Sphingosine Kinase-1 Enhances Resistance to Apoptosis through Activation of PI3K/Akt/NF-kB Pathway in Human Non–Small Cell Lung Cancer

Liping Song1, Huaping Xiong2,4, Jun Li3,4, Wenting Liao1, Lan Wang2,4, Jueheng Wu2,4, and Mengfeng Li2,4

Abstract

Purpose: The present study was to examine the effect of sphingosine kinase-1 (SPHK1) on chemotherapeutics-induced apoptosis in non–small cell lung cancer (NSCLC) cells, which is relatively insensitive to chemotherapy, and its clinical significance in NSCLC progression.

Experimental Design: The correlation of SPHK1 expression and clinical features of NSCLC was analyzed in 218 paraffin-embedded archived NSCLC specimens by immunohistochemical analysis. The effect of SPHK1 on apoptosis induced by chemotherapeutics was examined both in vitro and in vivo, using Annexin V staining and TUNEL (terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling) assays. Western blotting and luciferase analysis were performed to examine the impact of SPHK1 on the PI3K/Akt/NF-kB pathway.

Results: The expression of SPHK1 was markedly increased in NSCLC and correlated with tumor progression and poor survival of patients with NSCLC. Upregulation of SPHK1 significantly inhibited doxorubicin- or docetaxel-induced apoptosis, associated with induction of antiapoptotic proteins Bcl-xl, c-IAP1, c-IAP2, and TRAF1. In contrast, silencing SPHK1 expression or inhibiting SPHK1 activity with specific inhibitor, SK1-I, significantly enhanced the sensitivity of NSCLC cells to apoptosis induced by chemotherapeutics both in vitro and in vivo. Moreover, we demonstrated that upregulation of SPHK1 activated the PI3K/Akt/NF-kB pathway, and that inhibition of the PI3K/Akt/NF-kB pathway abrogated the antiapoptotic effect of SPHK1 on NSCLC cells.

Conclusions: Our results suggest that SPHK1 is a potential pharmacologic target for the treatment of NSCLC and inhibition of SPHK1 expression or its kinase activity might represent a novel strategy to sensitize NSCLC to chemotherapy.

Introduction

Lung cancer represents a leading cause of cancer-related mortality and morbidity worldwide, with more than 1.23 million new cases each year and the 5-year survival rate lower than 15% (1). Two major types of lung cancer, small cell lung carcinoma (SCLC) and non–small cell lung carcinoma (NSCLC), account for 90% of cases (2). Of the NSCLC subtypes, the most common ones include squamous cell carcinoma, large cell carcinoma, and adenocarcinoma, with other subtypes occurring at relatively lower frequencies (3). Currently available treatment strategies for NSCLC, including surgery, radiotherapy, chemotherapy, and photodynamic therapy, remain generally unsuccessful (4). The 5-year survival rate for patients with stage IV NSCLC is approximately 1%, with the median survival time of 7 months (5, 6). While SCLC usually reveals better responsiveness to chemotherapy and radiation, NSCLC is relatively insensitive to both therapeutic modalities (7). Hence, identification of novel targets for more effective anti-NSCLC strategies with minimal toxicity is urgent.

