Heat Shock Protein 90-Sheltered Overexpression of Insulin-Like Growth Factor 1 Receptor Contributes to Malignancy of Thymic Epithelial Tumors

Marco Breinig1, Philipp Mayer1, Andreas Harjung1, Benjamin Goeppert1, Mona Malz1, Roland Penzel1, Olaf Neumann1, Arndt Hartmann2, Hendrik Dienemann3, Giuseppe Giaccone4, Peter Schirmacher1, Michael André Kern1, Gabriela Chiosis5, and Ralf Joachim Rieker1,2

Abstract

Purpose: The underlying molecular mechanisms of thymic epithelial malignancies (TEMs) are poorly understood. Consequently, there is a lack of efficacious targeted therapies and patient prognosis remains dismal, particularly for advanced TEMs. We sought to investigate protumorigenic mechanism relevant to this understudied cancer.

Experimental Design: Recently established cell lines derived from thymic epithelial tumors were used as a model system. The antitumor activity of specific heat shock protein 90 (Hsp90) inhibitors was investigated by an analysis of cell viability, cell cycle, and apoptosis using MTT-assays and flow cytometry. Western blotting was used to investigate the altered expression of Hsp90 clients. Pharmacological inhibitors against select Hsp90 clients, as well as RNAi, were employed to test the relevance of each client independently. Tissue microarray analysis was performed to match the in vitro findings with observations obtained from patient-derived samples.

Results: Hsp90 inhibition significantly reduces cell viability of thymic carcinoma cells, induces cell cycle arrest and apoptosis, and blocks invasiveness. Hsp90 inhibition triggers the degradation of multiple oncogenic clients, for example insulin-like growth factor 1 receptor (IGF-1R), CDK4, and the inactivation of PI3K/Akt and RAF/Erk signaling. Mechanistically, the IGF/IGF-1R–signaling axis contributes to the establishment of the antiapoptotic phenotype of thymic cancer cells. Finally, IGF-1R is overexpressed in advanced TEMs.

Conclusions: We have unraveled a novel protumorigenic mechanism in TEMs, namely Hsp90-capacitated overexpression of IGF-1R, which confers apoptosis evasion in malignant thymic epithelial cells. Our data indicate that Hsp90 inhibition, which simultaneously blocks multiple cancer hallmarks, represents a therapeutic strategy in TEMs that may merit evaluation in clinical trials. Clin Cancer Res; 17(8); 2237–49. ©2011 AACR.

Introduction

Thymic epithelial malignancies (TEMs) show a broad spectrum of clinical and histologic characteristics. According to WHO, TEMs are principally classified as type A, AB, B1, B2, and B3 thymoma. Finally, various subtypes of thymic carcinomas (formerly classified as type C thymomas) exist. Overall, type B3 thymomas and thymic carcinomas show a particularly unfavorable outcome (1, 2). Advanced disease is often irresectable and response rates to conventional chemotherapy are lower than 50% (3). Consequently, new therapeutic strategies are needed.
Translational Relevance

Therapeutic approaches that improve the dismal situation of patients suffering from advanced and aggressive thymic epithelial malignancies (TEMs) are missing since the molecular mechanisms involved in the establishment of this cancer are largely unknown. Here we demonstrate, by using newly established in vitro models, that heat shock protein 90 (Hsp90) is a critical and multimodal modifier of TEMs. Pharmacological inhibition of Hsp90 elicits marked antitumor activity in thymic carcinoma cells and robustly inhibits multiple cancer-relevant signaling pathways. Along this line, we moreover show that the Hsp90 client IGF-1R is overexpressed in human thymic tumors and plays a role in establishing the malignant antiapoptosis phenotype of thymic cancer cells. Collectively, these findings for the first time uncover molecular mechanisms that are vital to TEMs and that represent intervention points for targeted therapies. Our studies suggest that targeting Hsp90 or its client IGF-1R may warrant evaluation in clinical trials.

