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Abstract
Purpose: The requirement of frozen tissues for microarray experiments limits the clinical usage of

genome-wide expression profiling by using microarray technology. The goal of this study is to test the

feasibility of developing lung cancer prognosis gene signatures by using genome-wide expression profiling

of formalin-fixed paraffin-embedded (FFPE) samples, which are widely available and provide a valuable

rich source for studying the association of molecular changes in cancer and associated clinical outcomes.

Experimental Design:We randomly selected 100 Non–Small-Cell lung cancer (NSCLC) FFPE samples

with annotated clinical information from the UT-Lung SPORE Tissue Bank. We microdissected tumor area

from FFPE specimens and used Affymetrix U133 plus 2.0 arrays to attain gene expression data. After strict

quality control and analysis procedures, a supervised principal component analysis was used to develop a

robust prognosis signature for NSCLC. Three independent published microarray datasets were used to

validate the prognosis model.

Results: This study showed that the robust gene signature derived from genome-wide expression

profiling of FFPE samples is strongly associated with lung cancer clinical outcomes and can be used to

refine the prognosis for stage I lung cancer patients, and the prognostic signature is independent of clinical

variables. This signature was validated in several independent studies and was refined to a 59-gene lung

cancer prognosis signature.

Conclusions:We conclude that genome-wide profiling of FFPE lung cancer samples can identify a set of

genes whose expression level provides prognostic information across different platforms and studies,

which will allow its application in clinical settings. Clin Cancer Res; 17(17); 5705–14. �2011 AACR.

Introduction

Lung cancer is the leading cause of death from cancer
for both men and women in the United States and in
most parts of the world, with a 5-year survival rate of 15%
(1). Non–small-cell lung cancer (NSCLC) is the most

common cause of lung cancer death, accounting for up
to 85% of such deaths (2). Clinicopathologic staging is
the standard prognosis factor for lung cancer used in
clinical practice but does not capture the complexity of
the disease so that heterogeneous clinical outcomes
within the same stage are commonly seen. Several ran-
domized clinical trials showed that adjuvant chemother-
apy improves survival in resected NSCLC (3–7). The effect
of adjuvant chemotherapy on prolonging survival is
modest—only 4% to 15% improvement in 5-year survi-
val—although such treatment is associated with serious
adverse effects (6, 8). Therefore, it is of considerable
clinical importance to have a robust and accurate prog-
nostic signature for lung cancer, especially in early stage
lung cancer to improve the current clinical decisions on
whether an individual lung cancer patient should receive
adjuvant chemotherapy or not.

Genome-wide expression profiles have been used to
identify gene signatures to classify lung cancer patients
with different survival outcomes (9–16). However,
the requirement of frozen tissues for microarray experi-
ments limits the clinical usage of these gene signatures.
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Furthermore, prognostic gene signatures for NSCLC
developed by different groups show minimal overlap
and are often difficult to reproduce by independent
groups (17, 18). To address the problem of requirement
for frozen issues, we designed this study to test the
feasibility of developing lung cancer prognosis gene
signatures by using genome-wide expression profiling
of formalin-fixed paraffin-embedded (FFPE) samples,
which are widely available and provide a valuable rich
source for studying the association of molecular changes
in cancer and associated clinical outcomes. We derived a
prognosis signature for NSCLC from FFPE samples and
validated it in several independent studies. To facilitate
other researchers to reproduce all results in this study,
we have provided a literate programming R package.

Materials and Methods

Tissue specimens
The overall study design and the flow chart of the

derivation and validation of the robust gene signature
are described in Figure 1. We randomly selected 100
NSCLC FFPE samples with annotated clinical information
from the UT-Lung SPORE Tissue Bank from 2001 to 2005.
From these samples, 75 samples passed the mRNA quality
control criteria (Supplementary Methods). Among these 75
samples, 48 samples are adenocarcinomas and 27 are
squamous cell carcinomas. The median follow-up time is
2.8 years and the maximum follow-up time is 6.9 years; the
characteristics of these patients are summarized in Supple-
mentary Table S1. The samples were obtained under
approval of the Institutional Review Boards at MD Ander-
son Cancer Center.

