A Novel Oncolytic Herpes Simplex Virus that Synergizes with Phosphoinositide 3-kinase/Akt Pathway Inhibitors to Target Glioblastoma Stem Cells

Ryuichi Kanai, Hiroaki Wakimoto, Robert L. Martuza, and Samuel D. Rabkin

Abstract

Purpose: To develop a new oncolytic herpes simplex virus (oHSV) for glioblastoma (GBM) therapy that will be effective in glioblastoma stem cells (GSC), an important and untargeted component of GBM. One approach to enhance oHSV efficacy is by combination with other therapeutic modalities.

Experimental Design: MG18L, containing a US3 deletion and an inactivating LacZ insertion in UL39, was constructed for the treatment of brain tumors. Safety was evaluated after intracerebral injection in HSV-susceptible mice. The efficacy of MG18L in human GSCs and glioma cell lines in vitro was compared with other oHSVs, alone or in combination with phosphoinositide-3-kinase (PI3K)/Akt inhibitors (LY294002, triciribine, GDC-0941, and BEZ235). Cytotoxic interactions between MG18L and PI3K/Akt inhibitors were determined using Chou–Talalay analysis. In vivo efficacy studies were conducted using a clinically relevant mouse model of GSC-derived GBM.

Results: MG18L was severely neuroattenuated in mice, replicated well in GSCs, and had anti-GBM activity in vivo. PI3K/Akt inhibitors displayed significant but variable antiproliferative activities in GSCs, whereas their combination with MG18L synergized in killing GSCs and glioma cell lines, but not human astrocytes, through enhanced induction of apoptosis. Importantly, synergy was independent of inhibitor sensitivity. In vivo, the combination of MG18L and LY294002 significantly prolonged survival of mice, as compared with either agent alone, achieving 50% long-term survival in GBM-bearing mice.

Conclusions: This study establishes a novel therapeutic strategy: oHSV manipulation of critical oncogenic pathways to sensitize cancer cells to molecularly targeted drugs. MG18L is a promising agent for the treatment of GBM, being especially effective when combined with PI3K/Akt pathway–targeted agents. Clin Cancer Res; 17(11); 3686–96.

Introduction

Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults (1). Despite advances in drug development, overall survival has not substantially improved. Recently, cancer stem or tumor-initiating cells have been isolated from solid tumors, including GBM, that are tumorigenic with characteristics of adult stem cells including self-renewal and differentiation into multiple lineages (2). Glioblastoma stem cells (GSC) are thought to be important in GBM progression, heterogeneity, recurrence, and resistance to therapy and provide an important target for the development of new therapies (3). Detailed molecular analysis of GBMs has shown that genetic alterations in the phosphoinositide-3-kinase (PI3K)/Akt pathway, including in PTEN and PIK3CA, occur in about 80% of tumors (4, 5). These molecular changes confer GBMs with proliferative and survival advantages and may play a role in regulating GSCs (6). There has been rapid growth in the development and clinical testing of small molecule inhibitors of the PI3K/Akt pathway including for glioma (7). It has been reported that GSCs are sensitive to Akt inhibitors (8, 9). Unfortunately, the combination of genetic alterations and the number of cross-regulatory feedback loops in the PI3K/Akt pathway raise questions about the likely clinical efficacy of inhibitors alone (7, 10).

Oncolytic viruses are a distinct class of targeted anticancer agents with unique mechanisms of action compared with other cancer therapies; they selectively replicate in and kill cancer cells (oncolysis), amplifying themselves and spreading but sparing normal tissue. The safety of oncolytic herpes simplex virus (oHSV) therapy has been shown in clinical trials for GBM; however, efficacy remains anecdotal and needs improvement (11, 12). Combining oHSV with chemotherapeutic drugs is an effective strategy to improve overall efficacy and depending on the specific oHSV mutations and drug, synergistic cancer cell killing can be
Translational Relevance

Glioblastoma (GBM) is an invariably lethal brain tumor. Glioblastoma stem cells (GSC) are thought to be important in disease progression, recurrence, and resistance to therapy, providing an important target for the development of new therapies. Oncolytic herpes simplex viruses (oHSV) hold promise for GBM treatment; however, evidence for clinical efficacy remains elusive. One strategy to enhance the efficacy of Ul3-deleted oHSV is combination with phosphoinositide-3-kinase (PI3K)/Akt pathway inhibitors. This study shows that oHSV-MG18L replicates well in GSCs and is efficacious in mice bearing GSC-derived brain tumors, yet nonneuropathogenic in mice. Notably, MG18L synergizes with PI3K/Akt inhibitors in killing GSCs and their intracerebral tumors. This study is the first to show effective targeting of cancer stem cells by the combination of oHSV and small molecule inhibitors. Synergy with MG18L may be utilized to increase efficacy of PI3K/Akt inhibitors. These data provide support for translation of this novel strategy in GBM patients.

