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Abstract
When delivered at a sufficient dose and dose rate to a neoplastic mass, radiation can kill tumor cells.

Because cancer frequently presents as a disseminated disease, it is imperative to deliver cytotoxic radiation

not only to the primary tumor but also to distant metastases, while reducing exposure of healthy organs as

much as possible. Monoclonal antibodies and their fragments, labeled with therapeutic radionuclides,

have been used for many years in the development of anticancer strategies, with the aim of concentrating

radioactivity at the tumor site and sparing normal tissues. This review surveys important milestones in the

development and clinical implementation of radioimmunotherapy and critically examines new trends

for the antibody-mediated targeted delivery of radionuclides to sites of cancer. Clin Cancer Res; 17(20);

6406–16. �2011 AACR.

Introduction

In 1975, the invention of hybridoma technology by
K€ohler and Milstein (1) enabled for the first time the
production of rodent antibodies of single specificity
(monoclonal antibodies). Antibodies recognize the cog-
nate antigen with exquisite specificity, and this property
triggered an intense development of preclinical and clin-
ical projects based on the use of monoclonal antibodies
as delivery vehicles for radionuclides (typically b-emit-
ters), with the aim to achieve better imaging and therapy
of cancer. These early approaches, which are summarized
in many reviews (e.g., refs. 2–4), illustrate the unique
theranostic (i.e., therapy þ diagnostic) potential of radio-
immunoconjugates, which is still valid today. In the ideal
case, a cancer patient would first receive a diagnostic dose
of an antibody labeled with a radionuclide compatible
with imaging procedures [e.g., single photon emission
computed tomography or positron emission tomography
(PET); refs. 5, 6]. If adequate antibody localization at the
site of disease is achieved, the patient could receive a
therapeutic dose of the same antibody labeled with a
radionuclide capable of inducing curative effects. Unfor-
tunately, the majority of early clinical developments of
radioimmunoconjugates failed to make an impact on
cancer therapy. The problems were in part associated
with the murine origin of monoclonal antibodies, which

are immunogenic in humans and thus prevent repeated
administration to patients [this limitation was subse-
quently overcome by the advent of chimeric, humanized,
and fully human antibodies (7)]. Of more importance,
most radioimmunotherapy approaches for the treatment
of solid tumors failed because the radiation dose deliv-
ered to neoplastic masses was insufficient to induce
objective responses and cures. Radioimmunotherapy
represents one of the few areas of pharmacological inter-
vention in which therapeutic performance can largely be
predicted based on pharmacokinetic considerations (i.e.,
by analysis of the radiation dose delivered to tumors
compared with the radiation dose delivered to normal
tissues). These quantities are directly related to the area
under the curve in graphs depicting the percent injected
dose per gram (%ID/g) of tissue versus time, weighted
with an exponential function that corrects for the radio-
active decay of the therapeutic nuclide (Fig. 1). As far as
toxicity is concerned, the total radiation dose delivered to
normal organs can be used to calculate the maximum
tolerated dose (8). However, the bone marrow reserve
may vary among patients, making the precise prediction
of hematological toxicity difficult (9).

Ideally, antibodies would rapidly accumulate at neo-
plastic sites and rapidly clear from the body; however,
intact antibodies typically exhibit long circulation times
in blood (which contributes to bone marrow toxicity)
and a reduced diffusion into the tumoral mass, and may
accumulate in critical organs, such as the liver (10, 11).
The choice of the radionuclide largely depends on the size
of the tumor to be treated, with high-energy b-emitters
(e.g., 90Y) being suitable for the therapy of larger tumors,
and medium-energy b-emitters (e.g., 131I and 177Lu)
being more effective for the treatment of smaller tumors
(2). One of the main attractive features of radioimmu-
notherapy is the crossfire effect, i.e., the ability to damage
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cells in close proximity to the site of antibody localization.
In most cases, antibody radiolabeling is accomplished
either by iodination of tyrosines or by conjugation of
metal chelators [diethylenetriaminepentaacetic acid
(DTPA) or 1,4,7,10-tetraazacyclododecane-1,4,7,
10-tetraacetic acid (DOTA)] to the antibody molecule
(12).
The intrinsic radiosensitivity of tumor cells is a major