Sample microdissection and RNA extraction
FFPE tumor specimens were cut into serial sections

with a thickness of 10 mm. For the pathologic diagnosis,
one slide was stained with H&E and evaluated by a
pathologist. Other sections were stained with nuclear
fast red (NFR; American MasterTech Scientific Inc.) to
enable visualization of histology. Tumor tissue was iso-
lated by using manual macrodissection when the tumor
area was more than 0.5 � 0.5 mm2 or laser capture
microdissection (P.A.L.M. Microlaser Technologies AG)
in cases of smaller tumor areas. At least 50 mm2 of tumor
tissue was collected from each FFPE block. The extraction
of RNA from tissue samples was done by a proprietary
procedure of Response Genetics, Inc. (United States
Patent Application 20090092979) designed to optimize
the yield of higher molecular weight RNA fragments
from FFPE specimens.

Microarray data preprocessing and quality control
Total RNA was processed for analysis on the Affymetrix

U133 plus 2.0 arrays according to Affymetrix protocols for
first- and second-strand synthesis, biotin labeling, and
fragmentation. The quality control procedure for micro-
array data analysis was based on the percentage of present
calls calculated by the MAS5 package. We selected arrays
with at least 15% of probe sets present; 55 of 75 arrays
passed this quality control criterion and will be used for the
analysis. We selected probe sets that are present on all 55
arrays; 1,400 genes passed this criterion. These 1,400 genes
were referred as the robust gene set (RGS), because the
mRNA expression of these genes is robust to FFPE proces-
sing. The 55 samples and the 1,400 genes were used to
develop gene signatures.

After microarray analysis QC, we used the RMA back-
ground correction algorithm (19) to remove nonspecific
background noise. A robust regression model (20) was
fitted to the probe level data, and the fitted expression
values for the probes at the 30 end were used to summarize
the probe set expression values. Quantile–quantile normal-
ization was used to normalize all the arrays. Consortium
microarray raw data (13) was downloaded from caArray
database of the National Cancer Institute (NCI) and pre-
processed by RMA background correction and quantile–
quantile normalization. All gene expression values were log
transformed (on a base 2 scale).

Supervised classification by using supervised
principal component analysis

Classification was done by using supervised principal
component analysis (21, 22), a widely used classification
method in biomedical research (23–26). As a supervised
classification method, each prediction model was trained
in a training dataset and then the performance was tested in
an independent test dataset. We used an R package (version
2.81), Superpc (version 1.05), to implement the prediction
algorithm, and the default parameters were used. The
implementation details can be found in the Supplementary
Sweave Report. The training and testing sets for each

Translational Relevance

This article is the first study to develop a robust
prognosis signature for non–small cell lung cancer
(NSCLC) on the basis of genome-wide expression
profiling of clinically available formalin-fixed and
paraffin-embedded (FFPE) samples. Although clinical
FFPE tumor samples are widely available, the genome-
wide expression profiling of FFPE samples has been
hampered because of the degradation of RNAs
extracted from them. In this article, we show that
NSCLC FFPE-derived signature is strongly associated
with clinical outcome of the patients, is independent
of clinical prognostic variables, and can be validated in
several independent studies. We showed that, after
strict quality control and analysis procedures, gen-
ome-wide profiling of FFPE samples can actually pro-
vide a unique opportunity to identify a set of genes
whose expression level is less sensitive to the environ-
mental changes. This gene signature is more robust
across different platforms and studies, which is critical
for the successful application of gene signatures in real
clinical settings.
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prediction model are summarized in Supplementary
Table S2.