Enzyme sphingosine kinase-1 (SPHK1) has been demonstrated to play a role in oncogenesis, and its biological function is associated with maintaining the balance between prosurvival and apoptotic signaling (8). Accumulated evidence has associated SPHK1 upregulation with development of malignant phenotypes of various cancers, such as proliferation, antiapoptosis, migration, angiogenesis, and invasion (9–11). In 2000, Xia and colleagues reported the oncogenic potential of SPHK1, namely,
overexpressing SPHK1 induced malignant transformation of NIH3T3 cells (12). The biological function of SPHK1 in protecting cancer cells from apoptosis induced by TNF-α, ionizing radiation, or anticancer drugs, due to increased ceramide levels, has been documented (11, 13). Bonhoure and colleagues demonstrated that ectopic overexpression of SPHK1 conferred HL-60 leukemia cells resistance to doxorubicin- and etoposide-induced cell death (14). Moreover, SPHK1 has been shown to act as a sensor during ionizing radiation, or anticancer drugs, due to increased ceramide levels, has been documented (11, 13). Bonhoure and colleagues demonstrated that ectopic overexpression of SPHK1 conferred HL-60 leukemia cells resistance to doxorubicin- and etoposide-induced cell death (14). Our current study found that ablation of SPHK1 or inhibition of SPHK1 activity by specific inhibitor, SK1-I, significantly enhanced the sensitivity of NSCLC cells to apoptosis induced by chemotherapeutics both in vitro and in vivo. Taken together, our results suggested that SPHK1 targeting strategies might represent a new approach to sensitizing NSCLC to chemotherapy and improving the efficacy of anti-NSCLC treatment.

Translational Relevance

Clinical data have demonstrated that non–small cell lung cancer (NSCLC) is relatively insensitive to chemotherapy. Therefore, identification of minimally toxic targeting agents is urgent for the improvements of outcome of NSCLC. Herein, we report that upregulation of sphingosine kinase-1 (SPHK1) significantly inhibits doxorubicin- or docetaxel-induced apoptosis through activation of PI3K/Akt/NF-κB pathway. In contrast, ablation of SPHK1 expression or inhibition of SPHK1 kinase activity with specific inhibitor, SK1-I, significantly enhanced the sensitivity of NSCLC cells to apoptosis induced by chemotherapeutics both in vitro and in vivo. Taken together, our results suggested that SPHK1 targeting strategies might represent a new approach to sensitizing NSCLC to chemotherapy and improving the efficacy of anti-NSCLC treatment.

Materials and Methods

Cell lines

Primary normal lung epithelial cells (NLEC) were established according to a previous report (17) and cultured in the keratinocyte serum-free medium (Invitrogen) supplemented with epithelial growth factor and bovine pituitary extract. Lung cancer cell lines, namely, A549, H-1299, PAa, 95D, and HLAMP, were maintained in DMEM medium (Invitrogen) supplemented with 10% FBS (HyClone).

Vectors and retroviral infection

An SPHK1 expression construct was generated by subcloning PCR-amplified full-length human SPHK1 cDNA into the pMSCV plasmid. For depletion of SPHK1, 2 human SPHK1-targeting siRNA sequences were cloned into pSUPER-retro-puro to generate pSUPER-retro-SPHK1-RNAi (s), respectively, and the sequences are RNAi#1: GGGCGAAATCTCCFTCAGG; RNAi#2: GGGCAAGGCC-TTGCAGCTC. pNF-κB-luc and control plasmids (Clontech) were used to quantify NF-κB activity. pBabe-Puro-IκBmut (plasmid 15291) expressing mutant IκBα was from Addgene. Retroviral production and infection were performed as previously described (18). Stable cell lines expressing SPHK1 or SPHK1 shRNAs were selected for 10 days with 0.5 μg/mL puromycin.

Patients and tissue specimens

Paraffin-embedded, archived NSCLC samples were obtained from 218 patients diagnosed with NSCLC between January 2000 and October 2002 at the Department of Pathology and Cancer Center at Sun Yat-sen University. The histologic characterization and clinicopathologic staging of the samples were determined according to the WHO criteria (3) and current International Union Against Cancer TNM (tumor–node–metastasis) Classification (19). Detailed clinical information of all patients is summarized in Supplementary Table S1. Percentage tumor purity in sections adjacent to regions used for RNA extraction was estimated during routine histopathologic analysis.

