Molecular Pathways

HER3 Comes of Age: New Insights into Its Functions and Role in Signaling, Tumor Biology, and Cancer Therapy

Marcia R. Campbell, Dhara Amin, and Mark M. Moasser

Abstract

The human epidermal growth family (HER) of tyrosine kinase receptors underlies the pathogenesis of many types of human cancer. The oncogenic functions of three of the HER proteins can be unleashed through amplification, overexpression, or mutational activation. This has formed the basis for the development of clinically active targeted therapies. However, the third member HER3 is catalytically inactive, not found to be mutated or amplified in cancers, and its role and functions have remained shrouded in mystery. Recent evidence derived primarily from experimental models now seems to implicate HER3 in the pathogenesis of several types of cancer. Furthermore, the failure to recognize the central role of HER3 seems to underlie resistance to epidermal growth factor receptor (EGFR)- or HER2-targeted therapies in some cancers. Structural and biochemical studies have now greatly enhanced our understanding of signaling in the HER family and revealed the previously unrecognized activating functions embodied in the catalytically impaired kinase domain of HER3. This renewed interest and mechanistic basis has fueled the development of new classes of HER3-targeting agents for cancer therapy. However, identifying HER3-dependent tumors presents a formidable challenge and the success of HER3-targeting approaches depends entirely on the development and power of predictive tools. Clin Cancer Res; 16(5); 1373–83. ©2010 AACR.

Background

The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases (RTK) are the most extensively studied family of RTKs and strongly implicated in the pathogenesis of many types of human cancer. The family includes the four highly homologous members, epidermal growth factor receptor [EGFR (HER1)], HER2 (ErbB2), HER3 (ErbB3), and HER4 (ErbB4), sharing a structure that consists of a ligand-binding extracellular domain (ECD), an intracellular kinase domain, and a C-terminal signaling tail. Signaling is mediated through ligand-induced receptor dimerization and transphosphorylation, leading to activation of cytoplasmic signaling pathways. The individual HER proteins have nonredundant functions and unique attributes, and heterodimerization constitutes the predominant mode of signaling in this family. The functions of the third member HER3 have been least understood, and mounting evidence implicating it in human cancer pathogenesis has deepened interest in resolving the mysteries surrounding it.

The unique attribute that separates HER3 from the other HER proteins is its evolutionary divergence at critical residues within the kinase domain, locking it in the inactive conformation, thus devoid of catalytic kinase activity (1–3). Our traditional models of RTK function have not been able to deal with this finding, and by default, HER3 has been considered to function merely as a signaling substrate for other HER proteins, analogous to the functions of IRS1 and IRS2 with the insulin receptor. This model would seem to dismiss functionality within the HER3 kinase domain, a concept that is difficult to reconcile in evolutionary terms. The recent landmark study revealing a highly unique mechanism underlying kinase domain activation in the HER family now finally identifies the potential functions of a catalytically inactive kinase domain such as that of HER3. In the HER family, dimerization of the kinase domains occurs in an asymmetric configuration leading to the allosteric activation of one kinase domain by the other (4). This interaction the "activator" kinase domain has no catalytic role, immediately suggesting that the HER3 kinase domain may be a highly specialized allosteric activator of its HER family partners (Fig. 1A). The functions of the HER3 kinase domain as a specialized allosteric activator have been confirmed in biochemical assays (3).

In contrast to the other HER proteins, HER3 is not transforming when overexpressed or constitutively activated by continuous ligand stimulation (5), and there are currently no mutational alterations known to confer oncogenic activities to HER3. This finding may be due to a number of mechanisms in place that seem to function to restrain the signaling functions of HER3 (Fig. 1B). The absence of catalytic activity is only one such mechanism. In the absence of ligand activation, the HER3 C-terminal tail binds and covers its activation surface in trans, restraining its allosteric activation functions (3). In addition, the clustering of
HER3, based on both ECD interactions and intracellular domain interactions, seems to provide yet additional restraint through its sequestration away from EGFR and HER2 (3, 6). HER4 may also participate in HER3 sequestration, providing some insight into why increased HER4 expression has been found to be associated with a less malignant biology in breast cancers (3). Additionally, the Ebp-1 protein has been known to interact with a region of HER3 that was recently identified as the dimer-stabilizing juxtamembrane helical dimer (7, 8). As such, Ebp-1 binding may potentially function to prevent premature dimerization, providing yet another mechanism nature has provided to restrain HER3 from inappropriately activating its HER partners.