The hitherto disappointing results related to targeted therapies in this cancer might reflect the lack of representative model systems for preclinical studies, as well as the necessity to simultaneously block diverse oncogenic mechanisms to achieve potent antineoplastic activity in most tumors (4). Regarding the first aspect, adequate mouse models that recapitulate this cancer are still missing but advancements have been made by establishing stable cell lines derived from TEMs (5, 6). Regarding the second aspect, preliminary studies have shown beneficial effects of the multikinase inhibitors sorafenib and sunitinib in TEMs (7). Besides the use of nonspecific multikinase inhibitors, specific mono-targeted inhibition of the molecular chaperone Hsp90 represents a compelling strategy that allows a synchronized blockade of multiple malignancy driving mechanisms (8).

Hsp90 generally regulates the stabilization and activation of so-called ‘client’ proteins, numerous of which are bona fide oncoproteins (9). Hence, Hsp90 controls signaling pathways involved in the establishment of all hallmarks of cancer (10). Hsp90 inhibition induces the simultaneous proteasomal degradation of various onco-clients. The therapeutic efficacy of Hsp90 inhibitors most likely relates to the concurrent shutdown of multiple protumorigenic circuits, hence preventing possible “escape” mechanisms of tumor cells by activating compensatory signaling pathways (10). Reports from clinical trials with the geldanamycin class of Hsp90 inhibitors (e.g., 17-AAG) demonstrate beneficial effects in several malignancies. However, this compound series has several limitations and an unfavorable toxicity profile (11, 12). With the advent of novel Hsp90 inhibitors that lack geldanamycin’s benzoquinone moiety, which is deemed accountable for most of the observed side effects, hope has been raised that these compounds will improve the clinical applicability of Hsp90 inhibition (13).

Here, we show that the Hsp90-sheltered activity of insulin-like growth factor 1 receptor (IGF-1R) contributes to the antiapoptotic phenotype of thymic epithelial cancer cells. We demonstrate that IGF-1R overexpression manifests this newly identified mechanism of malignancy in advanced TEMs. Hsp90 inhibition reverses IGF-1R-mediated antiapoptosis and induces multimodal antitumor activity. Our results suggest that Hsp90 inhibitors may represent promising therapeutic agents for the treatment of TEMs.

Materials and Methods

Detailed methods are included as Supplementary Material.

Reagents

8-(6-Iodobenzo[d][1,3]dioxol-5-ylthio)-9-(3-(isopropylamino)propyl)-9H-purin-6-amine (PLI-H71) was synthesized as previously reported (14). 17-Allylamino-17-desmethoxygeldanamycin (17-AAG) and the EGFR inhibitor N-[3-chloro-4 fluoro-phenyl]-7-methoxy-6-(3-morpholin-4-yI)propoxyquinazolin-4-amine (gefitinib) were obtained from LC Laboratories. The IGF-1R inhibitor cyclohexyl pircropodophyllin (PPP), the CDK4 inhibitor 2-bromo-12,13-dihydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-dione, the Raf-1 inhibitor 5-Iodo-3-[3,5-dihydro-4-hydroxyphenyl)methylene]-2-indolinosine (Raf1 inhibitor I, GW5074), the Akt inhibitor 1,3-dihydro-1-{(1-(4-(6-phenyl-1H-imidazo[4,5-g]quinoxalin-7-yl)phenyl)methyl)-4-piperidinyl}-2H-benzimidazole-2-one (Akt-1/2, Akt inhibitor VIII), and the EGFR inhibitor 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) were purchased from Calbiochem/Merck. The selective IGF-1R inhibitor NVP-AEW541 (pyrrolo[2,3-d]-pyrimidine derivative) and the dual IGF-1R/insulin receptor (IR) inhibitor BMS-536924 (1H-benzimidazol-2-yl)-1H-pyrindin-2-one (Akt-1/2, Akt inhibitor VIII), and the EGFR inhibitor 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) were purchased from BioVision. The selective caspase-8 inhibitor (Z-Val-Ala-Asp(Ome)-FMK) was from BioVision. The selective caspase-8 inhibitor (Z-Ile(Ome)Ile(TD(Ome)-FMK)) and the selective caspase-9 inhibitor (Z-Le(Ome) HD(Ome)-FMK) were from Calbiochem/Merck. These compounds were dissolved in DMSO and stock solutions were stored at −20°C. Recombinant IGF-I and -II was from R&D Systems and the neutralizing anti-IGF-1R antibody (zilrelin) was from Calbiochem. These compounds were dissolved in sterile PBS and stored as stock solutions at −20°C. Purified mouse IgG was from Millipore.

