profiling has correlated well with its phenotypic diversity (2). Nonetheless, AML results from two profound disturbances in hematopoiesis:

1. A gain-of-function in proliferation and a loss-of-function in complete differentiation (3). A mutation in a transcription factor commonly blocks myeloid differentiation, whereas aberrant tyrosine kinase activity promotes excessive proliferation and survival (4). The clinical efficacy of imatinib mesylate in chronic myeloid leukemia (CML) has encouraged research on tyrosine kinases and their inhibitors in hematologic malignancies (5). Receptor tyrosine kinases (RTK) mediate cytokine effects to the intracellular signaling pathways, whereas cytoplasmic protein tyrosine kinases are activated by cytokine receptors. Tyrosine kinase signaling cascades play a major role in benign and malignant hematopoietic cell signaling (6). One of the most common genetic abnormalities in AML is a gain-of-function mutation in the RTK Flt3 (FMS-like tyrosine kinase-3) due to internal tandem duplication (ITD). The constitutively active Flt3-ITD is associated with inferior prognosis and is present in \(\sim 30\% \) of AML (5). Point mutations in kinase domains confer gain of function for Kit stem cell factor (SCF) receptor and Flt3. Thus, approximately half of adult AML cases possess aberrant RTK activity. Recent sequencing of tyrosine kinase domains have not revealed mutations to account for the other half (7, 8). However, leukemic cell proliferative growth may be conferred by cryptic translocations, mutations outside of the sequenced kinase domains, or aberrant activation of accessory kinases. We and others...
Translational Relevance

Acute myeloid leukemia (AML) remains one of the most difficult hematologic malignancies to treat. Improvements in therapy will come from the identification of new molecularly targeted agents and their incorporation into multidoor regimens. The dual Src/Abl kinase inhibitor dasatinib has been approved for use in chronic myeloid leukemia. Dasatinib also has efficacy against the receptor tyrosine kinase c-Kit, sometimes mutated in AML. In this study, we observed that dasatinib significantly inhibited growth in a variety of AML cell lines and primary blasts. Our results indicate that dasatinib can inhibit SFK dependency. We also studied dasatinib on primary AML samples. These samples were classified according to the FAB system of leukemia classification. The addition of other cytotoxic or molecular-targeted agents to dasatinib may delay transition of CML to blast crisis and may be effective in treating imatinib-resistant CML with dasatinib.

Materials and Methods

Reagents. Bristol-Myers provided the Src/Abl kinase inhibitor dasatinib, and its stock solution was prepared by dissolving the compound in DMSO at 10 mmol/L and was stored at −20°C. Rapamycin and etoposide (Calbiochem) were dissolved in DMSO and cytarabine (Sigma-Aldrich) in water. Trypan blue was purchased from Sigma-Aldrich. The MTT cell proliferation assay was purchased from the America Type Culture Collection.

Leukemic cells. Ba/F3-Flt3ITD, engineered to express the Flt3 ITD mutation as described elsewhere (9), is an IL-3–independent murine pro-B-cell line. MV4-11 is a human acute monocyctic leukemia cell line expressing Flt3ITD, which was obtained from the America Type Culture Collection. Mo7e is a human acute megakaryoblastic leukemia cell line, dependent on either human IL-3, SCF, or granulocyte macrophage colony-stimulating factor for survival and proliferation. A strain of Mo7e cells were engineered to express the D816H mutation of c-Kit as described elsewhere (11). U937 and THP-1 are factor-independent myeloid leukemia cell lines and were obtained from the America Type Culture Collection and Yvon Cayre (Robert Debré Hospital, Paris, France). K562 cells were derived from a patient with CML myeloid blast crisis, which were obtained from Dr. Joya Chandra (MD Anderson Cancer Center, Houston, TX). MV4-11 cells were grown in Iscove’s medium supplemented with 10% FCS, 2 mmol/L L-glutamine (Life Technologies), and 5 ng/mL rh-GM-CSF (Berlex). Mo7e cell lines were grown in RPMI 1640 supplemented with 10% FCS, 2 mmol/L L-glutamine, 100 units/mL penicillin/streptomycin (Life Technologies), and 5 ng/mL rh-GM-CSF (Berlex). Mo7e cell lines were grown in RPMI 1640 supplemented with 10% FCS, 2 mmol/L L-glutamine, 100 units/mL penicillin/streptomycin, and 5 ng/mL recombinant human SCF. Ba/F3-Flt3ITD cells were maintained in medium containing 2 ng/mL murine IL-3 (Peprotech, Inc.).