When the restraints on HER3 are lifted, HER3 functions not only as a specialized allosteric activator of other HER proteins, but also as their signaling substrate. The 14 tyrosines in the C-terminal signaling tail of HER3, when phosphorylated, can potentially dock numerous SH2 or PTB binding proteins involved in a number of different intracellular signaling pathways (Fig. 2). Whether all of these tyrosines are phosphorylated in cells, and whether all of the described interactions are physiologically relevant remain to be defined. But, the one critically important and well-established signaling activity of HER3 is its unique and potent ability to activate downstream PI3K and Akt pathway signaling by virtue of six consensus phosphotyrosine sites, not present on EGFR or HER2, which bind the SH2 domain of the three regulatory subunits of PI3K (Fig. 2; refs. 9–11). Activated PI3K phosphorylates membrane phosphoinositides, leading to recruitment and activation of PDK1 and Akt. Akt lies at the hub of a plethora of downstream pathways, in particular in an intricate upstream and downstream relationship with two mTOR-containing complexes, and is in a position to control many biological processes critical for tumorigenesis, including translation, survival, nutrient sensing, metabolic regulation, and cell cycle control (Fig. 1A; ref. 12).
The link between HER3 and the Akt pathway not only confers oncogenic capabilities to its kinase-active HER family partners, but provides a signaling node that can potentially be exploited by other signaling pathways to engage the activities of Akt. Most tumors require PI3K/Akt signaling for their survival, and this is often achieved by upstream receptor tyrosine overactivity, by mutational activation of PI3K, or inactivation of PTEN. However the induction of HER3 provides another pathway toward this end, and indeed the expression of HER3 seems to be more dynamic than other HER proteins and inducible when required. The finding that the induction of HER3 expression or signaling is associated with drug resistance in several cancer models supports such a role. HER3 expression or signaling is associated with resistance to HER2 inhibitors in HER2-amplified breast cancers (13), with EGFR inhibitors in lung cancers (14), with pertuzumab resistance in ovarian cancers (15), with anti-estrogen therapies in ER-positive breast cancers (16–19), with EGFR inhibitors in head and neck cancers (20), with hormone resistance in prostate cancers (21), and with IGF1R inhibitors in hepatomas (22). In most of these scenarios, it is assumed that HER3 phosphorylation is driven by one of its HER family kinase partners. A more promiscuous role for HER3 as a substrate of other kinases is possible, and at least suggested by the c-MET-induced activation of HER3 signaling (14), however, this has not been directly shown.

The cellular signals that regulate HER3 expression are only beginning to be identified. HER3 protein expression is regulated by both transcriptional and post-transcriptional mechanisms. Post-transcriptionally, it is regulated by the E3 ligase Nrdp1 and the Nrdp1 regulator USP8 (23). USP8 in turn is regulated by Akt, and this pathway potentially links HER3 expression with downstream Akt activity constituting the potential reciprocal regulation of HER3 expression with Akt activity. The transmembrane protein

Fig. 1 Continued. B, Schematic of mechanisms in place that restrain HER3 from signaling. If not transcriptionally, post-transcriptionally, or post-translationally repressed, much of HER3 is sequestered into clusters mediated through N-lobe head-to-head interactions and reciprocal c-tail interactions (3). The proximal C-terminal tails bind and cover the activating interface of the kinase domain, obstructing its allosteric activating function. Even when not sequestered, HER3 is incapable of self-activation as it lacks the receiving interface for allosteric activation, and its active site is permanently locked in the inactive state. It can only engage as the activating partner with the other HER family members, as shown in A.
LRIG1 is another negative regulator of growth factor receptor signaling. It associates with all four HER family members, although current studies have only addressed its role in the specific regulation of EGFR and HER2 (24–26). The transmembrane mucin MUC4 alters HER2 and HER3 trafficking and stabilizes their membrane localization, consequently increasing their signaling functions (27). HER3 is also regulated transcriptionally, as seen in response to tyrosine kinase inhibitor (TKI) treatment of HER2-amplified breast cancer cells (13).

