






On the other hand, nonangiostatic calixarene analogues
of 0118 (1049 and 1097) showed no significant effect on
ICAM-1 normalization in this assay. Furthermore, an
increase in ICAM-1 protein was also revealed at the tran-
scription level, as evidenced by mRNA levels for ICAM-1,

VCAM-1, and E-selectin, using real-time qRT-PCR with
anginex and 0118 (Fig. 1B).

To assess real-time leukocyte–endothelium interactions
in vivo, we used intravital microscopy on B16F10
tumor–bearing mice. Exemplary still shots are provided
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Figure 1. EAM expression and leukocyte–vessel wall interactions. A, FACS analysis of ICAM-1 protein expression on HUVECs, with or without bFGF treatment
(10 ng/mL), 3 days posttreatment with 10 mmol/L of anginex, 6DBF7, 0118, 1049, and 1097 or 10 mg/mL of Gleevec or Tarceva. Results shown are mean
fluorescence intensity [MFI; (SEM)] of 4 independent experiments normalized to the control (#, P < 0.05 vs. no bFGF; *, P < 0.05 vs. control). B, mRNA
expression of ICAM-1, VCAM-1, and E-selectin (analyzed using real-time qRT-PCR) in HUVECs treated with and without 10 mmol/L anginex or 0118.
Results shown are mean (SEM) values of 4 independent experiments, as fold changes compared with no bFGF (#, P < 0.05 vs. no bFGF; *, P < 0.05 vs. control).
C, images from intravital fluorescence microscopy showing rhodamine-labeled leukocytes (arrows) in microvessels (dotted lines) of B16F10 tumors frommice
treated with vehicle, anginex, and 0118. D, interacting leukocytes per mm2 vessel surface in B16F10 tumor vessels in angiostatically treated and untreated
mice. Number of adhering per mm2 (E) and rolling per minute (F) leukocytes in tumor vessels of angiostatically treated and untreated mice. Angiostatic
treatment was administered for 2 days at a dose of 10 mg/kg i.p. bid and imaged on day 3. For D–F, data are presented as medians and interquartile ranges
(*, P < 0.05).
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in Figure 1C.1 While leukocyte–vessel wall interactions in
tumors of control mice are significantly reduced (P < 0.01)
compared with those in normal tissue (Supplementary
Fig. S1; Supplementary Information), leukocyte–vessel
wall interactions are increased by about 3-fold treatment
in tumors of mice treated with anginex or 0118 (Fig. 1D),
without inducing such changes in normal tissue of the ear
(Supplementary Fig. S1). Quantification of the interactions
allows differentiation of adhered and rolling leukocytes,
both of which are increased in tumor vessels as the result of
angiostatic therapy (Fig. 1E and F). These observations were
not the result from leukocyte activation or mobilization
(Supplementary Fig. S2), altered expression of leukocyte
adhesion molecules LFA-1a, LFA-1b, VLA-4, or L-selectin
on peripheral blood leukocytes (data not shown) or
reduced blood flow velocity (Supplementary Table S1).

EAM levels during tumor growth
Because of the plasticity of the tumor microenvironment

during cancer progression (22), we hypothesized that EAM
levels, and consequently T-cell infiltration, have a dynamic
temporal component. As shown by flow cytometry, ICAM-
1 (Fig. 2A) and PECAM (Fig. 2C) levels were reduced during
tumor growth whereas average VCAM levels (Fig. 2B)
seemed unchanged.

To assess the temporal effect of antiangiogenic therapy
on EAM levels, we treated a randomized subset ofmice with
angiostatic compound 0118 (10mg/kg i.p. bid) starting on
day 10 postinoculation when the average tumor size was
100 mm3 to prevent concerns with tumor take. Angiostatic
treatment was administered daily up to the end of the
study. EAM levels on tumor ECs in treated mice increased
on average by about 2-fold compared with untreated con-
trols with size-matched tumors (Fig. 2A–C). We substan-
tiated this in an independent experiment, wherein
immunohistochemical analysis revealed a significant
increase (P < 0.05) in ICAM-1–positive blood vessels
(CD54þCD31þ) in treated B16F10 tumor tissue over vehi-
cle-treated controls (Fig. 2D). Moreover, by using mouse-
specific primers (Supplementary Table S2) in a human
xenograft model (MA148, ovarian cancer; ref. 16), we
quantified mouse-specific ICAM-1 mRNA expression,
which increased nearly 2-fold in mice treated with either
anginex or 0118 (Fig. 2E and Supplementary Table S2).