Under these conditions, their growth is not dependent on the expression of mutant Flt3. When dasatinib and other compounds were tested, IL-3 was washed from the Ba/F3-Flt3ITD cells; in the absence of added growth factors, the survival and proliferation of Ba/F3-Flt3ITD are dependent on their expression of constitutively active Flt3 mutant (9). K562, THP-1, and U937 were grown in RPMI supplemented with 10% FCS, 2 mmol/L L-glutamine, and 100 μg/mL penicillin/streptomycin. After acquiring informed consent from patients, primary AML blast cells were obtained before therapy from bone marrow aspirates or peripheral blood based on an Institutional Review Board–approved protocol at the MD Anderson Cancer Center. These samples were classified according to the FAB system.
nyl fluoride, and EDTA and phosphatase inhibitors (NaF, and M3, M6, and M7 samples were excluded. A mononuclear cell fraction was prepared following ficoll-hypaque separation and the cell fraction was cryopreserved. Aliquots of blast cells were rapidly thawed at 37°C, washed with RPMI, and resuspended at 600,000 cells/mL in RPMI supplemented with 20% FCS. Cell viability ranged from 50% to 80% and represented specimens containing at least 70% blasts.

Lyn small interfering RNA treatment of Mo7e cells. Scrambled or small interfering RNA (siRNA) to human Lyn was purchased from Dharmacon. Cell line nucleofector kit V was purchased from Amnco Biosystems, and the nucleofection of Mo7e cells was done according to the manufacturer’s optimized protocol. Briefly, 2 × 10⁶ cells per nucleofection sample were harvested after cells were freshly split, and the cell pellet was resuspended in prewarmed Nucleofector Solution V. Cell suspension (100 μL) was incubated with different concentration of siRNA or control (200 nmol/L each) and transferred into Amnco-certified cuvettes. Nucleofection was carried out according to program X-01. Cells were harvested after 24, 48, and 72 h after nucleofection for analysis of protein levels of Lyn by Western blot.

Growth inhibition assays. Cellular growth was analyzed by both trypan blue exclusion and tetrazolium-based metabolic assay. Cell lines had been split before the addition of dasatinib or DMSO as control diluent (both at 0.1% vol/vol) for indicated times. They were then collected and diluted in trypan blue dye (Sigma) for counting with hemocytometer. Alternatively, the MTT cell proliferation assay was done according to the manufacturer’s instructions. Cells were cultured in 96-well plates using the same growth medium and drug concentrations as in the trypan blue assay. At indicated time points, measurement of MTT activity was done on a Spectramax Plus 384 spectrophotometer (Molecular Devices). GI₅₀ values were calculated using the Calcusyn software (Biosoft).

Cell cycle analysis. After cells were treated with dasatinib (or DMSO control) for 24 h, 1 × 10⁶ cells were collected for each condition, washed with PBS, and fixed in 70% ethanol for at least 1 h at 4°C. Cells were then washed twice with PBS and stained with 0.05 mg/mL propidium iodide solution for 2 h on ice in the dark. RNase (20 μg/mL) was added before samples were read with the FACSCalibur (Becton Dickinson) with the Channel FL-2H. Histograms of cell numbers versus linear integrated red fluorescence were recorded at low settings and were analyzed with the ModFit software LT3.0 (Verity Software House).