Type Culture Collection and used at low-passage number. Human astrocytes were obtained from ScienCell. Cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum (DMEM-FCS) at 37°C and 5% CO2. Human GSCs were isolated as previously described (15) and cultured in EFM20 medium composed of Neurobasal medium (Invitrogen) supplemented with 3 mmol/L L-glutamine (Mediatech), 1× B27 supplement (Invitrogen), 0.5× N2 supplement (Invitrogen), 2 μg/mL heparin (Sigma), 20 ng/mL human EGF (epidermal growth factor; R&D systems), 0.5× penicillin G/streptomycin/sulfate/amphotericin B complex (Mediatech). The stem cell features of GBM4, GBM8, and BT74 have been previously described (15). Spheres were dissociated using NeuroCult Chemical Disaggregation kit (StemCell Technologies). Passaged cells were confirmed to be mycoplasma free. LY294002 (LC Laboratories), triciribine (Akt inhibitor V; Santa Cruz Biotechnology), GDC-0941 (Chemdea), BEZ2335 (Chemdea), and Z-VAD-FMK (Tocris Bioscience) were dissolved in dimethyl sulfoxide (Sigma-Aldrich).

Viruses

All viruses were constructed on a HSV-1 strain F background. G207 (γ34.5Δ, ICP6+, LacZ), G47A (γ34.5Δ, ICP6+, ICP47/US11proΔ, LacZ), and FΔ6 (ICP6+, LacZ) have been previously described (14, 15, 19). R7041 (Ul3 deleted) was provided by Dr. B. Roizman (University of Chicago, Chicago, IL; ref. 20). Viruses were grown, purified, and titered on Vero cells (19).

Construction of MG18L

Construction and characterization of MG18L was as described (19). Briefly, the 5.3-kb fragment of pKX2-βG3 (from S.K. Weller, University of Connecticut Health Center, Farmington, CT), containing the Escherichia coli lacZ sequence inserted in-frame in Ul3, was cotransfected with R7041 viral DNA into Vero cells using Lipofectamine 2000 (Invitrogen). Recombinant viruses, isolated by limiting dilution and identified as plaques staining blue after X-gal histochemistry (Supplementary Fig. S1), were plaque purified 3 times in Vero cells. The genomic structure of MG18L was confirmed by restriction endonuclease digestion and Southern blot analysis (Supplementary Fig. S2A).

Viral replication assay

Cells were seeded into 24-well plates (2 × 104 cells/well) in 0.5 mL of media and infected at a multiplicity of infection (MOI) of 1.5 in triplicate. LY294002 was added 6 hours postinfection (pi) and titers determined by plaque assay on Vero cells.

Cell susceptibility assays and Chou–Talalay analysis

Cells were seeded into 96-well plates (5,000 cells/well), and 3.5 days after infection or 3 days after drug treatment MTS assays (Promega) were carried out according to manufacturer’s instructions. For Chou–Talalay analysis (21),
Immunoblots

Cells were treated with virus at MOI of 1.5, collected at indicated times after infection, and cell pellets lysed in RIPA (radioimmunoprecipitation assay) buffer (Boston Bioproducts) with a cocktail of protease and phosphatase inhibitors (Roche). A total of 12.5 μg of protein was separated by 10% SDS-PAGE and transferred to PVDF (polyvinylidene difluoride) membranes by electroblotting. After blocking with 5% nonfat dry milk in TBS-Tween 20, membranes were incubated at 4°C overnight with the following antibodies (1:1,000): Akt, phosphorylated Akt (p-Akt; Ser473), phosphorylated Akt (Thr308), cleaved PARP (all from Cell Signaling Technology), ICP4 (USBiological), or actin (Sigma), followed by incubation with appropriate HRP (horseradish peroxidase)-conjugated goat anti-rabbit or anti-mouse secondary antibodies (1:5,000; appropriate HRP (horseradish peroxidase)-conjugated goat anti-rabbit or anti-mouse secondary antibodies (1:5,000; Promega) for 1 hour at room temperature. Protein–antibody complexes were visualized using ECL (Amersham Bioscience).