The expression of HER3 is also under regulation by several microRNAs (miRNA) identified thus far, including miR205, miR125a, and miR125b (28, 29).

The precise functional relevance of HER3 across the spectrum of human cancers remains largely unknown at this time. There is solid mechanistic and experimental evidence supporting its tumor promoting functions in subsets of breast and lung cancers, as well as a body of more speculative, descriptive, and sometimes conflicting data in many other cancers. The existing literature on the expression and relevance of HER3 in human cancers is summarized in Table 1. The data sets vary considerably in their methodologies and cannot be easily compared. Although some investigators analyze expression, others analyze overexpression relative to normal tissues or within the
sample sets. There is also great variance in the reported localization of HER3, including nuclear expression on immunohistochemistry (IHC) studies, and these should be interpreted with caution until confirmed by the appropriate biochemical studies.

Experimental evidence has solidly established the critical role of HER3 as a coreceptor for the amplified HER2 oncogene, most commonly seen in breast cancers, but also in a variety of other tumor types. Although HER3 is not transforming by itself, it is synergistically cotransforming with HER2 (30). In fact, the expression of HER3 is rate-limiting for HER2-induced transformed growth and if HER3 expression is knocked down, HER2-amplified tumors cease to grow and undergo apoptotic cell death (31, 32). Considering that HER2 expression is generally a constant in this tumor type, the regulated expression of HER3 functions as a volume control for HER2-HER3 signaling. This rheostat function is exemplified during attempts to inhibit HER2-HER3 signaling with TKIs. Treatment of HER2-amplified breast cancers with HER2-targeting TKIs leads to a rapid compensatory increase in HER3 expression, localization, and signaling activity, revealing a significant reserve capacity embodied within the HER2-HER3 signaling complex that renders it highly resilient to anticancer therapies (13). In this context, HER3 is the both the allosteric activator of HER2 kinase as well as its critical signaling substrate, and as such, functions both upstream and downstream of HER2, redefining the HER2-HER3 complex as the functionally relevant oncogenic driver of the disease.

Other lines of evidence also show an important role for HER3 as a coreceptor for EGFR in a subset of lung cancers. In a comparison of lung cancer cell lines that are sensitive or resistant to the EGFR TKI gefitinib, the best marker of sensitivity to gefitinib seems to be the HER3-dependent activation of PI3K (33). This EGFR-HER3 interdependency is seen in tumor cell types harboring mutationaly activated EGFR as well as wild-type EGFR, revealing a central role for EGFR-HER3 signaling in this disease. Treatment of patients with gefitinib is highly effective in these patients, although the development of acquired resistance is universal. Although resistance typically develops as a result of secondary mutational events within the EGFR kinase domain, rendering EGFR drug-resistant, resistance can also develop rarely through overactivity of the cooperating proto-oncogene c-MET and the c-MET-dependent phosphorylation of HER3, further highlighting the central role of HER3 in the pathogenesis of this disease (14).

There is a mounting body of evidence that implicates HER3 and the HER family in the pathogenesis of melanoma. HER3 is not expressed in normal melanocytes, but HER3 expression is seen in many malignant melanomas and is associated with more advanced stage, increased proliferation, and decreased survival (34, 35). This finding suggests that HER3 may be important in melanoma progression, and experimental models of HER3 knockdown suggest a role in migration and invasion (35, 36). The HER kinase partner for HER3 in melanomas is not well identified at this time. HER2 is not commonly expressed in melanomas, but EGFR is widely expressed and HER4 is mutationaly activated in a subset of melanomas (36–39). The evidence that HER3 may be functionally important in melanoma is mounting, but much more work needs to be done to confirm and define its role.