Immunoblotting

Western blotting was performed according to standard methods as described previously (20), using anti-SPHK1 rabbit polyclonal antibody recognizing sphingosine kinase 1 isoform 2 (Q9NYA1, MW 42.5 kDa; catalogue no. AP7237c; Abgent Inc.); anti-Akt, anti–p-Akt, anti-IKK, anti–p-IKKα/β, anti-IκBα, anti–IκBβ, anti–p-IκBα, anti–p-IκBβ, anti–cleaved caspase-3, anti–PARP, anti–Bcl-xl, anti–c-IAP1, anti–c-IAP2, anti–TRAF1, anti–Bcl-2, anti–FLIP, and anti–Bim antibodies (Cell Signaling Technology); The membranes were stripped and reprobed with an anti–α-tubulin antibodies (Sigma) as a loading control.

Immunohistochemistry

Immunohistochemical (IHC) analysis was performed to study altered protein expression in 218 human NSCLC tissues. The procedures were carried out similarly to previously described methods (21). The degree of immunostaining of formalin-fixed, paraffin-embedded sections was viewed and scored separately by 2 independent investigators, who were blinded to the histopathologic features and patient data of the samples, and the scores were determined by combining the proportion of positively stained tumor cells and the intensity of staining. Scores given by the 2 independent investigators were averaged for further
comparative evaluation of the SPHK1 expression. The proportion of positively stained tumor cells was graded as follows: 0 (no positive tumor cells), 1 (<10% positive tumor cells), 2 (10%–50% positive tumor cells), and 3 (>50% positive tumor cells). The cells at each intensity of staining were recorded on a scale of 0 (no staining), 1 (weak staining, light yellow), 2 (moderate staining, yellowish brown), and 3 (strong staining, brown). The staining index (SI) was calculated using the equation: SI = staining intensity × proportion of positively stained tumor cells. Using this method of assessment, we evaluated the expression of SPHK1 in NSCLC by SI (scored as 0, 1, 2, 3, 4, 6, or 9). Cutoff values to define the high and low expression of SPHK1 were chosen on the basis of a measure of heterogeneity with the log-rank test statistics with respect to overall survival. An optimal cutoff value was identified. The SI score of 6 or above was used to define tumors with high expression and SI of 4 or less as tumors with low expression of SPHK1.

Luciferase reporter assay for NF-κB transcriptional activity

Cells were seeded in triplicates in 6-well plates (50,000 cells/well) and allowed to settle for 12 hours. One hundred nanograms of pNF-κB-Luciferase plasmid or control luciferase plasmid plus 10 ng pRL-TK Renilla plasmid (Promega) was transfected into NSCLC cells, using the Lipofectamine 2000 reagent (Invitrogen). Medium was replaced after 6 hours and luciferase and Renilla signals were measured 48 hours after transfection using the Dual Luciferase Reporter Assay kit (Promega) according to a protocol provided by the manufacturer.

Xenografted tumor model and antitumor effect of SK1-I in vivo

Female BALB/c nude mice (4–5 weeks of age, 18–20 g) were purchased from the Center of Experimental Animals of Guangzhou University of Chinese Medicine and were housed in barrier facilities on a 12-hour light/dark cycle. All experimental procedures were approved by the Institutional Animal Care and Use Committee of Sun Yat-sen University. The BALB/c nude mice were randomly divided into 3 groups (n = 5/group). One group of mice were inoculated subcutaneously with A549/vector cells (1 × 10⁶, suspended in 100 μL sterile PBS) per mouse in the right outer as control group. The other 2 groups were inoculated with A549/SPHK1 and A549/SPHK1 RNAi#1 cells (1 × 10⁶, suspended in 100 μL sterile PBS), respectively. Tumor volume was calculated using the equation (L × W²)/2. In the experiment testing the antitumor effect of SK1-I, the BALB/c nude mice (4–5 weeks of age, 18–20 g) were implanted subcutaneously with A549 cells (2 × 10⁶, suspended in 100 μL sterile PBS) to rapidly induce exponentially growing tumors. When tumors reached a volume of 50 to 100 mm³, animals were randomly assigned to 3 groups (n = 5/group), followed by i.p. injection of 100 μL vehicle (dimethyl sulfoxide, DMSO), SK1-I (50 mg/kg), or docetaxel (10 mg/kg), respectively, on days 1, 5, 9, 11, 13, and 15. On day 17, animals were euthanized and tumors were excised, weighed, and subjected to pathologic examination.