Assay of caspase activity

Cells seeded into 96-well plates (5,000 cells/well) in triplicate were infected, LY294002 (20 μmol/L) or vehicle alone added 10 hours later, and caspase-3/7 activity evaluated 16 hours after infection using the Caspase-Glo 3/7 Assay Kit (Promega) according to the manufacturer’s instruction.

Animal experiments

All in vivo procedures were approved by the Subcommittee on Research Animal Care at Massachusetts General Hospital. For safety evaluation, female A/J mice, 6 weeks of age (NCI, Frederick, MD), were stereotactically inoculated (right striatum, 2.5-mm lateral from Bregma and 2.5-mm deep) with virus in 3 μL of virus buffer (150 mmol/L NaCl, 20 mmol/L Tris, pH 7.5) and euthanized when moribund. For efficacy studies, female athymic mice, 6 to 8 weeks of age (NCI) were stereotactically implanted (right striatum, 2.5-mm lateral from Bregma and 2.5-mm deep) with dissociated BT74 cells (1 × 10^5 in 3 μL). On day 8, randomly grouped mice were treated by intratumoral injection of MG18L or virus buffer in 3 μL, followed 12 hours later with intraperitoneal injection of LY294002 or solvent daily for 5 days. For mice surviving 100 days, the absence of tumor tissue was macroscopically confirmed. For histologic studies, mice (28 days after tumor implantation) were treated with mock, MG18L, and/or LY294002 (days 28 and 29). Upon sacrifice brains were removed, fixed in 4% paraformaldehyde, and frozen sections subjected to X-gal and hematoxylin staining or immunocytochemistry with antibodies against human specific nuclei (Millipore), cleaved caspase-3 (Cell Signaling Technology), nestin (Santa Cruz Biotech), or β-gal (mouse from Sigma or rabbit from Millipore), followed by incubation with appropriate FITC (fluorescein isothiocyanate)- and Cy3-conjugated secondary antibodies (Jackson ImmunoResearch) and DAPI (4’,6-diamidino-2-phenylindole).

Statistics

Comparisons of data in viral replication and caspase-3/7 assays were carried out using a 2-tailed Student’s t test (unpaired). Survival was analysed by Kaplan–Meier curves with comparisons by log-rank test. p values less than 0.05 were considered statistically significant.

Results

Central nervous system safety and selectivity of MG18L

MG18L is a new oHSV generated for GBM therapy that contains a deletion of the U3 gene and a LacZ insertion inactivating ICP6 (U3;39; Fig. 1A). As isogenic controls, we used FΔ6, containing only the same ICP6 insertion in strain F, and R7041 with only the U3 deletion. Similar to G207, replication of MG18L was highly compromised in human astrocytes compared with parental R7041 and FΔ6. In U87 human glioma cells, MG18L replicated to a greater extent than G207 and somewhat less than R7041 and FΔ6 (Fig. 1B). For oHSV to be translatable to the clinic for delivery in the brain, it is critical that it is not neuropathogenic. To examine this, highly HSV-1 susceptible A/J mice were inoculated intracerebrally and evaluated for neurologic symptoms. All mice inoculated with as little as 4 × 10^2 plaque-forming units (pfu) of wild-type HSV-1 (strain F) died, whereas all mice inoculated with 4 × 10^6 pfu of MG18L (the highest dose obtainable in 3 μL) or FΔ6 survived. In contrast, this dose of R7041 killed 90% of mice (Table 1). We further quantified neurologic deficits using a scoring scale for morbidity, with 4 of 6 mice inoculated with FΔ6 (4 × 10^6 pfu) showing moderate symptoms, whereas 2 of 8 mice inoculated with MG18L at this dose exhibited only mild transient symptoms (Fig. 1C). At a 10-fold lower dose, only 2 of 6 R7041-inoculated mice did not show deficits (Fig. 1C). Thus, we conclude that MG18L is safe and selective for glioma cells.
Effects of MG18L against human GSCs in vitro