determinant of a tumor’s response to radiation (13). This
may be a reason why the only 2 radioimmunoconjugates
that have been approved and are commercially available
(Table 1) are used for the treatment of non-Hodgkin’s
lymphoma—lymphoma cells are inherently sensitive to
radiotherapy (14). 131I-tositumomab (Bexxar) and 90Y-
ibritumomab tiuxetan (Zevalin) are both based on murine
antibodies specific to CD20, an antigen that is present on
normal B-cells and certain B-cell lymphomas. Although
90Y-ibritumomab tiuxetan exhibited favorable results in the
consolidation of first remission advanced-stage follicular
lymphoma [prolonging progression-free survival by 2 years
(15)], the superiority of radiolabeled drugs has not yet been
shown in a clinical head-to-head comparison with ritux-
imab-based protocols. This fact, together with challenges
related to the use of radioactivity and the coordination
between oncologists and nuclear medicine departments,

may explain why the nonlabeled anti-CD20 antibody
rituximab continues to be more widely used than Bexxar
and Zevalin. Furthermore, other strategies for arming anti-
bodies with active payloads have been pursued in the
recent past (16–21).

Role of the Antibody Format

The use of antibodies in immunoglobulin G (IgG)
format for radioimmunotherapy is typically associated
with high bone marrow toxicity (due to the long circu-
latory half-life of intact immunoglobulins) and high
uptake in the liver (due to hepatobiliary clearance and
FcRn-mediated recycling of these molecules). After early
attempts to use proteolytically produced Fab or F(ab0)2
antibody fragments (16), the advent of recombinant DNA
technology enabled investigators to perform comparative
evaluations of the biodistribution properties of a partic-
ular antibody in different formats, including monomeric
scFv fragments, diabodies, mini-antibodies [or small
immunoproteins (SIP)], and IgGs (refs. 17–20; Fig. 1).
The general observation was that smaller antibody frag-
ments (e.g., scFvs and diabodies) exhibit a rapid clearance
via the renal route, whereas larger antibodies (e.g., SIPs
and IgGs) are eliminated via the hepatobiliary route

Figure 1. Schematic representation of antibody formats (A) and pretargeting strategies (B) for radioimmunotherapy applications. Targeting results are
often expressed as% ID/g of tissue versus time; the curves show the relative accumulation of an antibody or antibody fragment in the tumor, excreting organs,
and blood. The area under the curve for the tumor and normal organs is directly related to the dose of radioactivity delivered in a radioimmunotherapy
procedure. In pretargeting strategies, the therapeutically relevant radioactivity dose is related to the one delivered by the small ligand (e.g., a radiometal
chelator, schematically represented as a star), which is injected once the multifunctional antibody (dashed line) has reached adequate tumor/organ and
tumor/blood ratios (2).
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(6, 17, 19). It appears that the slow extravasation of the
antibody molecule into tissue may limit the efficiency of
tumor targeting, and that a rapid diffusion of binding
molecules into the neoplastic mass may only be achieved
by the use of much smaller compounds [probably <2000
Dalton (21, 22)].

Pretargeting

Pretargeting is a promising approach to increase the
therapeutic index of radioimmunotherapy strategies (2,
3, 23). In a pretargeted setup, the radionuclide is admin-
istered separately from the antibody vehicle and displays
more favorable tumor-targeting properties. Most pretarget-
ing approaches have so far relied on 1 of the 2 following
approaches:

1. The use of radioactive biotin derivatives for selective
localization on antibody-streptavidin conjugates (24,
25) or noncovalent biotinylated antibody-streptavi-
din complexes, termed 3-step pretargeting (26).

2. The use of chelators of radioactive metals for selective
localization on multispecific antibodies that are
capable of simultaneously binding to a tumor-
associated antigen and the metal chelator (27, 28).

Both approaches rely on the fact that an artificial tumor-
associated antigen is created upon binding of the antibody
derivative at the tumor site, and on the favorable pharma-
cokinetic properties associated with the small size of the
radiolabeled compound, which rapidly distributes in
the neoplastic mass while being rapidly eliminated from
the rest of the body via the urinary excretion route (ref. 23;
Fig. 1). Indeed, in spite of the short time needed for
excretion, the kidneys may become the dose-limiting organ
for toxicity, as is often the case for peptide-based radio-
pharmaceuticals (29).

Antibody-based pretargeting strategies have produced
spectacular biodistribution results in tumor-bearing ani-
mals [with tumor uptake as high as 278 � 130%ID/g and
tumor/blood ratios > 30 at 1 hour postinjection (30)] and
promising results in cancer patients (31, 32).

It could be argued that pretargeting approaches
would not be needed if medicinal chemistry were more
efficient in finding low-molecular-weight binders for
tumor-associated antigens, making targeting proteins
obsolete.