T-cell infiltration and activation during tumor growth
In untreated mice, the T-cell decrease observed during

tumor growth (Fig. 3A and B) parallels the decrease in EAM
levels on tumor ECs (Fig. 2). However, although the
number of CD4þ cells decreases seemingly monotonically
during tumor growth (Fig. 3A), the CD8þ cell population
remains roughly constant up to day 12, peaks on day 13,
and then decreases below initial levels by the end of the
study (Fig. 3B). Assessment of the early activation marker

CD69 indicates that a portion of these T cells is activated.
Up to day 7, the number of CD69þ cells accounts for about
10% of the CD4þ and CD8þ populations, which subse-
quently increases to about 30% and peaks at about 70% by
day 12 or 13 (Fig. 3A and B). Treatment with 0118 leads to
a 2-fold increase in the number of CD4þ (Fig. 3C) and
CD8þ cells (Fig. 3D), with exemplary FACS dot plots in
Figure 3G. The angiogenic therapy–related increase in T-
cell infiltration parallels the increase in EAM levels (Fig. 2).
We also observed that angiogenic therapy promoted about
a 2-fold increase in the number of CD69þ cells within both
the CD4þ (Fig. 3E) and CD8þ (Fig. 3F) populations, with
exemplary FACS dot plots in Figure 3G.

T-cell activation was also verified in a separate flow
cytometric study that included assessment of blast pheno-
type and the expression of CD69 and granzyme B. In this
single time point study (15 days postinoculation that
included 5 days of treatment), we found that about 40%
of the CD8þ cell population in untreated tumors expressed
CD69 and about 15% of these cells displayed a blast
phenotype (Fig. 4A). In addition, about 50% of these T
cells expressed granzyme B (Fig. 4A), suggesting potential
cytotoxicity against tumor cells. Although angiostatic treat-
ment did not alter the percentage of activation within the
CD8þ cell population (Fig. 4A), it did increase the total
amount of infiltrated, activated CD8þ cells (Fig. 4B).

Regulatory T cells (Tregs, CD4þFoxp3þ) control and
dampen the induction and effector phase of the immune
defense system (23). Even though treatment with 0118 lead
to a 2-fold increase in overall CD4þ cells (Fig. 3C), the
percentages of Tregs were comparable (about 1%) between
untreated and 0118-treatedmice, indicating that 0118 does
not promote formation of Tregs (Fig. 4C).

Quantifying immune enhancement during angiostatic
therapy

So far, our data show that angiostatic therapy with
anginex or 0118 has a dual mechanism of action. Although
its traditionally accepted mechanism of action is to reduce
vessel density in tumors (Supplementary Fig. S5; refs. 15,
16), we now know that it also promotes T-cell infiltration
into tumors by counteracting EC anergy. To differentiate
the effects on tumor growth from an angiogenesis inhibitor
and angiogenesis inhibitor–mediated immunoextravasa-
tion, we used CD8�/� and CD4�/� null mice with
B16F10 or LLC tumors. Because tumor growth is delayed
in wild-type compared with null mice (Supplementary
Fig. S3), we initiated angiostatic treatment in either cohort
when tumors were about 100 mm3 (i.e., to have size-
matched tumors and not to interfere with tumor take).
Tumor growth curves are shown for B16F10 in CD8�/� and
wild-type mice (Fig. 5A). Tumor growth curves for B16F10
in CD4�/� and wild-type mice and for LLC in CD8�/� and
wild-type mice can be found in the Supplemental Informa-
tion (Supplementary Fig. S4).