Cell lines

The thymic carcinoma cell line, TC1889, and the thymoma cell line, T1682, were established, characterized and authenticated as previously described (5). Cells were cultured in RPMI-media containing HEPES (PAA Laboratories) supplemented with 10% fetal calf serum (ICS) and 1% penicillin/streptomycin (Sigma) in an atmosphere containing 5% CO2. Cell lines were regularly checked for

2238 Clin Cancer Res; 17(8) April 15, 2011 Clinical Cancer Research

Downloaded from clincancerres.aacrjournals.org on April 14, 2017. © 2011 American Association for Cancer Research.
Mycoplasma infection using the VenorGEM Mycoplasma Detection Kit (Minerva Biolabs) according to the manufacturer’s instructions.

Cell viability measurement

The number of viable cells was determined using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium-bromide)-assay (EZ4U; Biomedica), as previously described (5).

Cell cycle analysis and detection of hypodiploidy

DNA content was analyzed by flow cytometry of propidium iodide–stained nuclei using a FACSCalibur flowcytometer (Becton Dickinson) as previously described (5). Data were analyzed using CellQuest and ModFit LT 3.00 software.

Western immunoblotting

Preparation of total protein lysates from human thymomas, thymic carcinomas, and normal thymus was performed as previously described (15). Preparation of total protein lysates from cell cultures as well as subsequent SDS-PAGE and Western immunoblotting was performed as previously described (16). See Supplementary Material for the antibodies employed.

Tissue microarray

The tissue microarray (TMA) was designed as previously described (15). Matching clinical data of the tissue array subjects including Masaoka stage (17) are given in Table 1.

Immunohistochemistry

Paraffin sections, each 4 μm thick, were cut, de-paraffinized in xylene and rehydrated with graded ethanol.

IGF-1R staining.

1 mM EDTA buffer (pH 9) was added to the slides and samples were heated by incubation in a microwave oven at 600 W for 3 × 5 min. After cooling, the slides were treated with hydrogen peroxidase in PBS to block the endogenous peroxidase. Nonspecific antibody binding was blocked using the avidin/biotin blocking Kit (Dako Cytomation). Anti–IGF-1R antibody (1:50, sc-713, Santa Cruz) was applied and incubated in a moist chamber at 120°C overnight. Signal detection was performed with biotinylated secondary antibody in a 1:200 dilution (Dako Cytomation) followed by a streptavidin–biotin complex and visualized with AEC-solution (Dako Cytomation) according to the manufacturer’s instructions.

IGF-I staining.

Slides were subjected to 5 min heating at 120°C in Tris-EDTA-Buffer (pH 8.5) in a pressure cooker. Endogenous peroxidase activity was quenched by 5 min incubation with Peroxidase-Blocking solution (Dako REAL, Dako Cytomation). Anti–IGF-I antibody (1:50, sc-7144, Santa Cruz) was applied for 30 min. Slides were subsequently incubated with the HRP-labeled Polymer anti-goat Histofine (414161 F, Nichirei Cooperation) for 30 min and visualized using DAB solution (Dako Cytomation) according to the manufacturer’s instructions.

Statistical analysis

Statistical analyses of in vitro studies were performed with the 2-sided Student’s t-test. Statistically significant changes are given as P values: *P < 0.05, **P < 0.01 and ***P ≤ 0.001. For TMA analyses, the differences in the frequency distribution of the intensity were analyzed using the Kruskal–Wallis test, with respect to stage and histologic subtype. The Jonckheere–Terpstra test was employed to analyze trends. A difference was considered statistically significant if the P value of the corresponding statistical test was less than 5% or equal (P ≤ 0.05). Kappa statistics were used to assess the degree of agreement between the ratings of the 2 observers. All statistical analyses were performed using the statistical software system SAS (SAS Institute).