Western blotting. Approximately 5 × 10⁶ cells per aliquot of the cell lines were incubated with varying concentrations of dasatinib, rapamycin, and cytarabine for 60 min at 37°C. DMSO served as the diluent control. Ba/F3-Flt3ITD cells were washed free of IL-3, before being incubated with dasatinib. The other lines were incubated in similar conditions as in the cellular proliferation assays. After the incubation, cells were washed twice in PBS and were lysed with radioimmunoprecipitation assay lysis buffer supplemented with protease inhibitor cocktail, phenylmethylsulfonyl fluoride, and EDTA and phosphatase inhibitors (NaF, Na₂VO₄). Lysates (30 μg/lane) were electrophoresed on SDS-PAGE gels. Gels were transferred onto the Immobilon-P Transfer membrane (Millipore Corp.). The membranes were blocked 1 h at 4°C with a blocking buffer, PBS 0.1% Tween 20 supplemented with either 5% bovine serum albumin or milk, depending on the antibody. Immunoblotting was done with polyclonal phospho-Src (Tyr416) antibody (Cell Signaling), phospho-Lyn (Tyr396) rabbit monoclonal antibody (Epitomics), and phospho-Lyn (Tyr507) antibody (Cell Signaling). Lyn expression was detected with a polyclonal antibody (Santa Cruz Biotechnology). Cbl was immunoprecipitated or blotted with polyclonal Cbl (C-15) antibody (#sc-170 Santa Cruz Biotechnology). Flt3 was immunoprecipitated or blotted with polyclonal Flt3 antibody (#sc-479, Santa Cruz Biotechnology) and c-Kit was immunoprecipitated or blotted with a rabbit polyclonal antibody (Cell Signaling). Lysates from immunoprecipitates were probed with monoclonal antibody (Clone 4G10, #05-321, Upstate). CrkL was detected with a polyclonal antibody (#sc-319), and CrkL phosphorylation (Tyr207) with a polyclonal antibody from Cell Signaling (#3181). Blotting for cyclin-dependent kinase inhibitors was done with p27 antibody from Santa Cruz (sc-527) or p21 antibody from BD Transduction laboratories (# 610233). After the incubation with the primary antibody for 1 h at room temperature or overnight at 4°C, the blots were incubated with the secondary antibody for 1 h at room temperature. Apoptosis was determined by blotting for caspase-3 (Cell Signaling, #9665) and cleaved caspase-3 (Cell Signaling, #9664). Immunoreactive bands were visualized by using a developing solution (Western Lightening, Perkin-Elmer LAS, NEL104). Membranes were restored using a stripping solution (Western Lightening, Perkin-Elmer LAS, NEL104). Membranes were restored using a stripping buffer (Pierce) for 30 min at 37°C, were reblocked, and were reprobed for actin (actin antibody, #sc-1615, Santa Cruz Biotechnology) or total protein as a loading control. Densitometric analysis was done with the NIH ImageJ software. Sensitivity analysis on Lyn tyrosine phosphorylation patterns was done with the Microsoft Excel software.

Phosphoproteome analysis. High throughput analysis of phosphoprotein content was done using the Kinex Antibody microarray (Kinexus Bioinformatics Corp.) following treatment with low-dose (1 × 10⁻³ mol/L) and high-dose (1 × 10⁻⁵ mol/L) dasatinib. Mo7e cells were treated 1 h with dasatinib or its vehicle DMSO as a control. After treatment, cells were collected and total protein lysates were prepared according to the protocols recommended by Kinexus. Protein lysates were then labeled and incubated on the Kinex Antibody microarrays on which ~500 pan-specific and 300 phospho-site–specific antibodies were immobilized. Following the complete quantification of all detected spots, we extracted information of the percent change from control, reflecting a measure of change in normalized signal intensity averages between the treated and the control samples.

Combination studies. Dose-effect curves for the individual drugs were done for Ba/F3 FLT3 ITD cell lines.
The experiment was repeated using the drugs alone and in combination. Approximate equipotent concentrations of the individual drugs were used in the combination study to assess drug interactions (Supplementary Table S1). The combination index (CI) provides a numerical value for synergism or antagonism between two drugs. The data for CI was generated using the CalcuSyn Software (Biosoft). CI of <1, 1, and >1 indicate synergism, additive effect, and antagonism between the medicines, respectively (25). No sigmoidal dose-effect curves could be generated for rapamycin, so the median effect method could not be used in the combination studies involving rapamycin. Instead, analysis of potentiation versus inhibition was done (26).

