Intraoperative qRT-PCR for Detection of Lymph Node Metastasis in Head and Neck Cancer

Robert L. Ferris1,2,4, Liqiang Xi5, Raja R. Seethala3, Jon Chan1, Shaun Desai7, Benjamin Hoch8, William Gooding9, and Tony E. Godfrey9

Abstract

Purpose: Sentinel node biopsy (SNB) has been shown to accurately stage the regional lymphatics in oral carcinoma. However, intraoperative pathology is only moderately sensitive and final pathology takes several days to complete. The purpose of this study was to develop a rapid, automated, and quantitative real-time PCR (qRT-PCR) assay that can match final pathology in an intraoperative time frame.

Experimental Design: Four hundred forty-eight grossly tumor-negative lymph nodes were evaluated for expression of 3 markers [PVA (pemphigus vulgaris antigen), PTHrP (parathyroid hormone-related protein), and TACSTD1 (tumor-associated calcium signal transducer 1)]. Conformity of metastasis detection by qRT-PCR was determined using hematoxylin and eosin and immunohistochemistry staining as the gold standard. PVA and TACSTD1 were then multiplexed with β-glucuronidase to develop a rapid, automated single-tube qRT-PCR assay using the Cepheid GeneXpert system. This assay was used to analyze 103 lymph nodes in an intraoperative time frame.

Results: Four hundred forty-two nodes produced an informative result for both qRT-PCR and pathologic examination. Concordance of qRT-PCR for individual markers with final pathology ranged from 93% to 98%. The best marker combination was TACSTD1 and PVA. A rapid, multiplex assay for TACSTD1 and PVA was developed on the Cepheid GeneXpert and demonstrated an excellent reproducibility and linearity. Analysis of 103 lymph nodes demonstrated 94.2% accuracy of this assay for identifying positive and negative nodes. The average time for each assay to yield results was 35 minutes.

Conclusions: A rapid, automated qRT-PCR assay can detect lymph node metastasis in head and neck cancer with high accuracy compared to pathologic analysis and may be more accurate than intraoperative pathology. Combined, SNB and rapid qRT-PCR could more appropriately guide surgical treatment of patients with head and neck cancer. Clin Cancer Res; 17(7): 1858–66. ©2011 AACR.

Introduction

For patients with a diagnosis of head and neck squamous cell carcinoma (HNSCC), nodal involvement is one of the strongest prognostic indicators (1, 2), and guides use of adjuvant radiation and chemotherapy to reduce disease recurrence. HNSCC frequently metastasizes to the cervical nodal basins, yet clinical staging via physical exam and radiological modalities [PET-CT (positron emission tomography-computed tomography), CT scan, MRI, ultrasound] are inadequate, and usually cannot detect metastases less than 8 to 10 mm in size (3). Thus, the standard of care for the clinically node negative (N0) patient is an elective neck dissection (END), which leads to increased locoregional control and regional recurrence-free survival (4–6). However, END is a surgical procedure that represents overtreatment for approximately 70% of cN0 patients who are found to have a pathologically negative neck.

In a multicenter validation trial conducted by the American College of Surgeons Oncology Group (ACOSOG Z0360 trial), sentinel node biopsy (SNB) was demonstrated to be feasible and accurate as a means of avoiding unnecessary END by identifying pN0 patients (7). Although SNB holds great promise, widespread application is limited by the lack of rapid and accurate, intraoperative detection of metastatic disease in the sentinel node(s) (3, 8–14). Unfortunately, intraoperative frozen section has a sensitivity of approximately 60% in HNSCC (8, 15). The gold standard of H&E...
Accuracy of Rapid RT-PCR Detection of Metastatic HNSCC

Translational Relevance

Sentinel node biopsy (SNB) has been shown to accurately stage the regional lymphatics in oral carcinoma. However, intraoperative pathology is only moderately sensitive and final pathology takes several days to complete. We are developing a rapid, automated and quantitative real-time PCR (qRT-PCR) assay that can match final pathology in an intraoperative time frame. Concordance of qRT-PCR for individual markers with final pathology in 442 nodes was 93% to 98%. The best marker combination was TACSTD1 (tumor-associated calcium signal transducer 1) and PVA (pemphigus vulgaris antigen). Analysis of 103 lymph nodes demonstrated 94.2% accuracy of this assay for identifying positive and negative nodes in an average time for each assay of 35 minutes. A rapid, automated qRT-PCR assay, combined with SNB or fine needle aspiration biopsy, could more appropriately guide surgical treatment of patients with oral cancer.