Statistical analysis

All statistical analyses were carried out using the SPSS 13.0 statistical software package. Comparisons between groups for statistical significance were performed with a 2-tailed paired Student’s t test. The χ² test was used to analyze the relationship between SPHK1 expression and clinicopathologic characteristics. Survival curves were plotted using the Kaplan–Meier method and compared by the log-rank test. Survival data were evaluated using univariate and multivariate Cox regression analyses. P < 0.05 was considered statistically significant in all cases.

Results

SPHK1 expression is associated with the clinical features of NSCLC

Western blotting and real-time PCR analysis revealed that both protein and mRNA expressions of SPHK1 were markedly upregulated in multiple NSCLC cell lines, including A549, 95D, PAA, H-1299, and HLAMP, in comparison with those in 2 collections of NLEC (Fig. 1A and Supplementary Fig. S1A). In 8 NSCLC tissue samples (T), SPHK1 expression revealed more than 2-fold increases compared with that in the paired, normal, adjacent nontumorous tissues (ANT), with each pair derived from a same patient, and SPHK1 upregulation in these clinical NSCLC samples was further confirmed by IHC analysis (Fig. 1B and C and Supplementary Fig. S1B and C). Taken together, our results indicated that SPHK1 was an enzyme upregulated in NSCLC.

Further evaluation of SPHK1 expression in paraffin-embedded, archived clinical tumor tissue specimens obtained from 218 cases of NSCLC, using IHC analysis with an antibody against human SPHK1, showed that the level of SPHK1 protein significantly increased in all types of NSCLC (Fig. 2A) and strongly correlated with clinical staging (P = 0.019), T classification (P = 0.022), N classification (P = 0.010), and M classification (P = 0.027) of NSCLC patients (Supplementary Table S2). Log-rank and Kaplan–Meier analysis tests demonstrated that overall survival time of patients with high expression of SPHK1 in tumors was significantly shorter than that of the low SPHK1 expression NSCLC group (P < 0.001; Fig. 2B). Furthermore, multivariate survival analysis indicated that SPHK1 expression level was an independent prognostic factor for the assessment of patient outcomes (Supplementary Tables S3 and S4). Moreover, the prognostic value of SPHK1 expression in different pathologic types of NSCLC patients was examined. An adverse correlation between high SPHK1 expression in tumors and overall patient survival was clearly detected in all 3 NSCLC subtype groups, namely, squamous cell carcinoma (n = 82; P < 0.001, log-rank; Fig. 2C, left), adenocarcinoma (n = 91; P < 0.01, log-rank; Fig. 2C, middle), and adenosquamous carcinoma (n = 42; P < 0.05, log-rank; Fig. 2C, right).
Collectively, these data demonstrated that SPHK1 expression was linked to the clinical progression of NSCLC and might represent a valuable prognostic marker generally for NSCLC patients and specifically for patients with major pathologic types of NSCLC.