All GSCs tested were susceptible to MG18L replication, with virus yield being similar to R7041 in GBM8 and GBM13 and 4- to 5-fold less in GBM4 and BT74, whereas G207 does not replicate (Fig. 2A). One activity of US3 protein is to inhibit Akt phosphorylation at Ser473 induced by HSV infection (17, 18). Phosphorylation of Akt is induced by FΔ6 and G207 in GBM4 and BT74, respectively, even though G207 does not replicate, as illustrated by shutoff of immediate early ICP4 expression (Fig. 2A). In MG18L-infected GSCs, p-Akt (Ser473 but not Thr308) levels are further increased and remain stable or continue to increase with time (Fig. 2B). The in vitro efficacy of MG18L was compared with FΔ6 and G47Δ in GSCs. FΔ6 was most effective at killing GSCs, whereas MG18L was similar to G47Δ, except in GBM8 (Fig. 3A). The virus yields for G47Δ and FΔ6 were previously reported (15). This was similar in glioma cell lines U87 and T98G (Supplementary Fig. S2B).

Table 1: Safety evaluation of oHSV after intracerebral inoculation in A/J mice

<table>
<thead>
<tr>
<th>Dose, pfu</th>
<th>Strain F (wild-type)</th>
<th>Virus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R7041</td>
<td>FΔ6</td>
</tr>
<tr>
<td>4 x 10⁶</td>
<td>NT</td>
<td>1/10</td>
</tr>
<tr>
<td>2.5 x 10⁶</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>2 x 10⁶</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>4 x 10³</td>
<td>NT</td>
<td>6/6</td>
</tr>
<tr>
<td>4 x 10²</td>
<td>0/3</td>
<td>NT</td>
</tr>
</tbody>
</table>

NOTE: Mice were observed for 28 days and the number of survivors/total indicated. Abbreviation: NT, not tested.

Human GSCs exhibit variable sensitivities to PI3K/Akt pathway inhibitors in vitro

The PI3K/Akt signaling pathway, commonly activated in cancer, is one of the most active targets for drug development. As a prelude to examining the interaction between MG18L and PI3K/Akt pathway inhibitors, we determined the GSC sensitivity to inhibitors of PI3K (GDC-0941), Akt (triciribine), mTOR/PI3K (BEZ235), and nonspecific PI3K (LY294002; ref. 23). GBM13 was the least sensitive to all 4 inhibitors, followed by BT74, whereas GBM4 and GBM8 were quite sensitive (Fig. 3B). Triciribine (~250 μmol/L) had no effect on GBM13 viability, so its ED₅₀ was not obtainable. Both U87 and T98G exhibited a similar range of inhibitor sensitivities as BT74 (Supplementary Table S1).
MG18L synergizes with PI3K/Akt pathway inhibitors to inhibit human GSCs in vitro

One of the rationales for the construction of MG18L was its postulated ability to sensitize cancer cells to PI3K/Akt pathway inhibitors. MG18L and LY294002 synergized in killing 3 of the 4 GSCs, whereas the interaction in human astrocytes was antagonistic to additive (Fig. 3C–G). Synergy was dependent on the US3 deletion, as the interactions of FΔ6 and G47D (US3+ oHSV) with LY294002 were mostly additive or antagonistic (Fig. 3C–F). Similarly, the interactions in glioma cell lines (U87, T98G) were synergistic only for US3/C0R7041 and MG18L (Supplementary Fig. S3A). Synergy in U87 cells was not affected by the order of addition (Supplementary Fig. S3A). As LY294004 has a broad inhibitor profile across many PI3Ks and protein kinases (24), we examined the interactions of MG18L with selective PI3K/Akt pathway inhibitors that have been in clinical trial. Both triciribine and GDC-0941 synergized with MG18L to kill GBM4 and BT74 (Fig. 3H and I), whereas the dual PI3K/mTOR inhibitor BEZ235 only synergized in GBM13 (Fig. 3J). Because GBM13 was resistant to triciribine (Fig. 3B), we were unable to carry out a synergy analysis; however, a nontoxic dose of triciribine (30 μmol/L) enhanced killing by MG18L (data not shown).