Table 1. Clinical features and risk factors in 92 previously untreated SCCHN patients, from whom validation set lymph nodes (n = 5 ± 1 nodes per patient, 442 total nodes) were harvested

Age	60 y
Gender	79M/13F
Smoking history	78/92 (84.8%)
Alcohol history	58/92 (63.0%)
pT status	
T1	28/92 (30.4%)
T2	25/92 (27.2%)
T3	20/92 (21.7%)
T4	19/92 (20.7%)
pN status	
N0	50/92 (54.3%)
N1	12/92 (13.1%)
N2	30/92 (32.6%)
N3	0/92 (0%)
Site	
Oral cavity	57/92 (62%)
Oropharynx	11/92 (12%)
Larynx	20/92 (21.7%)
Hypopharynx	2/92 (2.2%)
Other	2/92 (2.2%)

Materials and Methods

Patients and lymph node collection

Institutional review board-approved, written informed consent was obtained from all patients donating specimens for this study. All cervical lymph nodes were collected from 92 patients representative of our patient population undergoing neck dissections for HNSCC, with various primary sites including the oral cavity, oropharynx, larynx, and hypopharynx (Table 1). A total of 448 lymph nodes were harvested at surgery, sectioned in alternating 1 mm sections, with half of the sections used for pathological diagnosis and the other half used for this study. In order to ensure no gross discrepancy between the 2 halves, the research halves were embedded in OCT (optimal cutting temperature) compound and 1 section was mounted on a slide, H&E stained, and read by a head and neck pathologist (R.S.). The OCT embedded nodes were stored at −80°C prior to processing and RNA isolation.

Pathologic analysis

Histologic analysis was performed at 3 separate times for each lymph node; H&E stained frozen sections of alternate 1 mm pieces were reviewed and entered into the medical record prior to release of nodes for research (“clinical frozen section”), these frozen pieces were also cut at a later date for both RNA isolation and histologic review by 2 pathologists and consensus was reached using both H&E and IHC (“research pathology”). Finally, alternate pieces of each node were fixed and embedded, and H&E stained sections were reviewed and entered into the medical record (permanent or “final” pathology). Nodes were classified as negative, positive, as isolated tumor cells (ITC), or if tissues were considered inadequate, as nondiagnostic. From these data, each node was also given an overall “consensus pathology”
call based on all 3 evaluations, where any positive result trumped ITC and any ITC trumped negative results.

Tissue processing for RNA isolation and research pathology review

Five-micron serial sections were cut from each OCT embedded lymph node half, with the initial and final tissue sections being mounted on slides for histologic analysis with H&E staining (Fig. 1). The next adjacent tissue section was mounted on slides and stained with pancytokeratin IHC for histopathology. Immunohistochemical evaluation was done using the antibody pan keratin (AE1/AE3) mixture (DAKO), and Vector Elite ABC kit and Vector AEC Chromagen (Vector Laboratories). The intervening sections were distributed 4:1:4:1:4, etc., such that 4 sections were immediately placed in chaotropic lysis buffer for RNA isolation (total of 50–60 sections) and every fifth section was mounted on a slide for histologic review (every 5 sections are considered a level Fig. 1). All unstained slides from levels 2 to 9, were fixed in acetone and stored at –20°C. All H&E and IHC slides from levels 1 and 10 of the lymph nodes were reviewed by 2 specialized head and neck pathologists (R. S. and S. C.) to confirm the presence of tumor, percentage of tumor, and identify the presence of any contaminating tissues. Furthermore, the slides from the GeneXpert validation set were read by 2 independent head and neck pathologists (R. S. and B. H).

RNA isolation and cDNA synthesis

RNA was isolated using the Stratagene RNA isolation mini-kit (Stratagene) using the manufacturers described protocol. Reverse transcription was done in 100-μL reaction volumes with random hexamer priming and SuperScript II (Invitrogen) reverse transcriptase as per our previous studies (24).