Statistical analysis of tumor volume data by using
general linear mixed models showed that B16F10 tumor
growth was significantly inhibited up to 2.5-fold in

1Video images of vessels from these experiments can be viewed at http://
www.fdg.unimaas.nl/angiogenesislab/Mirrorsite/castermans%20movies.
htm
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CD8�/� mice treated with anginex (P ¼ 0.0316) or 0118
(P ¼ 0.0222) on the last day of treatment (Fig. 5A).
Whereas in wild-type mice, tumor growth was more
significantly inhibited [anginex (P ¼ 0.0009) and 0118
(P ¼ 0.0018)]. Comparable results were obtained for
B16F10 tumors by 0118 in CD4�/� mice (P ¼ 0.0553)
compared with wild-type mice (P ¼ 0.03; Supplementary

Fig. S4) and in the LLC tumor model, in which on the last
day of treatment LLC tumor growth was significantly
inhibited in CD8�/� mice treated with anginex (P ¼
0.0367) or 0118 (P ¼ 0.0118; Supplementary Fig. S4),
as compared with the tumor growth inhibition of anginex
(P < 0.0001) or 0118 (P ¼ 0.0062) in wild-type mice
(Supplementary Fig. S4).
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Figure 2. Time course of tumor EAM and angiostatic inhibitor intervention. Multicolor FACS analysis was used to simultaneously measure the amount
of ICAM-1 (A), VCAM (B), and PECAM (C) on tumor ECs during B16F10 tumor growth, as well as the effect from treatment with 0118. Treatment with 0118 (10
mg/kg i.p. bid) was initiated on day 10 postinoculation with cultured tumor cells. Mean fluorescence intensities (MFI) are shown for tumor-derived single-cell
suspensions from individual mice, and lines connect the mean values determined on each day examined. D, immunohistochemistry was used to quantify
ICAM-1–positive vessels in B16F10 tumors of mice with or without anginex or 0118 treatment (n¼ 6), shown as the relative mean number of ICAM-1–positive
vessels per CD31-positive vessels, as fold changes compared with untreated mice [(SEM); *, P < 0.05]. E, real-time qRT-PCR analysis of the effect of
angiostatic treatment on expression of murine ICAM-1 expression, using mouse-specific primers, in the stroma of human MA148 tumors in mice. Data are
presented as the relative mean (SEM) expression as fold changes compared with untreated mice (*, P < 0.05).
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Using the area under the curve approach (9), we cal-
culated tumor growth inhibition over the entire time of
treatment, based on the estimated tumor growth curves of
raw data. Taken together, angiostatic treatment inhibited
tumor growth on average by 65% (�5.4%) in wild-type

mice compared with 44% (�3.6%) in null mice (P ¼
0.01). These results indicate that the angiostatic mediated
increase in leukocyte infiltration into tumors accounts for
a time-averaged tumor growth inhibitory effect of 32%
(21 of 65).
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However, if we analyze the effect on a daily basis, we find
that the immunoextravasation effect can be as high as 70%
initially and as low as 10% by the end of the study. For this,
we calculated the daily fraction of tumor growth inhibition
(i.e., tumor size in anginex- or 0118-treated mice divided
by that in untreated mice) in null mice divided by the
fraction of tumor growth inhibition in wild-type mice. One

minus this ratio times 100 yields the percentage enhance-
ment, which is plotted versus time in Figure 5B for all
tumor models investigated. The immunoextravasation
effect is greatest at the onset of treatment and then declines
up to the end of the study. We found essentially the same
trend in each tumor model, and linear fits to these data
indicate highly significant correlations with a regression
coefficient R¼ 0.92 for all data with 0118 and R¼ 0.90 for
all data with anginex.

Enhancement of adoptive immunotherapy
To show feasibility, we conducted an adoptive immu-

notherapy study in which we treated B16F10 tumor–bear-
ing T-cell–deficient (Foxn1�/�) and wild-type control mice
with 0118 for only 2 days, followed by adoptive transfer of
isolated T cells. Because reports have shown that transfers
of effector T cells can actually impair the antitumor efficacy
(21), so T-cell transfers in our model were executed with
nonstimulated/nonactivated T cells. Angiostatic treatment
(10 mg/kg i.p. bid) was initiated when tumors reached
approximately 70 mm3 and was administered only for 2
days, days 5 and 6 (in contrast to the 8 days of treatment in
Fig. 6). The adoptive transfer of 2 � 107 T cells (16.8%
CD4, 23.5% CD8, and 56.2% double positives) was admi-
nistered on day 7.