Survival analysis
Overall survival time was calculated from the date of

surgery until death or the last follow-up contact. Survival
curves were estimated by using the product-limit method of
Kaplan–Meier (27) and were compared by using the log-
rank test. The maximum follow-up time for the FFPE
patient cohort is less than 7 years, whereas some patients
in the consortium cohort have been followed for up to 17
years. To avoid the extrapolation of the prediction model,
the comparison of survival time between predicted groups
are truncated at 7 years. The analysis results without trun-
cation can be seen in Supplementary Sweave Report. Uni-

variate and multivariate Cox proportional hazards analysis
(28) were also done, with survival as the dependent vari-
able.

Results

The robust gene set defines two tumor groups
The expression of these 1,400 genes divided the 55

patients into 2 groups on the basis of unsupervised
clustering analysis (with Euclidean distance and complete
linkage for the hierarchical clustering algorithm; Fig. 2).
Interestingly, group 1 has significantly shorter survival
time compared with group 2 (Fig. 2B; HR ¼ 3.6, P ¼
0.017), and multivariate Cox proportional hazards ana-
lysis showed that the association between RGS groups

Figure 1. A, flow chart of the
derivation and validation of the
robust gene signature from FFPE
samples collected from MD
Anderson UT-Lung Cancer
SPORE tissue bank (MDACC).
B, flow chart of the derivation and
validation of 59-gene prognosis
signature.
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and survival (P¼ 0.012) is independent of stage. Notably,
group 1 was dominated by squamous cell carcinoma
(23/28), whereas group 2 was dominated by adenocarci-
nomas (25/27; P < 0.0001; Supplementary Table S3). The
other clinical characteristics including gender, age, and

smoking status were not significantly different between
the 2 groups. To explore whether the association between
RGS groups and survival is due to the histologic difference
between two groups, we drew Kaplan–Meier curves by
both histology and RGS groups (Supplementary Fig. S1),
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Figure 2. Microarray analysis of the gene expression profiles from FFPE lung tumor samples. A, unsupervised cluster analysis of the 55 FFPE lung cancer
patient cohort by using the expression profile of 1,400 robust genes that pass the microarray quality control criterion. Vertical and horizontal axes
represent robust genes and lung cancer patient clusters, respectively. B, Kaplan–Meier plot showing the association of the expression of robust genes with
patient survival P values were obtained by using the log-rank test. Red color represents sample cluster I and black color represents sample cluster II defined by
unsupervised clustering algorithm by using robust gene profiling data.* indicates censored samples. Gene set enrichment analysis found that the ER-negative
signature derived from breast cancer patients is enriched in group 1 defined by RGS expression (C), and the ER-positive signature derived from
breast cancer patients is enriched in group 2 defined by RGS expression (D). The y-axis shows running enrichment scores for the specific gene set on
the 1,400 preranked genes. The x-axis shows the rank in the ordered dataset. The vertical lines represent the locations of the genes that are in the specific
gene set.
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and it shows clearly that RGS can distinguish high- and
low-risk groups within both adenocarcinoma and squa-
mous groups, indicating the association of RGS groups
and survival is independent of histology groups.
We used gene set enrichment analysis to identify the

enriched gene sets in both RGS groups. Interestingly, an
estrogen receptor (ER)–negative signature in breast cancer
(29) is enriched in RGS group 1,meanwhile, an ER-positive
signature in breast cancer (29) is enriched in RGS group 2
(Fig. 2C and D), indicating the relationship between the ER
signatures and the RGS groups. The other enriched gene
sets are summarized in Supplementary Table S4; notably,
genes enriched in group 1 are also enriched in mouse
neural stem cells and embryonic stem cells.

Construct and validate RGS prognosis signatures
FFPE samples training to testing. The strong associa-

tions between RGS groups and survival outcomes moti-
vated us to explore whether RGS expression profile can be

used to construct prognosis signature. We randomly
divided 55 patients into training (25 samples) and testing
(30 samples) sets and constructed a prediction model by
using 1,400 robust gene expression values in the training
set through a supervised principle component approach
(21). Figure 3A shows that the predicted low-risk group has
significant longer survival time than the predicted high-risk
group (P ¼ 0.013) in the testing set. To test whether this
association was not random, we randomly split the data
into training and testing sets 200 times, repeated the same
prediction and testing procedures for each set, and found
that the prognosis performance of RGS signature is sig-
nificantly better than random (P ¼ 0.02).