Standard quantitative PCR

All quantitative PCR (qPCR) was performed on the Stratagene MX3000P QPCR System (Stratagene). Relative expression of the marker genes [PVA (pemphigus vulgaris antigen), TACSTD1 (tumor-associated calcium signal transducer 1), and PTHrP (parathyroid hormone-related protein)] was calculated using the \(\Delta \Delta CT \) methods that were previously described (25), and with β-glucuronidase (GUSB) as the endogenous control gene. Primer and probe sequences for each gene were as published previously (24).

GeneXpert multiplex assay development

Multiplex qPCR assays can suffer from limited linear dynamic range due to common reagent utilization. The SmartCycler and the GeneXpert both employ a method called temperature controlled primer limiting to inhibit the assay that reaches threshold first in order to decrease competition between the simultaneous assays (26). The PVA, TACSTD1, GUSB triplex assay used in this study is essentially identical to our previously published GeneXpert assay for breast cancer (27) except that PVA is used in place of prolactin inducible protein (PIP). Duplex and then triplex assays were first developed on the SmartCycler before transitioning to the GeneXpert. Briefly, PCR efficiency and dynamic range were assessed for duplex assays (TACSTD1/GUSB and PVA/GUSB) using serial dilutions of cDNA with high expression of the respective target genes (normal esophagus RNA for PVA, normal colon RNA for TACSTD1) in a background of total spleen cDNA. Linear dynamic range for the triplex assay was then tested to ensure all 3 assays functioned well in the ranges needed for lymph node classification. At this point, the triplex qPCR assay was incorporated into the Cepheid GeneXpert system to facilitate automated RNA isolation, reverse transcription, and qPCR. Reproducibility of the quantification of each marker
gene was then tested on the GeneXpert using serial dilutions of total RNA known to have high expression of PVA and TACSTD1. RNAs were diluted in a background of lysate from lymph nodes negative for disease in order to mimic a true test scenario. Six serial dilutions were performed and each assay was repeated 4 times on the GeneXpert in order to assess reproducibility across a range of target gene expression. Primer and probe sequences used in the GeneXpert for each gene are listed in Supplementary Table SA.

Analysis of lymph nodes using the GeneXpert

One hundred three (n = 103) of the original 448 lymph nodes were analyzed on the GeneXpert. Frozen tissue pieces, which were recut for RNA and tissue sections, were evaluated blindly by 2 fellowship trained head and neck pathologists (GeneXpert Research Pathology). Twenty-four, 5-μmol/L sections of OCT-embedded tissue were sectioned into 800 μL of GeneXpert lysis buffer (Cepheid) for each node, with 2 initial and final tissue sections mounted on slides for H&E and IHC histopathology. The lysate was then filtered through a 0.22-μmol/L syringe filter (Osmonics Inc.) and loaded into a GeneXpert cartridge. The exact details of the RNA isolation, reverse transcription, and qRT-PCR on the automated GeneXpert system are described in our previous work (26).

Diagnostic accuracy of standard qRT-PCR and the GeneXpert assays

Two reference standards were established: (i) research pathology, a consensus of 2 academic pathologists applying H&E and IHC; (ii) a consensus pathology which combined research pathology with clinical frozen section pathology. To explore the diagnostic potential of individual markers with both standard qRT-PCR and the GeneXpert, receiver operating characteristic (ROC) curves were constructed and the cutoff value of each marker that produced the highest overall classification accuracy was selected. The diagnostic parameters sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy were calculated for each cutoff. In addition the area under the ROC curve (AUC) was estimated. For the purpose of developing a diagnostic model, and identifying which marker or combination of markers are most important a different strategy was used. In this approach, the sample of 442 lymph nodes were collected from 92 patients and therefore were not considered to be independently distributed. For this reason we applied a generalized linear model with random effects. This model used a logit link to estimate the binomial characteristics were cross-validated by either bootstrap resampling (200 reps) or leave-10-out cross-validation.