EGFR targeting therapies show clinical activity in colon cancers, but the mechanistic basis for this activity remains undefined. Several studies looking at the expression of HER family members have produced largely conflicting and overall inconclusive results. However, a recent mouse conditional model reveals that loss of HER3 in the intestinal epithelium leads to the concomitant loss of HER4 and prevention of tumorigenesis in ApcMin mice (40). These results were also reproduced in human colon cancer cells and will undoubtedly lead to much further analysis of colon cancers, focusing on HER3 and HER4. HER3 expression in ovarian cancers is associated with decreased survival and with resistance to the HER2-targeting mAb pertuzumab (15, 41), suggesting a functionally relevant role for HER3 in a subset of ovarian cancers. HER3 expression is upregulated in clear cell sarcomas of soft tissue and the receptor activated by autocrine neuregulin expression in many of them (42, 43).

Clinical-Translational Advances

The important role of HER3 as a signaling hub for the HER family has identified it as a candidate target for drug discovery and numerous HER3-targeting programs are currently underway to explore the potential of this new target. But HER3-targeting initiatives are faced with some unique challenges, both in the technical and strategic realms.

A principal technical challenge concerns what functionality of HER3 to target. Unlike the other HER family members, the functions of HER3 are not mediated through enzymatic catalytic activity, and at this point, it does not seem that the ATP analog class of TKIs would be suitable for this target. Whether ATP binding is required or plays a role in the stimulatory function or stability of the HER3 kinase domain remains to be determined. If ATP is indeed found to be required for this function, this could lead to the development of ATP analog drugs that target noncatalytic functions, sometimes referred to as “pseudokinase” inhibitors. The stimulatory functions of the HER3 kinase domain can also be targeted with newer classes of allosteric inhibitors. These could potentially target the kinase domain dimerization interface, preventing the allosteric activation of EGFR or HER2 by HER3, or they could target the juxtamembrane latch, destabilizing the dimerized conformation of the HER3 kinase domain. Much of the functions of the HER3 kinase domain are still shrouded in mystery and the endeavor to target the functions of the HER3 kinase domain require exploratory and potentially pioneering work into unchartered waters, and their products would be first-in-class molecules. Although risky as investments, such class inventions can lead to advances in targeted therapies that extend far beyond the realm of HER3.