Considerations Regarding the Choice of the
Radionuclide

To date, the majority of radioimmunotherapy clinical
development programs have involved the use of b-emitting
radionuclides. A discussion about the relative merits of
different isotopes for therapeutic purposes is beyond the
scope of this article and has been reviewed elsewhere (2).
The choice of a b-emitting radionuclide for radioimmu-
notherapy involves considerations about the physical

properties and availability of the radionuclide, the labeling
methods used, the possibility of imaging, and the safety
of the patient (either with the same nuclide or with
chemically related nuclides). b-emitters such as 131I,
177Lu, and 90Y can deposit their energy within 1–10
mm depending on their physical properties, and thus
may compensate for heterogeneous antibody uptakewithin
the tumor mass (ref. 33; Figs. 1 and 2). Auger electron
emitters, such as 111In and 125I, have been shown to be
suitable for radioimmunotherapy of small solid tumors.
111In- and 125I-labeled antibodies have both been shown to
significantly increase survival rates in xenograft experiments
compared with unlabeled antibodies (34–36). In Auger
electron emission, most of the energy is delivered within
a sphere of several nanometers around the decay site, and
thus dosimetry is limited in accuracy due toheterogeneity of
the tumor tissue and radiation delivery (34). This strategy
appears to be ideally suited for internalizing antibodies,
because cells expressing a tumor-associated antigen on their
surface would receive the most damage from this radio-
immunotherapyapproach;however, experimentaldata sug-
gest that Auger electron emitters may also be used for
noninternalizing antibodies (34).

Up to now, Auger electron emitters have not been widely
used, possibly due to the large radioactivity doses that are
required and the resulting costs for radioprotection and
radioactive waste disposal.

There is a strong rationale for the antibody-based
pharmacodelivery of a-emitting radionuclides to well-
defined tumor-associated structures (e.g., individual leu-
kemia cells in blood or vascular structures within the
neoplastic mass), in consideration of the high-energy and
short path length of a radiation associated with radio-
nuclides such as 211At, 213Bi, 225Ac, and 227Th. Fig. 2
schematically illustrates the implications of using b-emit-
ters or a-emitters for antibody-based targeting of the
tumor neovasculature (37). With the use of a b-emitting
radionuclide, it should be possible to irradiate tumor cells
that are not adjacent to the tumor blood vessels with a
crossfire effect spanning several millimeters. However,
the efficacy of this therapeutic modality may be limited
by the fact that new blood vessels represent only a small
percentage of the total tumor mass. By contrast, the high
energy and short tissue penetration of a-emitters concen-
trate tissue damage around tumor blood vessels, leading
to a highly selective killing of tumor endothelial cells
(37, 38). There is growing evidence that a selective
destruction of the tumor neovasculature may lead to
an avalanche of tumor cell death (39–41).

Vascular Tumor Targeting

Blood vessels represent the most accessible structure
within the tumor for pharmaceutical agents coming from
the blood stream. The formation of new blood vessels is a
rare event in the healthy adult [largely confined to the
female reproductive system (42, 43)] but a characteristic
feature of many aggressive cancer types. Therefore, the use
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of antibodies specific to tumor neovascular antigens repre-
sents an attractive avenue for the selective delivery of
therapeutic payloads to the tumor site (ref. 42; Fig. 3).
Also,unlikeantibodies that are specific toantigensexpressed

on the surface of tumor cells, vascular tumor-targeting
antibodies could be used for many different tumor
types. Over the years, vascular tumor antigens have been
discovered by serendipity (i.e., analyzing antibodies by

Figure 2. A vascular targeting
antibody deposits energy in
different tumor locations
depending on the type of
radionuclide used. An a-emitting
radionuclide (e.g., 211At) has a
higher energy than b-emitting
radionuclides and a tissue
penetration range of only
50–80 mm, confining the toxic
effects to a volume of a few cell
diameters, i.e., to the tumor
vasculature (37). In this case,
vessel/blood radioactivity ratios
may be predictive of the relative
damage caused by a particles to
endothelial cells and blood cells.

© 2011 American Association for Cancer Research
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Figure 3. Schematic
representation of the 4 basic steps
in the implementation of a
vascular targeting strategy for the
therapy of cancer. The
immunohistochemical picture
corresponds to a section
containing both glioblastoma
multiforme and normal brain, in
which only the tumor blood
vessels were selectively stained in
red by an antibody specific to the
EDB domain of fibronectin. In
general, the identification of
markers that are specifically
expressed on tumor blood vessels
represents the starting point for
the development of an antibody-
based vascular targeting strategy.
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immunohistochemistry), transcriptomic studies, in vivo
phage library panning (44), andperfusion-basedmass spec-
trometry–assisted techniques (45–47).