Pathology analysis

A total of 448 lymph nodes were analyzed at 3 times; clinical frozen section, research frozen section (H&E plus IHC), and final pathology of fixed sections. Overall (consensus pathology) results classified 378 nodes as negative, 2 nodes as ITC, and 62 nodes as positive. Six nodes were determined to harbor incidental, metastatic papillary thyroid carcinoma (PTC) and these were excluded from further analyses leaving a total of 442 nodes. Comparison of each separate pathology review with the overall consensus pathology result (excluding ITC) indicates that conformity was >97% in all cases (Supplementary Tables SB–SE). However, consensus pathology identified a total of 61 positive nodes, of which research pathology identified 53 (86.9%), permanent pathology identified 56 (91.8%) but frozen section pathology only identified 49 (80.3%).

Evaluation of qRT-PCR markers

Four hundred forty-two lymph nodes from 92 patients were analyzed by qRT-PCR for 3 markers, PVA, PTHrP, and TACSTD1, and results were compared to both research pathology (Fig. 2 and Table 2) and overall consensus pathology (Supplementary Fig. SA and Table 2). In general, qRT-PCR results were slightly more concordant with research pathology than with consensus pathology (mean accuracy 96% vs. 94%); probably reflecting the increased sampling error inherent in the comparison with consensus pathology. Individually, all markers in combination with their most accurate cutoff demonstrated high (>93%) overall accuracy compared with both pathology endpoints but PVA clearly provided superior sensitivity (92% vs. research pathology) compared to PTHrP and TACSTD1 and hence, slightly higher negative predictive value (99%, Table 2). ROC curve analysis also identifies PVA as the best marker with an estimated AUC of 98% although the AUC confidence intervals for PVA and TACSTD1 overlap. PTHrP was clearly the least accurate of the 3 markers tested. Paired combinations of markers were also evaluated (Fig. 3) with TACSTD1 and PVA providing the best correlation with pathology although the combination was not significantly better than PVA alone.

GeneXpert assay development and reproducibility

For automated, rapid analysis of lymph nodes, a triplex assay was developed for TACSTD1, PVA, and GUSB. PCR efficiencies for multiplex assays ranged from 93.5% to 99.5% and the triplex assay showed a good linearity in the range needed to discriminate positive from negative nodes (Supplementary Fig. SB). Replicate experiments on the GeneXpert (Supplementary Fig. SC) resulted in an...
intraclass correlation coefficient of 0.90 for PVA and 0.97 for TACSTD1. The coefficient of variation was 18.2% for PVA and 3.9% for TACSTD1.

GeneXpert data

A total of 103 lymph nodes were evaluated using the triplex assay on the GeneXpert. Results were compared to GeneXpert research pathology (examination of frozen sections taken adjacent to the tissue used for GeneXpert qPCR) and consensus pathology (a consensus based on all histologic analyses performed on the node). Of the 103 nodes, 43 were tumor positive by consensus pathology and 60 were tumor negative. For the positive nodes, estimated tumor representation ranged from less than 5% to grossly positive (mean 55%). Seven of the positive nodes were negative by research pathology, likely indicating the effect of sampling error, i.e., the positive result was found on either the frozen clinical section or the permanent, formalin-fixed, paraffin embedded (FFPE) section but not on the research pathology section. PCR assays were performed from sections sandwiched by those used for research pathology and therefore the comparison with research pathology most accurately reflects the accuracy of the qPCR assay.

For each lymph node, TACSTD1 and PVA expression data from the triplex GeneXpert assay was used in a logistic model of pathologic status. From this model, the probability of being positive was estimated and the probability value leading to the most accurate classification was found (Fig. 4). Using this approach, the overall accuracy of qPCR compared with research pathology was 94.2% and compared with consensus pathology was 90.3%.

Table 2. Accuracy characteristics of individual markers compared with research pathology and overall consensus pathology.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
<th>Accuracy (%)</th>
<th>AUC</th>
<th>AUC-CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research pathology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTHrP</td>
<td>60</td>
<td>98</td>
<td>97</td>
<td>95</td>
<td>95</td>
<td>0.84</td>
<td>0.77–0.91</td>
</tr>
<tr>
<td>PVA</td>
<td>92</td>
<td>98</td>
<td>92</td>
<td>99</td>
<td>98</td>
<td>0.98</td>
<td>0.95–1.00</td>
</tr>
<tr>
<td>TACSTD1</td>
<td>70</td>
<td>99</td>
<td>88</td>
<td>96</td>
<td>95</td>
<td>0.88</td>
<td>0.88–0.98</td>
</tr>
<tr>
<td>Overall pathology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTHrP</td>
<td>53</td>
<td>100</td>
<td>94</td>
<td>93</td>
<td>93</td>
<td>0.78</td>
<td>0.71–0.85</td>
</tr>
<tr>
<td>PVA</td>
<td>84</td>
<td>98</td>
<td>90</td>
<td>97</td>
<td>96</td>
<td>0.92</td>
<td>0.87–0.97</td>
</tr>
<tr>
<td>TACSTD1</td>
<td>61</td>
<td>99</td>
<td>88</td>
<td>94</td>
<td>93</td>
<td>0.88</td>
<td>0.82–0.93</td>
</tr>
</tbody>
</table>