SPHK1 plays an important antiapoptotic role in NSCLC in vivo

The above finding that SPHK1 expression was significantly associated with the progression of NSCLC prompted us to ask whether SPHK1 might play a role in NSCLC pathogenesis and therefore could be a novel therapeutic target. To this end, a panel of A549 NSCLC cell lines were constructed to stably express either SPHK1 cDNA (A549/SPHK1) or SPHK1 shRNAs (A549/SPHK1 shRNA; Fig. 3A) and inoculated in nude mice. After the tumor-bearing mice were treated i.p. with docetaxel (10 mg/kg), a clinically commonly used chemotherapeutic agent against NSCLC, as shown in Figure 3B and Supplementary Figure S2A, the volumes and weights of tumors formed by the A549/SPHK1 cells were significantly larger than those of tumors formed by vector control cells \((n = 5, P < 0.01; P < 0.01) \) whereas depletion of endogenous SPHK1 in A549 cells caused significant inhibition of tumor growth in terms of both tumor volume and weight \((n = 5, P < 0.01; P < 0.01; \text{Fig. 3B and Supplementary Fig. S2A}) \). Moreover, we also examined the effect of a specific SPHK1 inhibitor SK1-I on the growth of xenografted NSCLC tumors. As shown in Figure 3C and Supplementary Figure S2B, SK1-I treatment dramatically reduced the tumor size and weight as compared with those treated with vehicle control \((n = 5, P < 0.01; P < 0.01) \). It is noteworthy that no significant difference was detected in the body weights among nude mice in the 3 groups (data not shown). Collectively, our results suggest that SPHK1 may play an important role in the growth of NSCLC in vivo and that targeting SPHK1 through silencing its expression or suppressing its enzyme activity may represent a potentially effective strategy against NSCLC, either alone or in combination with chemotherapy.

Since clinical failure of chemotherapy is commonly and biologically attributable to the resistance of cancer cells to apoptosis, we further investigated whether SPHK1 enhances the antiapoptotic activity of NSCLC cells in vivo. As shown in Figure 3D, TUNEL (terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling) assay demonstrated that docetaxel induced far lower and higher degree of apoptosis in tumors derived from A549/SPHK1- and A549/SPHK1 shRNA-NSCLC cells, respectively, than in the A549/vector control tumors. Also noteworthy is that SK1-I treatment markedly elevated the number of apoptotic cells induced by docetaxel treatment. Taken together, our data suggested that SPHK1 may confer NSCLC cells resistance to docetaxel-induced apoptosis and thus might represent a target for improving the efficacy of anti-NSCLC chemotherapy.

Dysregulation of SPHK1 alters the sensitivity of NSCLC cells to apoptosis

To further understand and characterize the antiapoptotic activity of SPHK1 in NSCLC cells, in vitro studies...
were performed using NSCLC cell lines with SPHK1 overexpressed or silenced. As shown in Supplementary Figure S3A, SPHK1-overexpressing 95D and A549 NSCLC cells displayed significantly higher survival than the vector control cells after treatment of various doses of doxorubicin or docetaxel, whereas the number of dead cells markedly increased when SPHK1 expression was silenced by specific shRNA. Annexin V–binding and TUNEL assays showed that SPHK1 upregulation conferred NSCLC cells resistance, and SPHK1 downregulation drastically enhanced their sensitivities, to chemotherapeutics (Fig. 4A and B and Supplementary Fig. S3B and C). Furthermore, the noted effect of SPHK1 on the apoptosis was confirmed as decreased activating cleavages of PARP and caspase-3 induced by doxorubicin or docetaxel in SPHK1-overexpressing cells and a contrary effect in SPHK1-knocked down cells (Fig. 4C and Supplementary Fig. S3D).