The 2 days of angiostatic therapy alone showed no
significant effect on tumor growth in both the Foxn1�/�

and wild-type mice, whereas the adoptive transfer alone
inhibited tumor growth by about 50% on the last day in
Foxn1�/� mice (Fig. 6A). However, the greatest effect
resulted from the staggered combination of both therapies,
wherein tumor growth was inhibited by about 70% in
Foxn1�/� mice (P ¼ 0.0015), with significant improve-
ment over 0118 (P ¼ 0.0144) and marginally significant
improvement over T cells alone (P¼ 0.089) on the last day
of treatment (Fig. 6A), and by around 90% in wild-type
mice (P < 0.0001), with significant improvement over the
monotherapies (P < 0.0001 vs. 0118, and P ¼ 0.0013 vs. T
cells) on the last day of treatment (Fig. 6B).

As proof that T cells from the adoptive transfer indeed
infiltrated into tumors of Foxn1�/� mice, we observed a
significant (P < 0.01) increase in T cells in the combination-
treated mice, compared with adoptive T-cell transfer alone
(Fig. 6C and E). No CD45þCD3þ cells were detected in
vehicle-treated or 0118-treated mice, as these mice did not
receive a T-cell transfer (Fig. 6E), and the CD45þ cells
present in vehicle and 0118-treated mice (Fig. 6D), likely
arising from other types of leukocytes (e.g., macrophages)
present in Foxn1�/� mice.

Discussion

The causal relationship between inflammation, immune
response, and cancer has now been widely accepted (22).
However, the precise involvement of the tumormicroenvir-
onment, in particular tumor ECs, remains largely unclear.
Various types of immunosuppression and tolerance have
been associated with the tumor microenvironment, which
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can impede the adequate effector function of T cells, such as
coinhibitory effects of cytokines on activation, prolifera-
tion, and survival of T cells (24), interferencewithmigration
of activated T cells to the tumor due to lack of tumor
chemokine or T-cell chemokine receptor expression (3),
or suppression of the effector functions of T cells by
Tregs, TGF-b, or iNOS (inducible nitric oxide synthase;
ref. 23). These immunosuppressive mechanisms occur
at different stages of the T-cell response and have been
suggested as possible reasons for the limited success of
T-cell–based immunotherapy (3). Here, we investigate
the downregulation of EAM levels as a novel mechanism
of immunosuppression through which tumors can
escape simmunosurveillance and attenuate effects from
immunotherapy.

Angiogenesis is postulated to contribute to the escape of
tumors from host immunity by modulating EAMs and
thereby reducing leukocyte–vessel wall interactions and
subsequent infiltration (5, 6). For example, in response
to angiogenic growth factors, EAMs display an acute
temporal upregulation within hours (25), after which
the expression levels decrease below the initial baseline

around day 2 (6, 7, 25–27). The exposure to proangiogenic
stimuli for an extended period of time, such as less than 24
hours in vitro or as we show here in an in vivo setting such as
a tumor, results in the downregulation of EAMs and sub-
sequent reduced leukocyte–endothelium interactions. In
our tumor mouse models, we show that these dynamic
changes in EAM levels are most pronounced on ICAM-1
and PECAM levels, which are decreased by about 50%
during tumor growth, whereas VCAM levels appear on
average to remain constant. Mechanistically, it has been
shown that angiogenic growth factor–mediated suppres-
sion of ICAM-1 results from inhibition of phosphorylation
and degradation of IkB, the natural inhibitor of NFkB (28),
and that upregulation of ICAM-1 in tumor ECs occurs via
epigenetic mechanisms, primarily at the level of histone
deacetylation of tumor endothelial genes (29). Angiogen-
esis inhibitors such as anginex, angiostatin, and endostatin
have been shown to upregulate NFkB and subsequent
ICAM-1 levels, whereas Avastin (bevacizumab) failed to
do so (30).