Targeting the ECD of HER3 with macromolecules such as antibodies is much more amenable to existing
<table>
<thead>
<tr>
<th>Material</th>
<th>Reference no.</th>
<th>Material Type</th>
<th>Percent expressed or overexpressed</th>
<th>Amplification and/or mutation</th>
<th>Staining pattern</th>
<th>Correlations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatic cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No correlation with tumor grade, stage, or histological type</td>
</tr>
<tr>
<td>Pancreatic cancers</td>
<td>50</td>
<td>IHC</td>
<td>35% (49/141)</td>
<td>N/A</td>
<td>C, N</td>
<td>No correlation with tumor grade, stage, or histological type</td>
</tr>
<tr>
<td>Pancreatic cancers</td>
<td>51</td>
<td>NB</td>
<td>63% (17/27)</td>
<td>None by SB</td>
<td>N/A</td>
<td>HER3 expression correlated with more advanced tumor stage and/or shorter postoperative survival; no correlation with histological grade</td>
</tr>
<tr>
<td>Pancreatic cancer cell lines</td>
<td>51</td>
<td>NB</td>
<td>73% (8/11)</td>
<td>None by SB</td>
<td>N/A</td>
<td>HER3 expression correlated with more advanced tumor stage and/or shorter postoperative survival; no correlation with histological grade</td>
</tr>
<tr>
<td>Pancreatic cancer cell lines</td>
<td>50</td>
<td>IHC</td>
<td>47% (27/58)</td>
<td>N/A</td>
<td>N/A</td>
<td>HER3 expression correlated with more advanced tumor stage and/or shorter postoperative survival; no correlation with histological grade</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No correlation with DFS</td>
</tr>
<tr>
<td>Colon cancer primary tumor</td>
<td>52</td>
<td>NB</td>
<td>53% (16/30)</td>
<td>NS</td>
<td>N/A</td>
<td>HER3 correlated with better patient outcome</td>
</tr>
<tr>
<td>Colon Ca liver metastases</td>
<td>52</td>
<td>NB</td>
<td>56% (19/34)</td>
<td>N/A</td>
<td>N/A</td>
<td>HER3 correlated with lympho-invasion</td>
</tr>
<tr>
<td>Colon cancer cell lines</td>
<td>52</td>
<td>NB</td>
<td>50% (4/8)</td>
<td>N/A</td>
<td>N/A</td>
<td>HER3 correlated with decreased survival but not tumor size or grade</td>
</tr>
<tr>
<td>Colorectal cancers</td>
<td>53</td>
<td>IHC</td>
<td>70% (76/109)</td>
<td>N/A</td>
<td>C</td>
<td>No correlation with DFS</td>
</tr>
<tr>
<td>Colorectal cancers</td>
<td>54</td>
<td>IHC</td>
<td>78% (43/55)</td>
<td>N/A</td>
<td>C</td>
<td>No correlation with DFS</td>
</tr>
<tr>
<td>Colorectal cancers</td>
<td>55</td>
<td>IHC</td>
<td>28% (30/106)</td>
<td>N/A</td>
<td>N/A</td>
<td>No correlation with DFS</td>
</tr>
<tr>
<td>Colorectal cancers</td>
<td>56</td>
<td>IHC</td>
<td>9% (10/108) very high</td>
<td>N/A</td>
<td>C, M</td>
<td>HER3 correlated with better patient outcome</td>
</tr>
<tr>
<td>Colorectal cancers</td>
<td>56</td>
<td>NB</td>
<td>64%</td>
<td>None by SB</td>
<td>N/A</td>
<td>HER3 correlated with lympho-invasion</td>
</tr>
<tr>
<td>Colorectal cancers</td>
<td>57</td>
<td>IHC</td>
<td>3% (3/125)</td>
<td>C, M</td>
<td>N/A</td>
<td>HER3 correlated with better patient outcome</td>
</tr>
<tr>
<td>Colorectal cancers</td>
<td>58</td>
<td>IHC</td>
<td>69% (11/16)</td>
<td>N/A</td>
<td>C</td>
<td>HER3 correlated with better patient outcome</td>
</tr>
<tr>
<td>Gastric cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HER3 correlated with lympho-invasion</td>
</tr>
<tr>
<td>Gastric cancer</td>
<td>58</td>
<td>IHC</td>
<td>70% (12/17)</td>
<td>N/A</td>
<td>C, M</td>
<td>HER3 correlated with lympho-invasion</td>
</tr>
<tr>
<td>Gastric cancers</td>
<td>59</td>
<td>IHC</td>
<td>14% (14/102)</td>
<td>N/A</td>
<td>C, M</td>
<td>HER3 correlated with lympho-invasion</td>
</tr>
<tr>
<td>Esophageal cancer</td>
<td>58</td>
<td>IHC</td>
<td>100% (26/26)</td>
<td>N/A</td>
<td>Some M</td>
<td>HER3 correlated with lympho-invasion</td>
</tr>
<tr>
<td>Lung cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HER3 correlated with advanced stage and worse prognosis.</td>
</tr>
<tr>
<td>Pulmonary carcinoid</td>
<td>60</td>
<td>IHC</td>
<td>100% (12/12)</td>
<td>N/A</td>
<td>C in 100%</td>
<td>HER3 correlated with advanced stage and worse prognosis.</td>
</tr>
</tbody>
</table>

(Continued on the following page)
Table 1. Expression of HER3 in human cancers (Cont’d)