Ba/F3 FLT3 ITD cells were grown at escalating concentrations of dasatinib along with fixed concentrations of rapamycin (1 × 10^{-9} mol/L, 1 × 10^{-8} mol/L, and 1 × 10^{-7} mol/L). The GI50 of dasatinib in combination with fixed concentration of rapamycin was calculated using CalcuSyn and was compared with the GI50 of dasatinib alone on the same cell line.

Statistical analysis. Means between two or three groups were calculated using a two-sided Student’s t test or ANOVA with PRISM (GraphPad Software).

Results

Targeting Lyn in myeloid cell growth. Because we and others have shown that Lyn plays a role in myelopoiesis, we hypothesized that specific targeting of Lyn by siRNA would result in the decreased cell growth of AML cells. Mo7e cells require the presence of a hematopoietic growth factor, such as IL-3, granulocyte macrophage colony-stimulating factor, or SCF, to survive and proliferate. Treatment of Mo7e cells with siRNA to Lyn resulted in decreased Lyn protein levels, compared with scrambled control RNA or mock-nucleofected cells, as well as decreased cell growth (Fig. 1). This is consistent with our previous report of constitutive Lyn activation in myeloid cell lines and inhibition of myeloid cell growth by Lyn antisense (27). However, because RNA interference is not currently used as a therapeutic tool, we further studied the efficacy of the Src kinase inhibitor dasatinib.

Src/Abl kinase inhibition. An in vitro kinase screen led to the identification of dasatinib (BMS-354825) as a potent Src/Abl kinase inhibitor with an IC50 0.2 to 1.1 × 10^{-9} mol/L and 3 × 10^{-9} mol/L for SFK and Bcr-Abl, respectively. Of the nine mammalian SFK, Lyn has the greatest expression in myeloid cells (6). A 60-minute incubation with dasatinib inhibited total SFK phosphorylation at nanomolar concentrations in all cell lines studied, ranging from 1 × 10^{-9} mol/L in Mo7e and MV4-11 cells; 1 × 10^{-8} mol/L in Ba/F3-Flt3ITD, U937, and THP-1; to 1 × 10^{-7} mol/L in Mo7e-KitD816H (Fig. 2A). Phospho-Src inhibition was also investigated in the AML specimen #2956294 and was found to occur at 1 × 10^{-8} mol/L. With the exception of BcrAbl+ K562 cells as a positive control, phosphorylation of Abl could not be detected in any of the cell lines studied (data not shown). We compared the status of phospho-Lyn (Tyr396) and phospho-Lyn (Tyr 507) content with that of phospho-Src (Tyr416) following dasatinib treatment; there was an approximate correlation (Supplementary Fig. S1A). Differences in antibody characteristics (rabbit polyclonal versus rabbit monoclonal) may account for variance. Densitometric analysis also suggested that net Lyn activity reflected competing effects of dasatinib-induced inhibition on Csk/Chk, which phosphorylates the negative regulatory site at Tyr 507, and Lyn itself at its positive regulatory site (Supplementary Fig. S1B). Sensitivity analysis showed that the trend in net Lyn activity was independent of antibody binding efficiency (Supplementary Fig. S1C). We found that the 1 × 10^{-7} mol/L
Dasatinib inhibited the tyrosine phosphorylation of Src/Abl downstream targets CrkL and Cbl in Ba/F3-ITD and MV4-11 (Supplementary Fig. S2). Dasatinib also inhibited the tyrosine phosphorylation of oncogenic forms of both c-Kit and Flt3 (Fig. 2B and C). Phosphoproteome analysis of dasatinib-treated Mo7e cells showed two patterns. At the low dose (1×10^{-9} mol/L), there was inhibition of protein kinase Cδ Akt1 and focal adhesion kinase. At the high dose (1×10^{-5} mol/L), there was inhibition of protein kinase ErbB2 and vascular endothelial growth factor receptor 2 (Supplementary Table S2). These data suggest that there are off-target effects of dasatinib, which may account for the difference between the observed IC50 of dasatinib on SFK and the GI50 of various AML cell lines (see below).

