Highlights of This Issue 6367

SPECIAL FEATURES

CCR Translations

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>6369</td>
<td>Therapeutic Oligonucleotides: The Road Not Taken</td>
<td>Cy A. Stein and Sanjay Goel</td>
</tr>
</tbody>
</table>

See commentary p. 6582

Molecular Pathways

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>6373</td>
<td>The Role of Erythropoietin and Erythropoiesis-Stimulating Agents in Tumor Progression</td>
<td>Benjamin D. Hedley, Alison L. Allan, and Anargyros Xenocostas</td>
</tr>
</tbody>
</table>

TLX1-Induced T-cell Acute Lymphoblastic Leukemia

Kim De Keersmaecker and Adolfo A. Ferrando

CCR Focus

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>6388</td>
<td>Antibody Conjugates: The Future Is Now</td>
<td>Susan E. Bates</td>
</tr>
</tbody>
</table>

Antibody Conjugate Therapeutics: Challenges and Potential

Beverly A. Teicher and Ravi V.J. Chari

Antibody Fusion Proteins: Anti-CD22 Recombinant Immunotoxin Moxetumomab Pasudotox

Robert J. Kreitman and Ira Pastan

Antibody-Radionuclide Conjugates for Cancer Therapy: Historical Considerations and New Trends

Martina Steiner and Dario Neri

Antibody-Drug Conjugates of Calicheamicin Derivative: Gemtuzumab Ozogamicin and Inotuzumab Ozogamicin

Alejandro D. Ricart

Brentuximab Vedotin (SGN-35)

Jessica Katz, John E. Janik, and Anas Younes

CANCER THERAPY: PRECLINICAL

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>

SAR3419: An Anti-CD19-Maytansinoid Immunoconjugate for the Treatment of B-Cell Malignancies

Veronique Blanc, Anne Bousseau, Anne Caron, Chantal Carrez, Robert J. Lutz, and John M. Lambert

Review

Polo-like Kinase 1 Inhibitors and Their Potential Role in Anticancer Therapy, with a Focus on NSCLC

René H. Medema, Chia-Chi Lin, and James Chih-Hsin Yang

Tumor-Derived Autophagosome Vaccine: Induction of Cross-Protective Immune Responses against Short-lived Proteins through a p62-Dependent Mechanism

Christopher G. Twitty, Shawn M. Jensen, Hong-Ming Hu, and Bernard A. Fox

Synergistic Action of a RAF Inhibitor and a Dual PI3K/mTOR Inhibitor in Thyroid Cancer

Ning Jin, Tianyin Jiang, David M. Rosen, Barry D. Nelkin, and Douglas W. Ball

The Novel Chemical Entity YTR107 Inhibits Recruitment of Nucleophosmin to Sites of DNA Damage, Suppressing Repair of DNA Double-Strand Breaks and Enhancing Radiosensitization

Significant Biological Role of Sp1 Transactivation in Multiple Myeloma

Dicer-Mediated Upregulation of BCRP Confers Tamoxifen Resistance in Human Breast Cancer Cells

High XRCC1 Protein Expression Is Associated with Poorer Survival in Patients with Head and Neck Squamous Cell Carcinoma
LETTERS TO THE EDITOR

6600

KRAS rs61764370 in Epithelial Ovarian Cancer—Letter
Joanne B. Weidhaas and Frank J. Slack

6601

KRAS rs61764370 in Epithelial Ovarian Cancer—Response
Harvey A. Risch, Andrew Berchuck, and Paul D.P. Pharoah; for the Ovarian Cancer Association Consortium

ABOUT THE COVER

The work by Poindessous and colleagues shows that inhibition of EGFR- and VEGF(R)-signaling by combinations of two small molecule tyrosine kinase inhibitors (TKI), afatinib and vargafet, has synergistic activity in colorectal cancer models that are refractory to combinations of the monoclonal antibodies cetuximab and bevacizumab. Importantly, only the TKIs were able to attenuate the phosphorylation of intracellular EGFR- and VEGFR-receptors which was accompanied by the induction of apoptotic cell death as indicated by TUNEL staining (nuclear DNA in blue, apoptotic nuclei in white). This work provides a rationale for clinical trials of the afatinib and vargafet combination, even in patients with mutant KRAS. For details, see the article by Poindessous and colleagues on page 6522 of this issue.