<table>
<thead>
<tr>
<th>Material</th>
<th>Reference no.</th>
<th>No. Assay type</th>
<th>Percent expressed or overexpressed</th>
<th>Amplification and/or mutation</th>
<th>Staining pattern</th>
<th>Correlations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma</td>
<td>61</td>
<td>39 IHC</td>
<td>100% moderate-intense</td>
<td>N/A</td>
<td>N/A</td>
<td>Increased HER3 expression correlated with response to TKI</td>
</tr>
<tr>
<td>NSCLC</td>
<td>62</td>
<td>42 IHC</td>
<td>46% (18/39)</td>
<td>N/A</td>
<td>N/A</td>
<td>Increased HER3 expression correlated with response to TKI</td>
</tr>
<tr>
<td>NSCLC cell lines</td>
<td>62</td>
<td>6 WB</td>
<td>19% (8/42)</td>
<td>N/A</td>
<td>N/A</td>
<td>Increased HER3 expression correlated with shorter survival</td>
</tr>
<tr>
<td>NSCLC</td>
<td>63</td>
<td>441 IHC</td>
<td>18% (82/441)</td>
<td>N/A</td>
<td>C, M</td>
<td></td>
</tr>
<tr>
<td>NSCLC cell lines</td>
<td>33</td>
<td>8 WB</td>
<td>37.5% (3/8)</td>
<td>N/A</td>
<td>N/A</td>
<td>No association with clinical features, prognosis, or DFS</td>
</tr>
<tr>
<td>NSCLC</td>
<td>64</td>
<td>6 q-PCR, micro-array</td>
<td>NS</td>
<td>N/A</td>
<td>N/A</td>
<td>No association with clinical features, prognosis, or DFS</td>
</tr>
<tr>
<td>Melanoma cell lines</td>
<td>64</td>
<td>21 FISH</td>
<td>80% (16/20)</td>
<td>N/A</td>
<td>N/A</td>
<td>Low grade amplifications (>3 copies/cell)</td>
</tr>
<tr>
<td>CCSST cell lines</td>
<td>42</td>
<td>8 WB, CGH</td>
<td>100% (8/8)</td>
<td>None</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>CCSST cell lines</td>
<td>43</td>
<td>20 IHC</td>
<td>90% (18/20)</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>CCSST cell lines</td>
<td>43</td>
<td>6 NB, WB</td>
<td>83% (5/6)</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>66</td>
<td>46 IHC</td>
<td>41% (19/46)</td>
<td>N/A</td>
<td>C</td>
<td>No association with age tumor stage, differentiation, ploidy, cell cycle</td>
</tr>
<tr>
<td>Endometrioid carcinoma of the ovary</td>
<td>67</td>
<td>28 IHC</td>
<td>50% (14/28)</td>
<td>N/A</td>
<td>N/A</td>
<td>p53 and HER3 overexpression correlated with worse survival</td>
</tr>
<tr>
<td>Granulosa cell tumors</td>
<td>68</td>
<td>12 IHC</td>
<td>16.7% (2/12)</td>
<td>N/A</td>
<td>C</td>
<td>No correlation with overall survival or disease correlation</td>
</tr>
<tr>
<td>Epithelial ovarian cancer</td>
<td>69</td>
<td>56 IHC</td>
<td>73% (41/56)</td>
<td>N/A</td>
<td>N/A</td>
<td>HER3 expression associated with decreased survival, histologic grade and type, residual disease, age</td>
</tr>
<tr>
<td>Epithelial ovarian cancer</td>
<td>70</td>
<td>103 IHC</td>
<td>3% (3/103)</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Epithelial ovarian cancer</td>
<td>41</td>
<td>116 IHC</td>
<td>53.4% (62/116)</td>
<td>N/A</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

(Continued on the following page)
Table 1. Expression of HER3 in human cancers (Cont’d)