Abbreviations: PPV, positive predictive value; AUC, area under the ROC curve; CI, confidence interval.
pathology were 91.7% and 95.5%, respectively, and compared with consensus pathology were 86% and 93.3%. Ten-fold cross validation indicated that these accuracy levels are likely to be quite robust as the estimated accuracy only dropped by 4% to 5%.

Discussion

We have developed a completely automated multiplex qRT-PCR assay that can accurately detect lymph node metastasis in head and neck cancer. This assay can be performed in 35 minutes or less and thus could be performed intraoperatively to detect metastasis to lymph nodes, even those with as little as 5% nodal involvement. To the best of our knowledge, this is the first study to demonstrate the use of a rapid, automated qRT-PCR assay that can be used in an intraoperative setting to detect head and neck cancer metastasis. The 2 distinct mRNA markers have been previously identified (24) and now independently validated as promising markers of tumor metastasis in both single and multiplex assays in a large sample set of lymph nodes.

This rapid, 2 marker qRT-PCR assay is a significant advance because of the inherent problem with intraoperative analysis via frozen section, i.e., sampling error and subjectivity. Less than 1% of a node is analyzed and may miss metastasis, with a published sensitivity of roughly 60% to 80% for micrometastasis (30–34). Improvement in results can be obtained if multisectioned frozen analysis is performed, but this limits material available for permanent H&E section and IHC analyses, as well as generates greater costs and expense of intraoperative time. Frozen section histology is also subject to both technical difficulties in sample and section preparation, including interpretive challenges, all of which are heavily dependent on the skill and experience of the pathologist and support staff (35). Further difficulty exists with frozen section since tissue that has been frozen, then thawed, and then processed for routine light microscopic examination may be compromised, and may not represent the true status of the entire specimen. Imprint cytology provides worse results compared to frozen section (34). Even final assessment of step sectioned FFPE sections, which samples a larger percent of the node and is the gold standard, may not find micrometastasis (tumor deposits <2 mm and >0.2 mm), as well as ITCs (tumor clusters <0.2 mm), as suggested by the fact that 7% to 15% of patients with no pathologic evidence of cervical lymph node involvement after END suffer recurrent disease in the neck (36–39). Hence, a method of evaluating a larger portion of SLN for metastasis that is both rapid and objective would be of great clinical benefit,
to complement the sentinel lymph node biopsy (SLNB) procedure which accurately stages the clinically negative neck in approximately 95% of oropharyngeal squamous cell carcinoma (OSCC) patients.

In this regard, ideally our assay should be as accurate as "the gold standard," but the most important goal for an intraoperative analysis is to be more accurate than frozen section in a comparable time frame. After processing and embedding of a SLN, the face that is cut for staining may be completely different and far away from the face that was cut for the frozen section. Therefore, it is entirely possible for the frozen section to be positive while the permanent section is negative. It may be argued whether that scenario would constitute a "false positive" on the frozen section or a "false negative" for the permanent section (as observed in 8%–9% of cases; refs. 36, 40), warranting a re-evaluation of "gold standard" pathologic analysis in the molecular pathology era. We argue that any positive finding by pathology, that is agreed upon by 2 or more pathologists is a true positive regardless of whether it is determined by H&E or IHC on a frozen section, a research pathology section or a permanent section and we do not believe that this is changing the gold standard, it is simply accepting the possibility of sampling error. Expert pathologic review is the true "gold standard" regardless of when the section was taken and we believe that the pathology community would agree with this notion.