The combination of MG18L and LY294002 activate apoptotic pathways in glioma cells in vitro

Treatment of BT74 or U87 cells with LY294002 did not increase MG18L replication and virus yield (Supplementary Fig. S4), indicating that this is not the mechanism underlying synergy. Because US3 blocks apoptosis in
HSV-infected cells (16, 25), we hypothesized that the combination of MG18L and PI3K/Akt pathway inhibitors enhanced apoptosis in glioma cells, contributing to the observed synergy. Caspase-3 and -7 are common effector caspases of both the intrinsic and extrinsic apoptotic pathways. GSCs and U87 infected with FA6 or MG18L showed increased levels of caspase-3/7 activity, with MG18L being significantly more effective than FA6 (Fig. 4A–D and Supplementary Fig. S5B). Treatment of all GSCs and U87 cells, except GBM8 where synergistic killing was not observed, with MG18L and LY294002 showed significantly higher activities of caspase-3/7, compared with treatment with either alone (Fig. 4A–D and Supplementary Fig. S5B). The combination of FA6 and LY294002 did not produce an increase in caspase activity (Fig. 4A–D and Supplementary Fig. S5B), further

Figure 3. Effects of oHSV or PI3K/Akt pathway inhibitors on GSC viability and the interaction of the combination. A, GSCs and human astrocytes were infected with G47Δ, FΔ6, or MG18L at different MOIs and 3.5 days later, viability was determined, dose–response curves obtained, and ED50 doses determined. B, cell viability was determined 3 days after adding inhibitor. The ED50 dose for each GSC was normalized to the ED50 dose for GBM4 (13.2, 27.1, 0.57, and 0.034 µmol/L for LY294002, triciribine, GDC-0941, and BEZ235, respectively). C–J, interactions were analyzed by the median effect method of Chou–Talalay, with data presented as fraction affected–combination index plots. CI < 1, = 1, > 1 represent synergistic, additive, and antagonistic interactions, respectively. C–G, interactions between oHSV (G47Δ, FΔ6, and MG18L) and LY294002 on proliferation of GBM4 (C), GBM8 (D), GBM13 (E), BT74 (F), and normal human astrocytes (G). H–J, interactions between MG18L and PI3K/Akt pathway inhibitors; triciribine (H), GDC-0941 (I), and BEZ235 (J).
Figure 4. Combination of MG18L and LY294002 induces caspase-3/7 activation and PARP cleavage in GSCs. A–D, GSCs were infected with FΔ6 or MG18L at MOI of 1.5, or mock, and 14 hours later, cells were treated with or without LY294002 (LY; 20 μmol/L), and the activities of caspase-3 and -7 were evaluated (RLU; relative luminescence units) 20 hours after infection. A, BT74; B, GBM4; C, GBM8; D, GBM13. E–H, GSCs were treated as in A to D, except cells were collected and processed for Western blotting with antibodies to cleaved PARP (apoptosis marker), p-Akt, and total Akt. E, BT74; F, GBM4; G, GBM8; H, GBM13. I, synergy between MG18L and LY294002 in BT74 was impaired by the pan-caspase inhibitor Z-VAD-FMK (50 μmol/L). The values for MG18L and LY294002 are the same as in Figure 3F.
showing the involvement of the lack of US3. As an additional readout for apoptosis, we examined cleaved PARP. Consistent with the results from the caspase-3/7 activity assay, an increased level of cleaved PARP was observed with the combination, except for GBM8 (Fig. 4E–H and Supplementary Fig. S5A). In all cells, including GBM8, LY294002 treatment inhibited Akt activation (Fig. 4E–H and Supplementary Fig. S5A). These results support the view that synergy is because of increased apoptosis. Blocking caspase activation with a pan-caspase inhibitor, Z-VAD-FMK, before treatment with MG18L and LY294002, impaired synergy in BT74, GBM4, and U87 cells (Fig. 4I and Supplementary Fig. S5C and D).

MG18L treatment of human GSC–derived intracerebral tumors

To evaluate the in vivo efficacy of MG18L, we used BT74-derived intracerebral tumors. Histopathologically, this GSC forms aggressive tumors with high levels of vascularity and intratumoral hemorrhage (Fig. 5A, top; ref. 15), a hallmark of GBM in humans. MG18L efficiently infected and spread within the tumor, as illustrated by the extensive X-gal staining at 36 hours postinfection, which was more extensive than at 12 hours (Fig. 5A, bottom). Sections were doubly immunostained with antibodies against human nuclear antigen (identifies BT74 cells) and β-galactosidase (identifies MG18L-infected cells), confirming MG18L spread within the tumor tissue (Fig. 5B). Most of the cells in the tumors stained positive for nestin and these were susceptible to MG18L infection (Supplementary Fig. S6). Treatment of mice bearing established BT74 tumors with a single injection of MG18L significantly extended their survival (Fig. 5C). Median survival increased from 32.5 days for mock to 41 days with MG18L, with 1 animal surviving 100 days.