In addition, we show that tumor progression occurs
more rapidly in T-cell–compromised mice, indicating that
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the adaptive immune system should be important in can-
cer. Nevertheless, this is apparently insufficient, as the
tumor still progresses and the amount of (activated) T cells
decreases over time. This suggests that the T-cell–mediated
response is hampered by tumor-induced counter measures,
such as downregulation of EAMs (i.e., EC anergy). We show
here that angiostatic treatment abrogates growth factor–
induced suppression of EAMs and specifically facilitates
host immunity by promoting T-cell adhesion to tumor ECs
and subsequent infiltration into the tumor. Furthermore,
we found that the number of activated effector T cells with
specific antitumor activity is significantly increased on
angiostatic therapy. The tumor growth inhibition differen-
tial effect of angiostatic treatment in tumor-bearing CD8
and CD4 null mice compared with wild type also argues for
specific antitumor immunity.
Whereas innate immune cells have been shown to pro-

mote tumorigenesis in certain instances (31), the adaptive
immune system generally exhibits antitumor effects. Most
studies conclude that an increase in T lymphocytes in
tumor tissue improves patient survival (32, 33), yet some

studies report that substantial lymphocyte infiltration pro-
motes tumor progression (34). This apparent contradiction
may be explained by considering the state of T-cell activa-
tion and the cytolytic capacity of tumor-infiltrated lym-
phocytes (35). In addition, tumor-specific CD4 T cells
appear to be functionally manifold because they help or
hinder antitumor immune responses (23). For example, in
a MMTV-PyMT model, CD4þ T cells had no effect on
primary mammary tumor growth or angiogenesis, but they
did enhance the number of pulmonary metastasis through
the innate involvement of macrophages (36). Moreover,
CD4þ T cells can give rise to Tregs. In this regard, Tregs are
undesirable, because Tregs prevent induction of tumor-
associated, antigen-specific immunity and inhibit the effec-
tor function of cytotoxic T cells and NK cells (3, 37). In
addition, Tregs express ectoenzymes CD39/ENTPD1 and
CD73/ecto-50-nucleotidase, which generate pericellular
immunosuppressive adenosine from extracellular nucleo-
tides via degradation of ATP to AMP (38). This is supported
by the observation that the inactivation of the A2A ade-
nosine receptor rescues endogenous antitumor T-cell
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responses and induces successful tumor rejection (39).
Therefore, the coordinated expression and cross-talk of
CD39/CD73 on Tregs and the adenosine A2A receptor
on activated effector T cells generates immunosuppressive
loops, inhibiting optimal antitumor immune responses.
Although the amount of Tregs in our tumor models is low
(1%), blocking Treg function would likely further improve
the antitumor effects because studies have shown that
antitumor therapy can be improved by removal of this
immunoregulatory host mechanism to permit a robust,
persistent immune response in the tumor (40, 41).

Adoptive immunotherapy has been around for some
time but has yet to deliver on its promise to the clinic.
So far, this has been explained in part by the generally
unaccommodating nature of the tumor microenviron-
ment, such as an aberrant vascular bed, oxidative stress,
high lactate levels, low pH, and high interstitial fluid
pressure. Here, we show that antiangiogenic agents can
improve certain conditions in the tumor microenviron-
ment by upregulating EAMs and promoting leukocyte
infiltration into tumor tissue. Because we found that angio-
static induced increase in leukocyte infiltration into tumors
accounts for a time-averaged tumor growth inhibitory
effect of about one-third, the remaining two-thirds should
be attributable to the direct antiangiogenic effect. These 2
effects occur in a time-dependent manner, with the immu-
noextravasation effect being greater (up to 70%) at early
time points following initiation of treatment and becoming
less as the antiangiogenic effect increases. The timeline of
this effect and its peak occurrence within several days
postinitiation of angiostatic treatment essentially parallels
that observed in our earlier study that showed anginex- and
0118-induced tumor vessel maturation (17). With this in
mind, one might argue that angiostatic treatment, which
can temporally improve overall tumor physiology, may be
responsible for the increase in tumor infiltrate. Yet, the
increase in the number of activated T cells argues for an
active rather than for a passive effect, such as vessel normal-
ization. In addition, no reduced blood flow velocity or

blood pressure was noted on treatment (14). Also, our
results cannot be explained by a direct effect on leukocytes
themselves, as angiostatic therapy did not change the level
of activation, nor did it change the ratio of infiltrating
activated to nonactivated leukocytes. Furthermore, the
number of circulating leukocytes in peripheral blood
was unaffected by angiostatic treatment and the expression
of leukocyte adhesion molecules was also not altered.
Overall, our work strongly suggests that overcoming EC
anergy by adjuvant therapy with angiogenesis inhibitors
holds promise for immunotherapy in the clinic.
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