Dasatinib inhibition of primary myeloid leukemia cell growth.
We used two different assays to determine the effects of dasatinib on cell growth and viability: trypan blue exclusion and MTT activity. As shown in Supplementary Table S3, dasatinib treatment resulted in a GI50 of 3 to 6×10^{-6} mol/L for both Flt3ITD⁺ and factor-independent cell lines. The degree of growth inhibition was similar to that observed in cells treated with a general Src kinase inhibitor PP1 (data not shown). Mo7e-KitD816H cells were most sensitive to dasatinib (GI50 = 5×10^{-9} mol/L). Fourteen patient samples were treated with dasatinib or DMSO control, and viability was determined in triplicate at 48 hours. As shown in Fig. 3A, dasatinib inhibited the growth of primary AML blasts more strongly than the leukemic cell lines (Mann-Whitney test, $P = 0.0188$). The lowest GI50 at 24 hours was observed for an AML M4 specimen that carried a gain-of-function mutation in NRAS (1×10^{-9} mol/L). The GI50 at 48 hours ranged between 1×10^{-9} to 1.7×10^{-6} mol/L (Supplementary Table S4). Similar values were obtained at 72 and 96 hours (data not shown). Next, we correlated inhibition of Lyn activation with that of growth. Viability was measured in primary myeloid leukemic cells treated for 48 hours in the presence of varying concentrations of dasatinib. An aliquot of these cells was also treated with dasatinib for 1 hour and analyzed for anti-phospho-Lyn (Tyr396) content by Western blotting. We identified dasatinib high-sensitive and low-sensitive primary AML specimens (Fig. 3B) and observed a positive correlation in the dose responsiveness of dasatinib-induced Lyn inhibition and cell growth.

Dasatinib induces G1 arrest with the accumulation of p21 and p27 or apoptosis in sensitive cells.
Because we observed little cytotoxicity, we hypothesized that dasatinib caused growth arrest. Therefore, cell cycle analysis was done on
cells stained with propidium iodide and then measured by flow cytometry. The proportion of Ba/F3-Flt3ITD, THP-1, and Mo7e cells in G1 phase increased after 24 hours of dasatinib treatment (Table 1). Exposure of THP-1 cells to dasatinib resulted in a dose-dependent upregulation of the cyclin-dependent kinase inhibitors p21 (Waf1) and p27 at 48 hours (Fig. 4A). At 1×10^{-5} mol/L, we detected a minor cleavage of caspase-3 but no poly ADP ribose polymerase cleavage in THP-1 cells (data not shown). However, at 24 hours of exposure to dasatinib, we observed significant caspase activity, indicative of apoptosis, in cells expressing oncogenic Kit (Fig. 4B).

Synergy with targeted and cytotoxic agents. We hypothesized that the effects of dasatinib could be synergistic with either other targeted agents or cytotoxic drugs. In Ba/F3-Flt3ITD cells, dasatinib and rapamycin were synergistic. Rapamycin inhibited the growth of Ba/F3-Flt3ITD cells by 14% to 31% when used alone at concentrations 1×10^{-9} mol/L. The growth inhibition of primary AML cell by dasatinib. AML cell lines or AML specimens were treated for 48 h with dasatinib. The growth inhibition was assessed by trypan blue exclusion and compared with the DMSO control. GI50 were calculated using the CalcuSyn software. The data were plotted in PRISM and showed significance with a Mann-Whitney test ($P = 0.0188$).