LY294002 enhances the therapeutic efficacy of MG18L in vivo

LY294002 treatment alone of BT74 tumor–bearing mice was only modestly effective, with a prolongation of median survival by 5.5 days (Fig. 5C). Combination with MG18L was much more efficacious than either treatment alone, with 50% of mice surviving long term (Fig. 5C). At 100 days, when all surviving mice were sacrificed, we did not detect tumor macroscopically. Similar results were obtained in a U87 intracerebral tumor model (Supplementary Fig. S7). Because combination treatment increased apoptosis in vitro (Fig. 4), we examined BT74 tumor sections from mice for the presence of apoptotic cells (cleaved caspase-3 immunocytochemistry). Mock treatment did not induce detectable cleaved caspase-3 within the tumor, whereas LY294002 induced scattered positive cells (Fig. 5D and E). In contrast, MG18L infection induced a significant number of cleaved caspase-3–positive cells, which was further increased in combination with LY294002 (Fig. 5D and E), further supporting the hypothesis that apoptosis is a key mediator of improved efficacy.

Discussion

We have constructed a new oHSV vector, MG18L, containing a US3 deletion and ICP6 mutation that is both “safe” after intracerebral inoculation in HSV-susceptible mice and efficacious against GSCs, warranting clinical translation for GBM and possibly other tumors. The non-essential HSV US3 gene is a serine-threonine kinase with multiple biological functions, including blocking virus and exogenously induced apoptosis (16, 26), so that its loss should engender tumor selectivity, although this still remains to be shown. In fact, US3 mutants in both HSV-1 and HSV-2 have been shown to have oncolytic activity (18, 27). Other US3 activities that may be pertinent include phosphorylation of histone deacetylase (HDAC) 1 and 2 and blocking downstream signaling (29), and inhibiting virus-activated Akt (17, 18). While R7041, with a single US3 mutation, was found to be very attenuated for pathogenicity in the periphery (18, 30, 31), it was not after intracerebral inoculation (32, 33). We found that R7041 had an LD50 (lethal dose) of about 4 × 103 pfu in A/J mice, whereas others reported LD50 values of 1.8 × 10⁶ and 1 × 10⁵ pfu (32, 34). Therefore, to improve safety, we combined the US3 deletion with an ICP6 mutation that further attenuates neurovirulence (Fig. 1C) and increases sensitivity to antivirals yet does not greatly reduce virus replication in GSCs (15, 35). After intracerebral inoculation, MG18L exhibited a favorable safety profile that was comparable to γ34.5 deletion mutants such as G207 and G47Δ, which have been safely administered to GBM patients (12, 14, 36).

MG18L replicates well in GSCs and glioma cell lines, but not human astrocytes, and was very cytotoxic to GSCs in vitro, similar to G47Δ but less than Fā6. While the addition of the ICP6 mutation to US3-deleted oHSV reduces replication in some GSCs, this is offset by decreased replication in astrocytes and improved safety. The mechanism underlying MG18L selectivity for GSCs, as well as apoptotic pathway function, remains to be determined. As expected, GSC infection with MG18L induced higher levels of p-Akt than Fā6 infection. There are at least 10 inhibitors targeting the PI3K/Akt pathway in clinical trial including for glioma (7, 23). MG18L synergized with PI3K/Akt inhibitors (LY294002, triciribine, and GDC-0941) in killing GSCs, except for GBM8, but not human astrocytes. Recently, it was reported that increased p-Akt, in response to DNA-damaging agent doxorubicin, correlated with PI3K inhibitor synergy (37), possibly through a similar mechanism as with oHSV. Synergy was dependent on the US3 deletion, as other oHSVs expressing US3 (G47Δ and Fā6) did not synergize (Fig. 3). In contrast, synergy did not seem to correlate with how susceptible cells were to the PI3K/Akt inhibitors or MG18L alone, as the ED50 values varied more than 10-fold, and GBM8 had very similar sensitivities as GBM4 (Fig. 3). Interestingly, the dual PI3K/mTOR inhibitor, BEZ235, was found to only synergize with MG18L in GBM13 and was mostly antagonistic in GBM4 and BT74.