The potential role of SNB in OSCC may have greater applicability than in melanoma and breast cancer because nearly all OSCC patients undergo routine END. Thus, the ability to accurately and rapidly stage the cN0 neck would avoid morbidity, cost(s), and other health system resources utilized in open neck dissection, for the 70% of patients without metastatic disease. Because no reliable gene prediction profile has been developed, currently the primary tumor mRNA profile is not useful in classifying presence of lymphatic disease in these patients. Thus, direct analysis of the draining SLN is necessary, a procedure which has been recently validated in a large prospective multicenter trial (ACOSOG Z0360, ref. 7). Based on these trial results, we considered that positive and negative predictive values are influenced by disease prevalence. Since our GeneXpert cohort used a 35% sample of positive nodes, we estimated that what the negative predicted value (NPV) of our qRT-PCR assay would have been if we used the prevalence of positive nodes in the ACOSOG trial (29%). We assumed a 1,000 patient cohort in which the prevalence of pathologically positive sentinel lymph nodes was 30% (7). Applying the same 83% sensitivity and 92% specificity as the cross-validated GeneXpert classifier to this 1,000 patient cohort of head and neck cancer patients with neck dissection would slightly improve the NPV from the observed value of 0.912 versus research pathology to 0.930.

In our previous work, we identified 4 novel mRNA markers (SCCA1/2, PVA, TACSTD1, and PTHrP) for the detection of cervical lymph node metastasis in squamous cell carcinoma of the head and neck (SCCHN), and showed the feasibility of an automated multiplex assay in the detection of PVA, one of the most promising markers from the initial screen (24). In the present study, we have not only validated 3 of the 4 mentioned markers with a large sample set of histologically negative and positive lymph nodes, but also developed a rapid triplex qRT-PCR assay that combines the 2 best markers (PVA and TACSTD1) with an endogenous control (GUSB). Furthermore, this assay is...
fully automated (RNA isolation, reverse transcription, and qPCR) using the Cepheid GeneXpert system and can be completed in less than 35 minutes.

The GeneXpert assay has several advantages over prior methods of molecular diagnosis, as well as conventional pathologic analysis, in detecting occult metastasis in SLNs of head and neck cancer. First of all, this is the first instrument that can perform a fully automated RNA isolation and qRT-PCR in less than 35 minutes, which could easily fit into an intraoperative time frame. Multiple SLNs can be assessed in parallel since each assay is independently controlled by the GeneXpert. Excision of the primary oral cancer could be undertaken after SLN removal and during pathologic and qRT-PCR analysis of the SLNs. Secondly, the objective nature of the assay eliminates the uncertainty and discordance rates with frozen section pathology analysis, which is a clearly documented issue (35). Finally, with further work, this wet assay can become automated into a dry assay which will remove any doubt of potential human error with the sample processing (i.e., pipetting error). This technology has already been developed by our group with breast cancer sentinel lymph node analysis (41) and was recently evaluated in a multicenter test (27). The development of the TACSTD1 assay for application to breast cancer explains its currently better reproducibility over the PVA assay, which will improve as greater developmental effort is devoted to preparing rapid PVA amplification for clinical evaluation.

After detailed analysis of the 3 positive nodes that were missed by the GeneXpert (rapid) assay for TACSTD1 and PVA, we noted that all 3 were originally found to contain 5% or less tumor cells on only 1 section. When accounting for sectioning for H&E, IHC, and additional sections for RNA isolation and qRT-PCR, the potential for significant sampling error develops. Four sections at each of 10 levels were analyzed using the rapid PCR assay, leading to approximately 150 µmol/L in 3 levels from 2 mm blocks of each node (33). A similar protocol of alternate parallel sections throughout the entire SLN to be cut into a lysate buffer for qRT-PCR could be clinically feasible. The rest of the lymph node would be paraffin-embedded and sent for permanent IHC analysis, as per normal histological protocol for SLN biopsy. However, it is important to note that the GeneXpert assay can be used in the common clinical scenario in which the pathologist suspects metastatic disease in the frozen section room, however, cannot confirm the diagnosis solely based on H&E analysis. Also, this assay may be useful to rule out micrometastasis in a grossly negative SLN. Instead of running the risk of having the patient potentially return back for surgery in the case that IHC staining picks up metastatic disease, one can run the GeneXpert assay in less than 35 minutes intraoperatively, providing over 94% accuracy that the SLN is free of tumor. The high negative predictive value is of greatest clinical importance, and was the primary clinical endpoint of the recently published ACOSOG SLN trial (7), because it saves those patients free of disease from having a more extensive, END. Future work prior to commercialization includes the implementation of this technology into a multi-center sentinel lymph node trial.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received November 22, 2010; revised January 25, 2011; accepted February 15, 2011; published OnlineFirst February 25, 2011.