We have developed human monoclonal antibodies
(L19, F8, and F16) specific to splice isoforms of fibro-
nectin and tenascin-C, which represent some of the most
extensively characterized markers of tumor angiogenesis
known so far (42). The tumor-targeting properties of
several derivatives of the L19, F8, and F16 antibodies
have been studied by quantitative biodistribution
analysis, revealing promising in vivo tumor targeting
results for a variety of different tumors (18, 48, 49). Some
of these antibody derivatives have been moved to clinical
trials, mainly as radionuclide conjugates or cytokine-
based fusion proteins. These agents include the L19
and F16 antibodies labeled with 131I for radioimmu-
notherapy applications (50) or with 124I for immuno-
PET (6).

Of interest, it was recently discovered that fibronectin
and tenascin-C isoforms are abundant not only in the
majority of solid tumors but also around the neovascula-
ture of most lymphoma types (47, 50, 51). The L19
antibody in SIP format and labeled with 131I has shown
promising results for the radioimmunotherapy of refrac-
tory Hodgkin’s lymphoma patients, and more than 100
cancer patients have already been treated with this agent
(Fig. 4).

Vascular targeting applications may extend to leukemia,
in consideration of the fact that extensive formation of new
blood vessels has been documented in the bone marrow of
patients with acute myeloid leukemia (52).

Locoregional Approaches

Some tumors (e.g., astrocytomas, liver, head, and neck)
tend to grow in a defined compartment and are therefore
suitable for locoregional administration of radiolabeled
antibodies.

Pemtumomab (Theragyn), a murine monoclonal anti-
body (HMFG1) that is specific to an epitope of the MUC1
gene product and labeled with 90Y, was developed as
a product for the locoregional treatment of patients
with epithelial ovarian cancer. Although promising
results were obtained in phase II clinical trials, the prod-
uct failed to extend survival or time to relapse in a trial of
447 patients with a negative second-look laparoscopy
(53).

Riva and colleagues (54) treated >200 glioblastoma
patients by administering a 131I-labeled antibody specific
to tenascin-C into the postoperative cavity, with the aim of
sterilizing tumor cells in the immediate surroundings of the
original tumor mass and, ideally, distant tumor cells.
Similar approaches have been implemented for the phar-
maceutical development of Neuradiab (another radiola-
beled antibody specific to tenascin-C) by Reardon and
colleagues (55), Zalutsky and colleagues (56), and Bradmer
Pharmaceuticals (57), but phase III clinical trials have been
suspended.

Another approach for locoregional treatment is the
intravesical administration of radiolabeled antibodies,
which may provide a benefit to patients with bladder
cancer by taking advantage of the natural access to the
bladder via the urethra (58).

Before treatment

5 weeks

later

15 weeks

later

Baseline

1 year after treatment

BA

B fBefore ttr teatmentt 11 year faftter ttr teatmentt

AA

Figure 4. Response observed in a patient with Hodgkin's lymphoma after treatment with SIP(L19) labeled with 131I. A, fluorodeoxyglucose PET analysis of the
patient at presentation [courtesy of Prof. G. Mariani and Dr. P. Erba; adapted from Sauer et al. (50)] and 1 year after treatment with the radioimmunotherapeutic
drug (at higher sensitivity). B, computed tomography analysis of a pulmonary lesion responding to treatment.
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Combination Therapy

Radioimmunotherapy can confer a clinical benefit to
cancer patients even when administered as a single agent.
However, cancer pharmacotherapy mostly makes an
impact when a combination of multiple therapeutic
agents is used. The combination of radiolabeled anti-
bodies with cytotoxic drugs has been studied preclini-
cally and clinically (59, 60), but may ultimately suffer
from the fact that both therapeutic modalities are often
associated with substantial bone marrow toxicity.
However, clinical and preclinical studies indicate that
certain compound classes (e.g., vascular disrupting
agents and cytotoxic agents with favorable myelotoxicity
profiles) may indeed potentiate radioimmunotherapy
(61).
Ideally, radiolabeled antibodies should be combined

with pharmaceutical agents that display nonoverlapping
toxicities. For example, the combination of radioim-
munotherapy with intact immunoglobulins (such as
the epidermal growth factor receptor inhibitor cetuxi-
mab) has exhibited promising results in animal models
(20).
The combination of external beam radiation and radio-

immunotherapy has been proposed for more than a de-
cade. This therapeutic strategy is particularly appealing in
the context of brain malignancies, in consideration of the
fact that external beam irradiation of the brain typically
should not exceed 30 Gy, and monoclonal antibodies
exhibit extremely low uptake in the healthy portion of
the brain as a result of the blood-brain barrier function.
Vascular tumor-targeting antibodies may efficiently target
high-grade astrocytomas in vivo (62, 63). The 131I-labeled
antibody L19, which is specific to the alternatively spliced
EDB domain of fibronectin, is currently being investigated
in combination with whole-brain external beam radiation
for the treatment of patients with brain metastases, with
encouraging results.