www.aacrjournals.org

Published OnlineFirst April 19, 2011; DOI: 10.1158/1078-0432.CCR-10-3142
GBM13 was much less sensitive to the PI3K/Akt pathway inhibitors than the other GSCs and astrocytes, although synergy was also observed in T98G cells, which was quite sensitive to the inhibitors alone. GBM13 is the only GSC tested that did not express PTEN (data not shown), and T98G has a PTEN mutation (38). We tried to examine synergy with the mTOR inhibitor rapamycin but could not obtain reliable dose–response curves for analysis of synergy. However, when a single dose of rapamycin was combined with serial dilutions of MG18L in GBM4 or BT74, the reduction in cell viability was much less than additive, which may have contributed to the antagonistic interaction with BEZ235.

Figure 5. Combination therapy extends survival of mice bearing intracerebral BT74 tumors. A, top, athymic mice intracerebrally implanted with BT74 were sacrificed on day 30. Shown is a representative section of the brain with untreated BT74 tumor (hematoxylin and eosin staining) illustrating intratumoral hemorrhage (arrow). Bottom, mice treated with MG18L (2 × 10⁶ pfu) on day 28 were sacrificed 12 hours (left) and 36 hours (right) later. Sections were stained with X-gal (blue) to indicate MG18L infected cells. B, a region at the edge of the tumor from a 36 hour pi brain after immunostaining with antibodies against β-gal (green; MG18L infected cells) and human nucleus (red; BT74 cells), followed by DAPI (total nuclei; scale bar = 100 μm). Virus was injected to the right of the displayed field. C, Kaplan–Meier survival curves of mice bearing BT74 tumors after treatment with intratumoral MG18L (2 × 10⁶ pfu) or mock, and intraperitoneal LY294002 (LY; 25 mg/kg/d) or vehicle (mock, n = 10; MG18L, n = 10; LY294002, n = 6; combination, n = 6). P < 0.05 (mock vs. LY294002 and LY294002 vs. MG18L + LY294002), P < 0.0005 (mock vs. MG18L; log-rank test). D, mice with BT74 tumors treated with mock, MG18L, LY294002, or the combination were sacrificed 36 hours after MG18L injection. Brains were sectioned and tumors immunostained with antibodies to β-gal (green; MG18L) and cleaved caspase-3 (red; apoptosis) followed by DAPI (scale bars = 100 μm). E, the ratio of cleaved caspase-3–positive cells/total was determined in 3 randomly selected fields. *, P < 0.05; **, P < 0.01.
enhanced apoptosis in combination-treated cells. Interestingly, only in MG18L-infected GBM8 cells, apoptosis was not increased by LY294002. Thus, synergy with LY294002 could be impaired or abrogated in the presence of the pan-caspase inhibitor Z-VAD-FMK in BT74, GBM4, and U87 cells (Supplementary Figs. S4 and S5). This supports the view that apoptosis induced by HSV infection that is not blocked by U3,3 is suppressed by activated Akt, balancing competing U3 altered pathways and making the cells very sensitive to inhibition of Akt signaling. Inhibition of the PI3K/Akt pathway in glioma has been reported to either induce apoptosis or autophagy (39–42), and sensitize cells to chemotherapy-induced apoptosis (43). LY294002 treatment of GSCs significantly induced apoptosis in GBM4 and GBM8 but not GBM13 or BT74. The range of interactions observed in the different GSCs illustrates the complexity of the PI3K/Akt pathway in GBM, with its multiple feedback loops overlaid with genetic alterations at different nodes in the pathway, as well as potential interactions with the MEK (MAP/ERK kinase) pathway (44). Further genetic analysis of the GSCs may identify alterations underlying sensitivity to inhibitors at different steps in the PI3/Akt pathway and provide insights for future stratification of patients in any clinical trials with inhibitors in this pathway.