Upregulation of SPHK1 activates NF-κB and PI3K/Akt pathways

To further investigate the molecular mechanism mediating the antiapoptotic effect of SPHK1, the levels of apoptosis relators Bcl-xl, c-IAP1, c-IAP2, FLIP, TRAF1, Bcl-2, and Bim were examined. Western blotting and real time-PCR analysis revealed that at both mRNA and protein levels, antiapoptotic factors Bcl-xl, c-IAP1, c-IAP2, and TRAF1 were significantly upregulated in the SPHK1-transduced A549 and 95D NSCLC cells and downregulated in SPHK1-knocked down cells, as compared with those in control cells, respectively (Fig. 5A and Supplementary Fig. S4B and C). As the above identified upregulated antiapoptotic genes are known downstream targets of NF-κB, we further tested whether the NF-κB activity was modulated by SPHK1. NF-κB reporter assay showed that SPHK1 upregulation significantly increased, and in contrast, downregulation of SPHK1 attenuated, NF-κB transcriptional...
transactivating activity in A549 and 95D cells (Fig. 5B, left). Consistently, the transactivating activity of NF-κB decreased in SK1-I–treated cells as compared with that in control cells (Fig. 5B, right). Western blotting analysis revealed that phosphorylation of IkBα and IKK significantly increased in SPHK1-overexpressing NSCLC cells and reduced in SPHK1-knocked down cells (Fig. 5C, left) and in SK1-I–treated cells dose dependently (Fig. 5C, right), indicating that the effect of SPHK1 on apoptosis resistance mainly due to the SPHK1 activity. Meanwhile, we found that overexpressing SPHK1 drastically increased and knocked down SPHK1 reduced the cellular sphingosine-1-phosphate (S1P), which is produced by SPHK1, in both A549 and 95D NSCLC cells (Supplementary Fig. S5). Moreover, Annexin V–binding and TUNEL assays showed that doxorubicin- or docetaxel-induced apoptosis of SPHK1-overexpressing cells dramatically increased when the activity of NF-κB was blocked by IkBα super-repressor (IkBα mut), by treatment of NF-κB inhibitor (JSH-23), or by IKK inhibitor (Wedelolactone), indicating that the IKK/IkBα/NF-κB pathway was essential for the antiapoptotic function of SPHK1 in NSCLC cells (Fig. 5D).

As the IKK/IkBα/NF-κB pathway could be activated by Akt (22), we then examined whether SPHK1 activated PI3K/Akt signaling. As shown in Figure 6A, the level of phosphorylated Akt was indeed elevated in SPHK1-overexpressing NSCLC cells in comparison with that in the control cells whereas SPHK1 downregulation or SPHK1 inhibition by SK1-I significantly decreased the phosphorylation level of Akt (Fig. 6A and B). Furthermore, Western blotting analysis showed that the observed increases of phosphorylated IkBα and IKK by overexpressing SPHK1 could be reversed by treatment of PI3K inhibitor LY294002 or a specific Akt inhibitor (Akt inhibitor X), indicating that SPHK1-mediated IKK/IkBα/NF-κB activation might be through PI3K/Akt pathway (Fig. 6C). Moreover, SK1-I inhibition of SPHK1 significantly enhanced apoptosis of NSCLC cells induced by doxorubicin or docetaxel. However, apoptosis only slightly increased when the NSCLC cells were treated with SK1-I combined with PI3K inhibitor or Akt inhibitor,
suggesting that activation of PI3K/Akt was essential for the SPHK1-mediated protection against apoptosis (Fig. 6D).

Taken together, our results indicated that the PI3K/Akt pathway may play a role in SPHK1-mediated activation of NF-κB and prevention of apoptosis in NSCLC cells.

Discussion

The key findings made in our present study are that progression of human NSCLC is related to an increase of SPHK1 expression, and that SPHK1 upregulation sustains NSCLC cell survival and inhibits their sensitivity to apoptosis inducers. We also demonstrated that inhibiting SPHK1 activity with specific SPHK1 inhibitor or down-regulating SPHK1 with RNAi might represent a novel strategy for the treatment of NSCLC.