<table>
<thead>
<tr>
<th>Material</th>
<th>Reference no.</th>
<th>No.</th>
<th>Assay type</th>
<th>Percent expressed or overexpressed</th>
<th>Amplification and/or mutation</th>
<th>Staining pattern</th>
<th>Correlations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovarian cancers</td>
<td>71</td>
<td>101</td>
<td>ELISA q-PCR</td>
<td>Higher mean value</td>
<td>N/A</td>
<td>N/A</td>
<td>HER3 expression levels increased with age; no correlation with clinicopathological characteristics</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostate cancers</td>
<td>72</td>
<td>143</td>
<td>IHC</td>
<td>None</td>
<td>N/A</td>
<td>C, N</td>
<td>No correlation with histopathologic grade; nuclear staining was significantly higher in tumor versus normal tissue</td>
</tr>
<tr>
<td>Prostate cancers</td>
<td>73</td>
<td>81</td>
<td>Tissue array IHC</td>
<td>None</td>
<td>N/A</td>
<td>C, N</td>
<td>No correlation with histopathologic grade</td>
</tr>
<tr>
<td>Breast cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ductal carcinoma in situ</td>
<td>74</td>
<td>57</td>
<td>IHC</td>
<td>35% (20/57)</td>
<td>N/A</td>
<td>C = 16 cases M = 4 cases</td>
<td>HER3 expression correlates with HER2 overexpression; but HER3 overexpression correlates with lack of HER2 overexpression</td>
</tr>
<tr>
<td>Breast cancers</td>
<td>75</td>
<td>97</td>
<td>IHC</td>
<td>28.8%</td>
<td>N/A</td>
<td></td>
<td>Trend toward node negative and better survival</td>
</tr>
<tr>
<td>Breast cancers</td>
<td>76</td>
<td>195</td>
<td>IHC</td>
<td>22%</td>
<td>N/A</td>
<td>C</td>
<td>Overexpression associated with lymph node metastases, but not survival</td>
</tr>
<tr>
<td>Breast cancers: node negative</td>
<td>77</td>
<td>212</td>
<td>IHC</td>
<td>65% (138/212) present</td>
<td>N/A</td>
<td>C = 138 cases M = 28 cases</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13% (28/212) strong</td>
<td></td>
<td></td>
<td>No association with relapse or DFS; no association with clinicopathological features</td>
</tr>
<tr>
<td>Breast cancers</td>
<td>78</td>
<td>268</td>
<td>RT-PCR</td>
<td></td>
<td>N/A</td>
<td></td>
<td>Higher HER3 associated with better survival</td>
</tr>
<tr>
<td>Breast cancers</td>
<td>79</td>
<td>95</td>
<td>IHC</td>
<td>53% (50/95)</td>
<td>N/A</td>
<td>C</td>
<td>Associated with higher grade</td>
</tr>
<tr>
<td>Breast cancers</td>
<td>80</td>
<td>220</td>
<td>IHC</td>
<td>17.5%</td>
<td>N/A</td>
<td></td>
<td>No association with grade</td>
</tr>
<tr>
<td>Breast cancers</td>
<td>81</td>
<td>278</td>
<td>FISH</td>
<td>Some with low grade <2.3 x</td>
<td>N/A</td>
<td></td>
<td>Low grade HER3 amplification negative effect on DFS</td>
</tr>
<tr>
<td>Breast cancers</td>
<td>81</td>
<td>173</td>
<td>IHC</td>
<td>75% positive</td>
<td>N/A</td>
<td></td>
<td>No correlation with DFS</td>
</tr>
</tbody>
</table>

NOTE: Analyses were done on primary patient tumor samples unless otherwise stated.