As a proof-of-concept study, we examined the combination of LY294002 with MG18L for in vitro therapy in mice bearing BT74 tumors. Combination treatment significantly prolonged the survival of mice, with 50% long-term survivors, compared with either agent alone. Synergy in vitro resulted in a 6.5-fold reduction in LY294002 dose at the ED50 to a more obtainable dose in vivo. While synergy in vitro was not affected by the temporal order of addition, for this in vivo experiment we administered MG18L prior to LY294002 to allow for induction of Akt activation by MG18L infection, followed by Akt inhibition by molecular targeting drugs. It will be important for clinical translation to further characterize the effect of administration schedule on efficacy with clinically relevant inhibitors. Although, we found that the combination treatment increased apoptosis both in vitro (Fig. 4) and in vivo (Fig. 5D and E), there may be additional factors contributing to the enhanced efficacy of the combination in vivo. For example, the antiangiogenic properties of PI3K/Akt/mTOR inhibitors (45, 46) and disruption of tumor interstitial space produced by enhanced apoptosis may have helped the spread of MG18L in the tumor tissue (47). In summary, MG18L is effective in killing human glioma cells including GSCs, and the therapeutic efficacy can be enhanced by combination with PI3K/Akt pathway inhibitors. This strategy of using an oncolytic virus to alter a cancer pathway so that it sensitizes cancer cells to small molecule inhibitors that molecularly target these pathways is a novel one that should be applicable to other HSV mutants, signaling pathways, and cancers.

Disclosure of Potential Conflicts of Interest

S.D. Rabkin was a consultant/advisory board member of MedGene.

Acknowledgments

The authors thank Drs. Bernard Roizman (University of Chicago) for R7041 and Sandra K. Weller (University of Connecticut Health Center) for pKX2-BG3, Cecile Zaupa for assistance with virus constructions, and Matthew Gardner for preliminary synergy experiments.

Grant Support

The study was supported by NIH grant NS-032677 (R.L. Martuza) and Department of Defense grant W81XWH-07-1-0359 (S.D. Rabkin). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received November 24, 2010; revised March 30, 2011; accepted April 7, 2011; published OnlineFirst April 19, 2011.

References

12. Markert JM, Liechty PG, Wang W, Gaston S, Braz E, Karrasch M, et al. Phase I trial of mutant herpes simplex virus G207 inoculated in vivo on efficacy with clinically relevant inhibitors. Although, we found that the combination treatment increased apoptosis both in vitro (Fig. 4) and in vivo (Fig. 5D and E), there may be additional factors contributing to the enhanced efficacy of the combination in vivo. For example, the antiangiogenic properties of PI3K/Akt/mTOR inhibitors (45, 46) and disruption of tumor interstitial space produced by enhanced apoptosis may have helped the spread of MG18L in the tumor tissue (47). In summary, MG18L is effective in killing human glioma cells including GSCs, and the therapeutic efficacy can be enhanced by combination with PI3K/Akt pathway inhibitors. This strategy of using an oncolytic virus to alter a cancer pathway so that it sensitizes cancer cells to small molecule inhibitors that molecularly target these pathways is a novel one that should be applicable to other HSV mutants, signaling pathways, and cancers.

Disclosure of Potential Conflicts of Interest

S.D. Rabkin was a consultant/advisory board member of MedGene.

Acknowledgments

The authors thank Drs. Bernard Roizman (University of Chicago) for R7041 and Sandra K. Weller (University of Connecticut Health Center) for pKX2-BG3, Cecile Zaupa for assistance with virus constructions, and Matthew Gardner for preliminary synergy experiments.

Grant Support

The study was supported by NIH grant NS-032677 (R.L. Martuza) and Department of Defense grant W81XWH-07-1-0359 (S.D. Rabkin). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received November 24, 2010; revised March 30, 2011; accepted April 7, 2011; published OnlineFirst April 19, 2011.

References

17. Benetti L, Roizman B. Protein kinase B/Akt is present in activated form throughout the entire replicative cycle of deltaUS33 mutant virus but only at early times after infection with wild-type herpes simplex virus 1. J Virol 2006;80:3341–8.

A Novel Oncolytic Herpes Simplex Virus that Synergizes with Phosphoinositide 3-kinase/Akt Pathway Inhibitors to Target Glioblastoma Stem Cells

Clin Cancer Res 2011;17:3686-3696. Published OnlineFirst April 19, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-10-3142

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2011/04/21/1078-0432.CCR-10-3142.DC1

Cited articles
This article cites 47 articles, 22 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/17/11/3686.full.html#ref-list-1

Citing articles
This article has been cited by 19 HighWire-hosted articles. Access the articles at:
/content/17/11/3686.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.