Frozen samples training to testing. We then tested

whether this robust gene set can be used to construct
prognosis signature in frozen samples. The largest inde-
pendent public available lung cancer microarray dataset is
the recently published NCIDirector’s Consortium for study
of lung cancer involving 442 resected adenocarcinomas

Figure 3. Kaplan–Meier plots
showing the predictive power of
the robust gene signatures. Fifty-
five FFPE tumor samples from MD
Anderson Cancer Center were
randomly divided into training (25
samples) and testing (30 samples)
sets (A). Independent validation of
the robust gene signature in the
442 frozen sample cohort from
multi-institute consortium. The
microarray datasets were divided
into 2 groups, one for the training
and the other for the testing cohort
according to the original paper (B).
The training data were 55 FFPE
tumor samples and the testing
dataset were 442 frozen sample
cohort from multi-institute
consortium. The testing was done
for all patients (C), stage I patients
(E), stage II patients (F) and stage
III patients (G) separately. The
training data were the consortium
dataset with 442 frozen samples
and the testing data were 55 FFPE
samples from MD Anderson
Cancer Center (D). P values were
obtained by the log-rank test. Red
and black lines represent
predicted high- and low-risk
groups, respectively. * indicates
censored samples.
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(13). From that study, Affymetrix U133A microarray data
for the 1,012 robust genes were excerpted with 388 less
genes than our FFPE data because of the microarray plat-
form difference. We used the same training and testing
strategy as in the original analyses of these data (13) for
constructing and validating prognosis signature through
supervised principal component approach. The training set
included samples from University of Michigan Cancer
Center (UM) and Moffitt Cancer Center (HLM), and the
testing set included the Memorial Sloan-Kettering Cancer
Center (MSKCC) and Dana-Farber Cancer Institute (DFCI)
samples. This analysis revealed that the predicted low-risk
group has significant longer survival time than the pre-
dicted high-risk group (HR ¼ 2.44, P ¼ 0.00014) in the
testing dataset (Fig. 3B).

FFPE to frozen samples and vice versa. Next, we used
our FFPE and the consortium datasets as frozen samples to
investigate whether the predication model built from one
type of sample can be validated in another type of sample.
Again, the same supervised principal component method
was used to construct the prediction model. The prediction
model built from FFPE samples can significantly distin-
guish the high- and low-risk groups in frozen samples
(Fig. 3C; HR ¼ 1.95, P ¼ 5.4 � 10�7), and the prediction
model built from frozen samples can also distinguish the
high- and low-risk groups in FFPE samples but with mar-
ginal significance (Fig. 3D; HR ¼ 3.59, P ¼ 0.068). We also
tested the performance of FFPE prediction model on 4
individual datasets in consortium study and found that the
predicted low-risk groups have longer survival time com-
pared with the predicted high-risk groups for all sets:
MSKCC dataset (median survival time 6.5 vs. 3.3 years;
HR ¼ 2.31, P ¼ 0.0093), DFCI dataset (median survival
time 5.9 vs. 0.9 years; HR¼ 2.62 P¼ 0.0076), HLM dataset
(median survival time 3.4 vs. 2.2 years; HR¼ 1.25, P¼ 0.4)
and UM dataset (median survival time 5.4 vs. 2.2 years;
HR ¼ 1.98, P ¼ 0.0011; Supplementary Fig. S2). Next, we
compared the performance of RGS signature with previous
published lung cancer prognosis signatures by using the
same consortium dataset as testing set. Shedden and col-
leagues (13) showed that the HRs for Method A signature
(the best signature in their study) and Chen and colleagues
(11) signatures range from 1.10 to 1.83 for the MSKCC test
set, whereas the HR for our RGS signature is 2.89 on the
same MSKCC test set. For the DFCI test set, the HRs range
from 1.76 to 2.30 by using the published signatures,
whereas the HR for our RGS signature on the same DFCI
test set is 2.39. Therefore, the prognosis performance of
RGS prognosis is at least as good as other published
signatures in the microarray dataset.