Fig. 3. A, growth inhibition of primary AML cell by dasatinib. AML cell lines or AML specimens were treated for 48 h with dasatinib. The growth inhibition was assessed by trypan blue exclusion and compared with the DMSO control. GI50 were calculated using the CalcuSyn software. The data were plotted in PRISM and showed significance with a Mann-Whitney test ($P = 0.0188$). B, correlation of growth inhibition and Lyn activity. AML primary cells (1×10^6/mL) were cultured in RPMI containing 20% fetal bovine serum and dasatinib ($0-1 \times 10^{-6}$ mol/L) for 48 h. Cell number was determined using trypan blue dye. An aliquot of the same AML primary cells were treated with different concentrations of dasatinib ($0-1 \times 10^{-6}$ mol/L) for 60 min at hour 0. Cells were lysed, and 40 μg of protein lysates were electrophoresed and subsequently blotted with anti-phospho-Lyn (Tyr396) or anti-actin antibodies. The Western blot film was scanned and the band intensity of phospho-Lyn (Tyr396) was quantified by densitometric analysis using the ImageJ 1.42 software (NIH). The scatter diagram shows the correlation between phospho-Lyn (Tyr396) levels and cell numbers after treatment with dasatinib, delineating high-sensitive and low-sensitive AML patients. Control specimens maintained viability at >90%. Positive correlation between the inhibition of Lyn activity and cell growth was observed.
to 1×10^{-7} mol/L, and the GI$_{50}$ exceeded 1×10^{-6} mol/L. The results of the combination studies of rapamycin plus dasatinib are shown in the form of relative GI$_{50}$ value, i.e., the ratio of the GI$_{50}$ of dasatinib in combination with fixed concentrations of rapamycin versus the GI$_{50}$ of dasatinib alone. The addition of rapamycin at concentrations of 1×10^{-9} and 1×10^{-8} mol/L decreased the GI$_{50}$ of dasatinib by 25%. The addition of 1×10^{-7} mol/L rapamycin decreased the GI$_{50}$ of dasatinib by 55% (Fig. 4C). As shown in Table 2, synergism was observed when dasatinib is combined with cytarabine (A) or etoposide (B) at concentrations equal to their GI$_{50}$. A stronger synergy was observed at concentrations exceeding their respective GI$_{50}$.

Discussion

Because SFK activate many of the same growth-promoting signaling molecules associated with Bcr-Abl, and based from the data from our group and other investigators on the aberrant activation of SFK, primarily Lyn, in AML cells (27–29), we studied the role of dasatinib in a variety of AML cell lines and primary AML blasts. Src kinases, primarily Lyn, were active in all of these cell lines and blasts cells. In our studies, phosphorylation of Src Tyr416, used to monitor an activating autophosphorylation site, was decreased by dasatinib (30). Our preclinical studies showed that the Src-Abl inhibitor dasatinib caused growth arrest at $\leq 1 \times 10^{-6}$ mol/L in molecularly heterogeneous AML cell lines and primary AML blasts. Oral dosing of dasatinib in

Table 1. Dasatinib induces growth arrest in THP-1, Ba/F3-ITD, and Mo7e cells

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Concentration</th>
<th>G$_1$</th>
<th>S</th>
<th>G$_{2-M}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>THP-1</td>
<td>0 µmol/L</td>
<td>47</td>
<td>39</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>0.1 µmol/L</td>
<td>46</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1 µmol/L</td>
<td>50</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>10 µmol/L</td>
<td>57</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>Ba/F3-ITD</td>
<td>0 µmol/L</td>
<td>49</td>
<td>45</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>0.1 µmol/L</td>
<td>50</td>
<td>38</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1 µmol/L</td>
<td>54</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10 µmol/L</td>
<td>65</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>Mo7e</td>
<td>0 µmol/L</td>
<td>35</td>
<td>44</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>0.1 µmol/L</td>
<td>34</td>
<td>45</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1 µmol/L</td>
<td>33</td>
<td>49</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>10 µmol/L</td>
<td>44</td>
<td>49</td>
<td>7</td>
</tr>
</tbody>
</table>