References

5. McGuit WF Jr, Johnson JT, Myers EN, Rothfield R, Wagner R, Floor of
nodes for T1–T2 oral squamous cell carcinomas: results of a pro-
8. Rassekh CH, Johnson JT, Myers EN. Accuracy of intraoperative
9. Pitman KT, Johnson JT, Myers EN. Effectiveness of selective neck dissec-
10. Yuen AP, Wei WI, Wong YM, Tang KC. Elective neck dissection versus
11. Koch WM, Choti MA, Civelek AG, Eisele DW, Saunders JR. Gamma
12. Zitsch RP 3rd, Todd DW, Renner GJ, Singh A. Intraoperative radi-
17. Liefers GJ, Clemons-Jansen AM, van de Velde C, Hermans J, van
18. Mitas M, Cole DJ, Hoover L, Fragg MM, Mikhailtarian K, Block MI, et al. Real-time reverse transcription-PCR detects KIS1/4 mRNA in medi-
(RT-PCR)-based assays for the detection of circulating tumour cells: a quality-assurance initiative of the EORTC Melanoma Cooperative
25. Tassone F, Hagerman PJ, Taylor AK, Gane LW, Godfrey TE, Hager-
26. Raja S, El-Hefnawy T, Kelly LA, Chestney ML, Luckef JD, Godfrey TE. Temperature-controlled primer limit for multiplexing of rapid,
quantitative reverse transcription-PCR assays: application to intrao-
27. Hughes SJ, Xi L, Gooding WE, Cole DJ, Mitas M, Metcalfe J, et al. A quantitative reverse transcription-PCR assay for rapid, automated ana-
28. Wolflinger R, O’Connell M. Generalized linear models: A pseudo-
30. Goekern M, Braun J, Stoeckl SJ. Evaluation of clinical and histo-
morphological parameters as potential predictors of occult metas-
31. Stoeckl SJ, Akureishi LW, Ross GL. Sentinel node biopsy for early oral and oropharyngal squamous cell carcinoma. Eur Arch Otorhi-
nologary 2009;266:75–9.
32. Stoeckl SJ. Sentinel node biopsy for oral and oropharyngeal squa-
35. Roberts CA, Betsch PE, Hergl DW, Devine GE, Clifford E, et al. Interpretive disparity among pathologists in breast sentinel lymph node
36. Greenberg JS, El Naggar AK, Mo V, Roberts D, Myers JN. Disparity in
pathologic and clinical lymph node staging in oral tongue carcinoma.
37. Ambrosch P, Bruck U. Detection of nodal micrometastases in head
38. Enepekides DJ, Sultan K, Nguyen C, Shenouda G, Black MJ, Rochon L, Occult cervical metastases: immunoperoxidase analysis of the patho-
39. Kocaturk S, Yilmazer D, Onal B, Erkam U, Urunal B. Do micrometas-
tases detected with cytokeratin immunoperoxidase reactivity affect the treatment approach to neck in supraglottic cancers? Otolaryngol
40. Ambrosch P, Freudenberg L, Kron M, Steiner W. Selective neck dissec-
42. Soblin L, Wittekind CH, editors. TNM Classification of Malignant
Against Cancer. Classification of isolated tumor cells and microme-
45. Woolgar JA. Micrometastases in oral/oropharyngeal squamous cell carcinoma: incidence, histopathological features and clinical implica-
Intraoperative qRT-PCR for Detection of Lymph Node Metastasis in Head and Neck Cancer

Robert L. Ferris, Liqiang Xi, Raja R. Seethala, et al.

Clin Cancer Res 2011;17:1858-1866. Published OnlineFirst February 25, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-10-3110

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2011/03/31/1078-0432.CCR-10-3110.DC1

Cited articles
This article cites 43 articles, 6 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/17/7/1858.full#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/17/7/1858.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.