The RGS prognosis signature is independent of
clinical variables

To test whether RGS is an independent prognosis sig-
nature, we fitted a multivariate Cox regression model
including RGS risk scores, age, gender, stage, smoking
status, adjuvant chemotherapy usage, and clinical sites as
covariables for the consortium dataset. The RGS risk scores

were calculated from the prediction model built from the
FFPE samples set. Table 1 shows that the RGS signature is
significantly associated with the survival time after adjust-
ing for other clinical variables (HR ¼ 1.3, P ¼ 0.007).
Pathologic stages based on international staging system is
the most widely used and important prognosis variable for
lung cancer patients (30); here we tested whether RGS
signature can further refine the prognosis within each stage.
The RGS prognosis signature from FFPE samples was tested
within each stage of the consortium dataset. The results
show clearly that the RGS signature is significantly asso-
ciated with survival outcome within each stage (Fig. 3E–G;
HR ¼ 1.54, P ¼ 0.036 for stage I, HR ¼ 1.81, P ¼ 0.022 for
stage II and HR ¼ 1.90, P ¼ 0.021 for stage III), indicating
that the RGS signature can refine the prognosis for lung
cancer patients. The RGS prognosis signature from FFPE
samples was further tested for patients with or without
adjuvant chemotherapy separately, and the results show
that the RGS signature is significantly associated with
survival for both groups (Supplementary Fig. S3A and B;
HR ¼ 1.95, P ¼ 0.015 for patients with chemotherapy,
HR¼1.99,P¼0.00062 forpatientswithout chemotherapy).

Refine to 59-gene prognosis signature
Among all the RGS genes, 131 genes are associated with

survival (P < 0.05) in the FFPE dataset, and 365 genes are
associated with overall survival (P < 0.05) in the consor-
tium dataset by univariate Cox regression analysis. There
is significant overlap between these two gene lists (Fig. 4A;
59 common genes; P ¼ 0.0008, hypergeometric test).
More significant genes were found in the consortium data

Table 1. The association between characteris-
tics of patients and RGS risk scores and survi-
val time for consortium patients on the basis of
multivariate Cox regression model

Variables HR (95% CI) P

RGS risk scores 1.300 (1.074–1.574) 0.0070
Gender (female vs. male) 0.803 (0.576–1.119) 0.19
Age (continuous in unit

of 10 y)
1.571 (1.321–1.868) <0.0001

Smoking (current/former
vs. never)

1.356 (0.791–2.322) 0.27

Stage
Stage II vs. stage I 2.116 (1.433–3.126) 0.0002
Stage III vs. stage I 4.855 (3.164–7.449) <0.0001

Adjuvant chemotherapy
(yes vs. no)

1.688 (1.172–2.431) 0.0049

Study sites
DFCI vs. UM 1.295 (0.741–2.264) 0.36
HLM vs. UM 1.632 (1.094–2.434) 0.016
MSKCC vs. UM 0.657 (0.419–1.031) 0.068