Fig. 4. Effect of dasatinib on tyrosine phosphorylation of p27 and p21 in THP-1 cells and caspase cleavage in Mo7e-KitD816H cells. A, dasatinib-induced cell cycle arrest. Bottom, dasatinib-induced growth arrest, shown as a cell cycle distribution graph, correlated with increased p27 and p21 levels. Western blotting for levels of p27 and p21 was done on protein lysates of THP-1 cells treated for 48 h with indicated doses of dasatinib or DMSO. Detection of actin served as control for comparable protein loading. B, dasatinib-induced apoptosis. Dasatinib causes apoptosis in Mo7e-KitD816H cells as detected by the cleavage of caspase-3. Whole-cell lysates were prepared after 24 h of treatment with dasatinib. Caspase-3 and cleaved caspase-3 were analyzed by Western blotting. Actin serves as the loading control. C, synergy between dasatinib and rapamycin in Ba/F3-Flt3ITD: potentiation versus inhibition analysis. Ba/F3-Flt3ITD cells were treated with dasatinib in combination with fixed doses of 1×10^{-7}, 1×10^{-8}, and 1×10^{-9} mol/L rapamycin versus dasatinib alone. Cells were collected at 48 h, and the growth inhibition was determined by trypan blue exclusion. Columns, mean of triplicate cultures. Values of >1, 1, and <1 denote inhibition, no effect, and potentiation, respectively.
human clinical trials has achieved micromolar concentrations (31). Dasatinib directly inhibits c-Kit and was highly effective in inhibiting the growth of Mo7e cells expressing an activating mutation of Kit at 1 × 10−9 mol/L. It is unlikely that Abl was the drug target in these cell lines because it was not constitutively activated (data not shown). The difference in IC50 for SFK and GI50 suggests that a negative feedback loop exists to buffer the inhibition of SFK, as has been shown with the inhibition of Akt (32). Dasatinib also inhibited Csk/Chk-mediated phosphorylation of the autoinhibitory phosphorylation site of Src (e.g., phospho-Src Tyr527), which would result in an activated Src kinase (Supplementary Fig. S1A). Higher doses of dasatinib may be required for a complete inhibition of Src kinase activity (Supplementary Fig. S1B). The predominant Src kinase in myeloid cells, Lyn, produces both stimulatory and inhibitory effects (33), and the biologically optimal dose for growth inhibition may occur at a greater concentration. Finally, dasatinib may have off-target effects on kinases not currently known to play a role in AML growth. Dasatinib, however, does not inhibit the Janus, Syk, fibroblast growth factor receptor, vascular endothelial growth factor receptor, or epidermal growth factor receptor kinase activities, which have been associated with various forms of AML cell growth (34–37). Proteomic profiling of 52 signaling proteins in primary AML blasts reveals considerable diversity in their levels and activation states (38). We did not observe any dose inhibition of phospho-ERK1/2 (a downstream effector for c-Raf) or phospho-STAT3 in Mo7e-KitD816H, Ba/F3-Flt3ITD, U937, and THP-1 cells (data not shown). On the other hand, treatment led to caspase activation in cells expressing an activating mutation of Kit. Dasatinib may thus be effective at lower concentrations in those leukemic cells displaying Src, Abl, or Kit oncogene addiction (41).

Our studies show that dasatinib has an antileukemic activity and advance its potential use for new therapeutic approaches in AML. The optimal scheduling and combination regimen for dasatinib in AML will be determined from clinical trials. Despite its short plasma half-life, dasatinib was effective with a once-daily regimen in CML patients (31, 42). We did not observe greater inhibition when the drug was added daily to cell cultures (data not shown). Snead et al. (43) have reported that dasatinib treatment of CML patient samples for 4 hours followed by washout induced apoptosis and inhibited proliferation. Thus, continuous inhibition of kinases may not be necessary for clinical efficacy. Plasma concentrations of dasatinib in patients receiving the 70 mg twice daily or the 140 mg once daily regimens were reported to be >14.6 ng/mL (~30 nmol/L) for 8 to 10 hours (31).

These reports suggest that short exposure to dasatinib may be sufficient, and so AML patients with low GI50 (Supplementary Table S4) might respond to clinically achievable dose of dasatinib alone. Preliminary results from a European phase I/II study of dasatinib in children and adolescents show that 2 of 12 patients with nonmutated c-Kit, Bcr-Abl+ relapsed AML responded (44). Although our results show growth inhibition, doses required for dasatinib alone are high for the majority of patients, suggesting that