Increased resistance to apoptosis is a hallmark alteration in most types of cancers (23). Abrogation of proapoptotic pathways has been demonstrated to be one of the events key to tumor development and progression, and
impairments in apoptotic programming are tightly linked to the commonly seen failure of anticancer chemotherapy and radiotherapy. Thus, clarification of the mechanisms modulating the apoptosis/survival process in a particular cancer type will bring new insights in developing more effective therapeutic strategies (24–26). Notably, in the current study, we found that SPHK1 plays an important role in antiapoptosis of NSCLC that is relatively insensitive

Figure 5. SPHK1-mediated protection of apoptosis through activation of NF-κB and PI3K/Akt pathways. A, Western blotting of Bcl-xL, c-IAP1, c-IAP2, FLIP, TRAF1, Bcl-2, and Bim in indicated cells, using α-tubulin as a loading control. B, the effect of SPHK1 expression (left) and activity (right) on NF-κB activity in NSCLC cells, analyzed by luciferase reporter assay. *, P < 0.05. C, Western blotting for phosphorylated IKK (p-IKK), total IKK, phosphorylated IκBα (p-IκBα), and total IκBα in vector-, SPHK1-, or SPHK1 shRNA-transduced A549 and 95D cells (left) or in the SK1-I–treated A549/SPHK1 and 95D/SPHK1 cells (right), using α-tubulin as a loading control. The numbers under panel of the p-IκBα expression are quantification analyses of p-IκBα/IκBα ratio. D, quantification of TUNEL-positive (right) and Annexin V+/propidium iodide (PI+) (left) A549/SPHK1 and 95D/SPHK1 cells treated with doxorubicin or docetaxel combined with an IκB mutant (IκBmut), NF-κB inhibitor JSH-23 (30 μmol/L, NF-κB in), IKK inhibitor Wedelolactone (100 μmol/L, IKK in). *, P < 0.05.

Error bars represent SD from 3 independent experiments.
to chemotherapy, both in vivo and in vitro. Ectopic expression of SPHK1 in NSCLC cells dramatically enhances their resistance to apoptosis induced by doxorubicin or docetaxel, 2 commonly used chemotherapeutics, whereas suppressing SPHK1 expression with shRNAs or inhibiting SPHK1 activity with a specific SPHK1 inhibitor, SK1-I, markedly abrogated the ability of NSCLC cells to resist cytotoxic reagent-induced cell death, suggesting that SPHK1 activity contributes to sustaining the unwanted survival of NSCLC cells under the treatment of chemotherapeutics.

The balance between lipid mediators, such as S1P, sphingosine, and ceramide, has been considered as a cellular converter determining cell fate (27). Thus, key enzymes in this context, such as SPHK1 and SPHK2, which regulate the S1P/ceramide conversion that contributes to determining whether a cell proliferates or undergoes apoptosis, could be potential targets for new anticancer drugs. Recently, French and colleagues screened a library of synthetic compounds using recombinant human SK1 as a bait and identified a panel of inhibitors of SPHK1 including SK1-I (28). Prompted by the concern that NSCLC is generally insensitive to currently available chemotherapeutic agents, we asked whether SPHK1 plays a role in conferring NSCLC cells resistance to chemotherapeutics-induced apoptosis during the treatment of NSCLC and thereby could be a target for the treatment of NSCLC. Strikingly, inhibition of SPHK1 activity by SK1-I markedly sensitizes NSCLC cells to the proapoptotic effect of chemotherapeutics. Robustly, i.p. injection of SK1-I potently enhanced the tumor suppression effect of docetaxel, a clinically well-established, proapoptotic chemotherapy drug against breast, ovarian, and NSCLC (29, 30). Notably, the unwanted toxicity of SK1-I appeared to be low as the body weight of treated mice was well kept and other signs of toxicity seemed to be absent in our study, despite that the exact toxicity profiles of SPHK1 targeting strategies are yet to be pharmaceutically and clinically determined.

It has been demonstrated that NF-κB plays important roles in the development of malignant phenotypes through multiple signaling pathways, and aberrant activation of NF-κB has been observed in variety of cancer types (31).