NOTE: RGS scores were calculated from the prediction mo-
del built from MD Anderson Cancer Center FFPE samples.
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compared with the FFPE data, which is likely due to the
larger sample size (n ¼ 442) of the consortium dataset
compared with the FFPE dataset sample size (n ¼ 55).
Surprisingly, HRs from the two datasets are very consistent
with each other. All 59 genes have the same direction of
effects (positive or negative) on the survival between the 2
datasets and the HRs from 2 datasets are highly correlated
(Pearson’s correlation ¼ 0.86; Fig. 4B), indicating the high
consistency of expressions of these genes across datasets.
These results motivated us to hypothesize that these 59
genes (Supplementary Table S5) alone can be used for lung
cancer prognosis. To test this hypothesis, we applied super-
vised principal component analysis to these 59 genes by
using the FFPE dataset to construct a 59-gene prognosis
signature. Because the selection of these 59 genes used
information from both FFPE and consortium datasets, we
used another 2 independent lung cancer datasets, including
the Bild and colleagues (n ¼ 111; ref. 9) dataset and the
Bhattacharjee and colleagues dataset (n ¼ 117; ref. 31)
downloaded from the literature to validate our 59-gene
signature. The 59-gene prediction model built from FFPE
samples can significantly distinguish the high- and low-risk
groups for both the Bhattacharjee and colleagues and Bild
and colleagues datasets (Fig. 5A; HR ¼ 1.81, P¼ 0.016 and

Fig. 5C; HR ¼ 2.10, P ¼ 0.02, respectively). Furthermore,
this signature can also significantly distinguish the high-
and low-risk groups within stage I patients for both datasets
(Fig. 5B and D), indicating that this 59-gene signature can
refine the prognosis for lung cancer patients within stage I
patients. Because of the small sample size for stage II and
stage III patients in Bild and colleagues and Bhattacharjee
and colleagues studies, the 59-gene prognosis signature was
not tested for stage II and stage III patients. We also found
that 59-gene prediction model built from the consortium
dataset can also distinguish the high- and low-risk groups
for the Bild and colleagues and Bhattacharjee and collea-
gues datasets (Supplementary Fig. S4A–D).

To understand the potential biological relevance of these
59 genes significantly associated with survival in the FFPE
and consortium datasets, we used Ingenuity Pathway Ana-
lysis (IPA) to explore which known regulatory networks are
enriched in this 59-gene set. IPA analysis revealed the most
significant molecular networks to be cancer, tumor mor-
phology, and respiratory disease. This network (Fig. 4C)
includes 14 genes of the 59-gene set and is centered on
transcription factors HNF4A, HNF1A, and ONECUT1
(HNF6A). This hepatocellular network has been implicated
in hepatocellular carcinoma as determined by in vitro study
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Figure 4. Comparison of individual gene effect across FFPE samples from MD Anderson Cancer Center and 442 frozen samples from consortium. A, Venn
diagram of genes associated with overall survival (P < 0.05 in univariate Cox regression models). It shows 59 genes are significantly associated with
survival in both FFPE data and consortium data. B, the HRs from univariate Cox regression models for the 59 genes common in both sets are consistent
between FFPE set and consortium set. C, regulatory gene and protein interaction networks defined by the 59 predictors. Computational molecular
interaction network prediction on the basis of genes and proteins associated with the significant pathways in the Ingenuity Pathways Knowledge Base (IPKB)
by IPA. Interactions between the different nodes are given as solid (direct interaction) and dashed (indirect interaction) lines (edges). This network received the
highest score by IPA and is mostly centered on the transcription factors HNF4A and HNF1A, and ONECUT1. The shaded genes are the genes belonging
to 59-gene signature.

Robust Prognosis Signature from Fixed Tissue

www.aacrjournals.org Clin Cancer Res; 17(17) September 1, 2011 5711

on December 10, 2018. © 2011 American Association for Cancer Research.clincancerres.aacrjournals.org Downloaded from 

Published OnlineFirst July 8, 2011; DOI: 10.1158/1078-0432.CCR-11-0196 

http://clincancerres.aacrjournals.org/


(32) and molecular interactions in this network are puta-
tively involved in lung cancer survival.