Conclusions

After many years of intense research activities, the
opportunities and challenges associated with the devel-
opment of radiolabeled antibodies for cancer therapy
strategies are beginning to be better understood. Un-
doubtedly, the marketing authorization of Zevalin and
Bexxar for the therapy of patients with certain types of
lymphoma represents a success for the field. However, the
limited number of approved products and the limited
market penetration of these products indicate that radio-
immunotherapy still needs to make an impact on cancer
therapy.
Technical and logistical challenges associated with the

use of radioimmunotherapy (e.g., antibody radiolabeling,
logistics, radioprotection issues, and disposal of radioac-
tivity) have contributed to preventing a broader use of
this therapeutic approach. However, these reasons alone

do not justify the limited use of radiolabeled antibodies.
Indeed, one could argue that central labeling procedures
could dramatically simplify the implementation of radio-
nuclide-based therapies, and that other logistical pro-
blems could be solved if the therapeutic performance
were comparable to that observed in patients with thyroid
cancer, in whom radiometabolic therapy with 131I has
been practiced for decades with excellent safety and
activity (64).

From the patients’ perspective, radioimmunotherapy
has often been described as a "walk in the park," because
treatment is typically not associated with the discomfort
and side effects that are characteristic of conventional
chemotherapy. Obviously, excessive radiation to critical
organs [e.g., the bone marrow, due to its intrinsic radio-
sensitivity and the rapid equilibration of radiolabeled
antibodies within its extracellular fluid volume (65)]
may give rise to substantial toxicity, which may not always
be managed by growth factors and transfusions (e.g.,
platelets), or may require reinfusion of peripheral blood
stem cells. However, what ultimately matters most is the
fine balance between the quality of life during and after
treatment and the therapeutic effect (e.g., as measured in
terms of survival benefit).

The success of radioimmunotherapy in lymphoma is
largely related to the intrinsic radiosensitivity of hemato-
logical malignancies. Indeed, dramatic results from the use
of Bexxar and Zevalin in other lymphoma types [e.g.,
CD20-positive Hodgkin’s lymphomas (66)] have been
reported, although regulatory approval has not been
sought to date.

For the treatment of solid tumors, it appears that only the
advent of breakthrough technologies (e.g., better tumor
targeting with novel antibody formats, different radionu-
clides, more accessible targets, and/or innovative pretarget-
ing strategies) may lead to a sufficient improvement in the
tumor radiation dose in comparison with normal organs.
Investments in this field will crucially rely on clinical and
industrial success. In the absence of positive results, a
vicious (rather than virtuous) circle is likely to continue
delaying innovation in radionuclide-based treatment
strategies.

How often can radioimmunotherapy be administered to
patients? When fully human antibodies are used, treatment
can be repeated without immunogenicity concerns. In such
cases, the risk-benefit analysis must take into consideration
the cumulative damage to critical organs (e.g., bone mar-
row, liver, and kidney) and the probability of developing
secondary tumors years after treatment (19) [in analogy to
the slightly increased risk of secondary primary malignan-
cies in patients treated with radioactive iodine for thyroid
cancer (67)]. The myelotoxicity induced by radioimmu-
notherapy treatment and the subsequent slow recovery
from the nadir in platelet and leukocyte counts may pre-
vent the administration of alternative therapeutic agents
(e.g., cytotoxic drugs) for a substantial period of time (i.e.,
2–3 months).
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The next few years will tell us whether the radiolabeled
antibodies that have been approved for the treatment of
lymphomas are more efficacious than nonradiolabeled
anti-CD20 antibodies for the management of patients
(a direct comparison in a realistic setting, such as con-
solidation therapy, is still lacking), and whether radio-
immunotherapy can provide competitive advantages
compared with other intervention modalities for patients
with solid cancer. The excellent acceptance of radioim-
munotherapy by patients, together with the opportu-
nity to rationally develop products based on imaging

and dosimetric data, suggests that there may be a
second renaissance in the development of radiolabeled
antibodies.
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