Figure 6. Upregulation of SPHK1 activates the PI3K/Akt pathway. A and B, Western blotting for phosphorylated Akt (p-Akt), total Akt, phosphorylated GSK-3β (p-GSK-3β), and total GSK-3β levels in vector-, SPHK1-, or SPHK1 shRNAi-transduced A549 and 95D cells (A) or in SK1-I treated A549/SPHK1 or 95D/SPHK1 cells (B), using α-tubulin as loading control. C, Western blotting for phosphorylated IKK (p-IKK), total IKK, phosphorylated IκBa (p-IκBa), and total IκBa in A549/SPHK1 and -95D/SPHK1 cells treated by vehicle (DMSO), PI3K inhibitor LY294002, or a specific Akt inhibitor (Akt inhibitor X), using α-tubulin as loading control. D, quantification of Annexin V+/propidium iodide (PI+) (left) or TUNEL-positive (left) A549/SPHK1 or 95D/SPHK1 cells treated with chemotherapeutics agent doxorubicin or docetaxel in combination with vehicle (DMSO), LY294002, Akt inhibitor X, Akt inhibitor X plus SK1-I, or LY294002 plus SK1-I. *, *P < 0.05. Error bars, SD from 3 independent experiments.
A prominent mechanism linking NF-κB signaling to cancer progression is the abrogation of apoptosis (32). Numerous antiapoptotic proteins, such as Bcl-xL, c-IAPs, TRAFs, and c-FLIPs, are transcriptionally regulated by the NF-κB (32, 33). Our current study found that several NF-κB regulated antiapoptotic proteins were upregulated in SPHK1-overexpressing NSCLC cells and downregulated in SPHK1-knocked down or -inhibited NSCLC cells, and that the transactivating activity of NF-κB could be stimulated by SPHK1 upregulation and suppressed by SPHK1 inhibition. On the other hand, although the IKK/IκB/NF-κB axis is subjected to activation by a variety of distinct upstream signals, the data we obtained thus far suggest an involvement of the PI3K/Akt pathway, the activation of which requires contribution of lipid mediators. Indeed, suppression of PI3K/Akt signaling in NSCLC cells had little, if any, enhancing effect on SKI-1 caused apoptosis, and such a lack of additive effect between SPHK1 inhibition and PI3K inhibition suggests a seemingly linear relation of the two signaling molecules along the action axis. Apparently, the molecular mechanism underlying SPHK1-mediated activation of PI3K/Akt pathways, as well as its biological outcome, needs to be further delineated. In addition, several other issues also remain to be addressed. For example, it would be of great interest to know whether other pathways are also involved in mediating the antiapoptotic effect of SPHK1 in NSCLC cells and what other malignant pheno-
types of NSCLC cells could also be modulated by upregulated SPHK1. These issues are under further investigation in the laboratory. Nevertheless, understanding the role of SPHK1 in NSCLC progression will not only advance our knowledge of the mechanisms underlying NSCLC survival, but also will help establish SPHK1 as a potential therapeutic target for the treatment of NSCLC.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

This study was supported by the Natural Science Foundation of China (nos. 81071647, 81071762, 81071780, 81030048, 30770836, 30771110, 30870963, 30872930, 30831160517); Program for New Century Excellent Talents in Universities (nos. NCET-07-0877); the Science and Technology Department of Guangdong Province, China (no. 82510008/00100006, 2008A030201006); Ministry of Education of China [nos. (2008)890 and 200805080047]; and the Fundamental Research Funds for the Central Universities (no. 10ykzd03). The study was also supported by State Major Infectious Disease Research Program (China Central Government, 2009ZX10004-213, 2009ZX10013-041), Guangdong Recruitment Program of Creative Research Groups and a key grant from the 985-III project.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received March 23, 2010; revised September 24, 2010; accepted November 5, 2010; published OnlineFirst February 15, 2011.

Libing Song, Huaping Xiong, Jun Li, et al.

Clin Cancer Res 2011;17:1839-1849. Published OnlineFirst February 15, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-10-0720

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2011/03/30/1078-0432.CCR-10-0720.DC1

Cited articles
This article cites 33 articles, 11 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/17/7/1839.full#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/17/7/1839.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.