Discussion

In this study, we tested the feasibility of deriving a lung
cancer prognosis gene signature from FFPE tumor samples
on the basis of genome-wide mRNA expression profiling.
Although reverse transcriptase PCR methods have been
used to measure gene expression level from FFPE samples
(33–35), the selection of genes for testing are limited to the
current knowledge base which is incomplete and incon-
sistent (36). Because of degradation and chemical altera-
tion of RNA extracted from FFPE samples, the use of
microarray analysis of gene expression from FFPE samples
has been hampered (36). New technology and methodol-
ogies developed to extract RNA from FFPE samples coupled
with new array platforms have made it possible to measure
gene expression from FFPE samples (33, 37–40). A recent
study showed the feasibility of using DNA-mediated
annealing, selection, extension, and ligation arrays with
6,100 preselected genes to profile mRNA expression from
hepatocellular carcinoma tissue (41). No prognosis signa-
ture for other types of cancer has been developed by using

microarray analysis of gene expression from FFPE extracted
RNA. In this study, we built a robust gene signature for
NSCLC on the basis of microarray analysis of FFPE sam-
ples. We claim that this is a robust gene signature because it
has been validated in 6 independent published datasets,
including 4 sets from the consortium study and 2 addi-
tional studies from DFCI and Duke. We also built a pre-
diction model by using the same set of robust genes from
frozen samples and validated the model in both frozen and
FFPE samples.

Most published gene signatures identified from differ-
ent studies are usually very different and with little over-
lap. However, we found that there is significant overlap
among the robust genes associated with survival out-
comes between the FFPE dataset and the consortium
dataset (P ¼ 0.008). More impressively, the HRs, indicat-
ing the strength of the association of genes expression and
survival time, are highly consistent between 2 indepen-
dent datasets. Our interpretation for this consistency
across studies is that the gene expression variation across
studies is a major contribution to signature differences
across studies. In this study, we used strict quality steps to
exclude genes that were not expressed in our FFPE sam-
ples. This allowed for analysis of the remaining genes
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Figure 5. Kaplan–Meier plots
showing the predictive power of
the 59-gene signature for 2
independent validation sets. The
training data were 55 FFPE tumor
samples from MD Anderson
Cancer Center and the testing
dataset was frozen samples from
lung cancer patients from
Bhattacharjee and colleagues (31)
dataset (A), the stage I patients
from Bhattacharjee and
colleagues dataset (B), frozen
samples from lung cancer patients
from Bild and colleagues (9)
dataset (C), and the stage I
patients from Bild and colleagues
dataset (D). P values were
obtained by the log-rank test. Red
and black lines represent
predicted high- and low-risk
groups, respectively. * indicates
censored samples.
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which had more stable expression patterns and were more
robust to environment changes. Validation of our novel
59-gene signature prognostic for NSLC survival in 2
additional independent datasets further confirmed the
robustness of these genes.
By grouping our RGS of 1,400 genes by gene expression,

we found that the group expression levels correlated with
survival. Interestingly, group 1 had a shorter survival and
contained an ER-negative breast cancer signature. Group 2
had a longer survival and contained an ER-positive breast
cancer signature. This correlation with ER status and survi-
val has been shown previously in breast cancer and shown
to have predictive power for prognosis (29). In addition to
ER status, the RGS groups were separated by the presence of
stem cell signatures (embryonic stem cell signature and
neural stem cell signature), with group 1 (shorter survival)
having 2 stem cell signatures, whereas group 2 (longer
survival) did not. The embryonic stem cell signature has
previously been shown to be associated with poor prog-
nosis of NSCLC (42). In addition, in mouse models, a
hematopoietic and neural stem cell–like signature in pri-
mary tumors has been shown to be a predictor of poor
prognosis in 11 types of cancer, including lung (43). These
ER status and stem cell signature data support our RGS
expression groupings and their correlation with survival
prognosis.
Besides the prognostic signature, the predictive signa-

tures to determine the optimal chemotherapy regimen for

individual patients also have tremendous clinical benefit.
Tumor samples from clinical trials data are important to
develop predictive signatures to reduce the selection bias
for evaluating treatment efficacy within signature groups.
However, very limited frozen tumor samples are available
from completed clinical trials. Our study showed the
feasibility of using FFPE samples for genome-wide mRNA
profiling. Therefore, this study provides an important step
to construct and validate predictive signatures for che-
motherapy response by using the available FFPE samples
from clinical trials in the future.
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