Abbreviations: WB, Western blot; NB, Northern blot; SB, Southern blot; CGH, comparative genomic hybridization; FISH, fluorescent in situ hybridization; qPCR, quantitative PCR; N/A, not available; NS, not stated; DFS, disease-free survival; CCSST, clear cell sarcoma of soft tissue; NSCLC, non-small cell lung carcinoma.
well-established pharmaceutical platforms and several such programs are currently underway. Inherent in this approach are also some uncertainties about the optimal activity to be targeted by antibodies. The most traditional approach with transmembrane receptors has been to target a region that interferes with ligand binding and ligand-induced activation. The success of such a treatment hypothesis depends on an underlying assumption that it is the ligand-activated conformation of HER3 that is the driving force in tumor progression. The validity of this assumption is not at all certain and may indeed vary among different cancer subtypes and even among individual patients tumors. The anti-HER2 monoclonal antibody pertuzumab was developed to target the dimerization interface of HER2 and disrupt ligand-induced HER2-HER3 dimerization and signaling. Although pertuzumab seems to be quite effective at inhibiting neuregulin-induced HER3 signaling (32, 44), it seems to be much less effective at disrupting the elevated basal state of ligand-independent HER2-HER3 interaction and signaling in HER2-overexpressing tumor cells (45, 46). This is not surprising as liganded and unliganded conformations of the HER3 ECD have very different structural characteristics. The nature of the physical interaction that underlies HER2-HER3 transactivation in the absence of ligand are not well understood, and at this point “ligand-independent signaling” remains a concept without a structural descriptor, although several hypotheses on this interaction can be proposed.

The major strategic challenge in the development of HER3-targeting agents is predicting patient populations and disease subtypes that would be amenable to this treatment modality. Unlike other targets, the tumor-promoting functions of HER3 are not harnessed through its overexpression, amplification, or mutation, making it more difficult to identify HER3-dependent tumors. At this point, a critical function for HER3 has been confirmed in HER2-amplified breast cancers, and strongly implicated in a subset of EGFR-driven lung cancers. The best marker to identify the functional relevance of HER3 in other tumors is the detection of phosphorylated HER3, which is the principal reporter of HER3 signaling. Numerous antibody reagents are available that detect phosphorylated HER3 tyrosine residues on Western blots, however a reagent that can reliably detect p-HER3 in formalin-fixed paraffin-embedded tissues has been a challenge to develop. There are limited published reports containing p-HER3 immunostaining data using available commercial reagents (34). However in our hands, these same reagents fail the test of p-HER3 specificity when assayed using positive (ligand-stimulated) and negative (TKI-treated) control cell lines, which are fixed in formalin and embedded in paraffin. The success of HER3-targeting therapies is entirely dependent on the validity of the p-HER3 biomarker assays and the validity and reliability of such assays is of utmost importance.

Another potential marker of HER3 signaling activity is the expression of its ligands in the tumor microenvironment. However this requires highly sensitive validated antibody reagents with specificity controls capable of detecting very dilute concentrations of the target ligands within the extracellular matrix. Although this may be implausible, as a surrogate, most studies have attempted to indirectly assay ligand activity by immunostaining their transmembrane precursors in tumor cells. This approach discounts the role of stromal derived ligands, as well as proteolytic cleavage as a limiting and regulatory step in ligand release, while also appealing to the ongoing controversial proposition that membrane-bound ligand is competent and active at signaling. Most of these studies report frequent expression of neuregulins in tumors and were reviewed recently in the Molecular Pathways series (47). The data sets vary considerably with regards to membrane, cytoplasmic, nuclear, or stromal expression, and the true specificities of the signals are difficult to know, specially in light of universal expression reported by some studies.

Although structural, biological, and clinical studies are beginning to unmask the role of HER3 signaling in human cancers, our understanding of this receptor is still in its infancy. Ongoing experimental studies and the arrival of HER3-targeting agents will provide many more insights into the relevance and functions of this receptor.

Disclosure of Potential Conflicts of Interest

M. Moasser: honoraria and consulting, Amgen, Genentech, Prometheus Laboratories, AVEO pharmaceuticals, Novartis Foundation. The other authors disclosed no potential conflicts of interest.

Acknowledgments

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 10/05/2009; revised 11/09/2009; accepted 11/09/2009; published OnlineFirst 02/23/2010.

References

HER3 Signaling and Cancer

HER3 Comes of Age: New Insights into Its Functions and Role in Signaling, Tumor Biology, and Cancer Therapy

Marcia R. Campbell, Dhara Amin and Mark M. Moasser

Updated version

Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-09-1218

Cited articles

This article cites 79 articles, 31 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/16/5/1373.full#ref-list-1

Citing articles

This article has been cited by 26 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/16/5/1373.full#related-urls

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.