<table>
<thead>
<tr>
<th>Cytarabine</th>
<th>0 μmol/L dasatinib</th>
<th>0.75 μmol/L dasatinib</th>
<th>1.5 μmol/L dasatinib</th>
<th>3 μmol/L dasatinib</th>
<th>6 μmol/L dasatinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Control</td>
<td>Cl > 10</td>
<td>Cl > 10</td>
<td>Cl = 0.8</td>
<td>Cl = 0.05</td>
</tr>
<tr>
<td>0.5 μmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 μmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 μmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 μmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Etoposide</th>
<th>0 μmol/L dasatinib</th>
<th>0.062 μmol/L dasatinib</th>
<th>0.125 μmol/L dasatinib</th>
<th>0.25 μmol/L dasatinib</th>
<th>0.5 μmol/L dasatinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Control</td>
<td>Cl = 1.0</td>
<td>Cl = 1.4</td>
<td>Cl = 0.8</td>
<td>Cl = 0.4</td>
</tr>
<tr>
<td>0.062 μmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125 μmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 μmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Combination study of dasatinib and cytarabine, and dasatinib and etoposide

Lyn promotes Cdk2-mediated phosphorylation of Thr187, which in turn promotes its SCF-Skp2–dependent degradation (40). Dasatinib caused little inhibition of phospho-Erk, phospho-Akt, or phospho-STAT3 in Mo7e-KitD816H, Ba/F3-Flt3ITD, U937, and THP-1 cells (data not shown).
Dasatinib will be most effective in combination with traditional chemotherapy agents. Combination of dasatinib and high-dose cytarabine was effective and well tolerated in a 50-year-old man with systemic mastocytosis and AML (45). Synergistic activity of dasatinib with rapamycin or cytotoxic agents results in an effective concentration of dasatinib achieved through current oral dosing and provides rationale for the inclusion of dasatinib in multidrug regimens. Given our previous findings that activation of Flt3 leads to SFK Lyn activation (9), Src kinase inhibition may have an adjuvant role in treating leukemias harboring gain-of-function Flt3 or Kit mutations. Therefore, there are two mechanisms whereby dasatinib may contribute to antileukemia growth. In leukemic cells driven by oncogenic forms of Src, Abl, or Kit, dasatinib may induce apoptosis. In cells that depend on Src, Abl, or Kit for salvage or accessory growth-promoting pathways, dasatinib may induce growth arrest. In the phosphotyrosine analysis of dasatinib-treated cells, we observed differences in several potential mediators of leukemic cell growth, including serine/threonine kinases, RTKs, and cell cycle proteins (Supplementary Table S2). Clinical trials with combination therapy including dasatinib are warranted in AML. Future studies should identify additional targets for dasatinib and biomarkers for sensitivity.

Disclosure of Potential Conflicts of Interest

F.Y. Lee is an employee of Bristol-Myers Squibb. The other authors disclosed no potential conflicts of interest.

Acknowledgments

We thank Sean Hartig, Daniel Lee, and Kevin Hwang for the technical advice and comments.

Grant Support

RO1-CA108922, Leukemia Specialized Programs of Research Excellence P50, JP McCarthy Development Fund, Ladies Leukemia League, Gilsong-Longenbaugh, and AA/MDS Foundation (S.J. Corey); "Moelle, Partage et Vie" (Y.E. Cayre); the Lyles Parachini Fund, the Michael Corb Fund, the Michael Garil Leukemia Survivors Program, and RO1-CA120535 (R.J. Arceri); the Foundation for Pediatric Research, Vare Foundation, Academy of Finland, Finnish Medical Foundation, Finnish Association of Hematology, and the Kuistila Memorial Foundation (J. Kanerva); and the Association MOELLE PARTAGE ET VIE (France; Y.E. Cayre). S.J. Corey is a recipient of a research grant from Bristol-Myers Squibb.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 9/3/09; revised 10/23/09; accepted 11/9/09; published OnlineFirst 2/9/10.

References

Dasatinib Inhibits the Growth of Molecularly Heterogeneous Myeloid Leukemias

Bella S. Guerrouahen, Muneyoshi Futami, Christos Vaklavas, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-09-2416

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2010/02/09/1078-0432.CCR-09-2416.DC1

Cited articles
This article cites 44 articles, 21 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/16/4/1149.full.html#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
/content/16/4/1149.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.