Results

Hsp90 inhibition induces multimodal antitumorigenic activity in thymic epithelial tumor cells

To start, the effect of the nonquinone Hsp90 inhibitor PU-H71 on cell viability of a thymic carcinoma cell line (TC1889) was investigated using MTT-assays. Hsp90 inhibition significantly reduced cell viability in a concentration- and time-dependent manner (Fig. 1A). After 72 hours, the concentration that achieved half maximal reduction of cell viability (IC50) was ~0.25 μM. Treatment with PU-H71 induced G2/M arrest (Fig. 1B), increased aneuploidy (data not shown) and resulted in cell death, as evidenced by increased hypodiploidy (>30% of cells in subG1; Fig. 1C). Cell death was attributable to apoptosis since PU-H71 treatment increased caspase-3 activity (data not shown) and induced a time-dependent cleavage of PARP (Fig. 1D). Along these lines, broad-spectrum caspase inhibition significantly reduced PU-H71 treatment-induced caspase-3 activity (data not shown) and hypodiploidy (Fig. 1E). Essentially the same results were obtained with the chemically distinctive Hsp90 inhibitor 17-AAG (Supplementary Fig. S1A–E), hence suggesting a common antitumorigenic activity of Hsp90 inhibition in TC1889 cells. Related to Hsp90 inhibition-induced apoptosis, we observed that inhibition of caspase-8 and -9 reduced hypodiploidy associated with PU-H71 treatment (Fig. 1E). In addition, PU-H71 treatment induced mitochondrial depolarization (Fig. 1F), hence...
suggesting that Hsp90 inhibition unleashes intrinsic apoptosis in TC1889 cells.

Given that Hsp90 inhibition interferes with multiple mechanisms of malignancy (10), we investigated whether this strategy also blocks the cancer hallmark of tissue invasion. PU-H71 treatment inhibited the invasive capacity of TC1889 cells in a time- and concentration-dependent manner. A concentration of 1 μM was sufficient to reduce invasion through Matrigel up to ~75% after 72 hours as compared to controls (Fig. 1G).

Table 1. Expression patterns for IGF-1R and IGF-I and additional clinical data

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Age</th>
<th>Sexa</th>
<th>Histology (WHO)</th>
<th>Staging (Masaoka)</th>
<th>IGF-1R</th>
<th>IGF-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 months</td>
<td>M</td>
<td>Normal</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1 week</td>
<td>M</td>
<td>Normal</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2 months</td>
<td>M</td>
<td>Normal</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>68 years</td>
<td>M</td>
<td>A</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>71 years</td>
<td>M</td>
<td>A</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>57 years</td>
<td>M</td>
<td>A</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>58 years</td>
<td>F</td>
<td>A</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>78 years</td>
<td>F</td>
<td>A</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>56 years</td>
<td>M</td>
<td>A</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>47 years</td>
<td>F</td>
<td>AB</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>74 years</td>
<td>F</td>
<td>AB</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>51 years</td>
<td>M</td>
<td>AB</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>66 years</td>
<td>F</td>
<td>AB</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>53 years</td>
<td>F</td>
<td>AB</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>59 years</td>
<td>F</td>
<td>AB</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>58 years</td>
<td>F</td>
<td>B1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>66 years</td>
<td>F</td>
<td>B1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>52 years</td>
<td>M</td>
<td>B1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>41 years</td>
<td>F</td>
<td>B1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>71 years</td>
<td>M</td>
<td>B1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>34 years</td>
<td>M</td>
<td>B1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>55 years</td>
<td>M</td>
<td>B2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>43 years</td>
<td>M</td>
<td>B2</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>49 years</td>
<td>F</td>
<td>B2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>76 years</td>
<td>F</td>
<td>B2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>75 years</td>
<td>F</td>
<td>B2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>58 years</td>
<td>M</td>
<td>B3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>62 years</td>
<td>F</td>
<td>B3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>62 years</td>
<td>F</td>
<td>B3</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>63 years</td>
<td>F</td>
<td>B3</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>73 years</td>
<td>M</td>
<td>B3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>57 years</td>
<td>F</td>
<td>Carcinoma</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>51 years</td>
<td>M</td>
<td>Carcinoma</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>58 years</td>
<td>F</td>
<td>Carcinoma</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>66 years</td>
<td>M</td>
<td>Carcinoma</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>76 years</td>
<td>F</td>
<td>Carcinoma</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>37</td>
<td>2.5 months</td>
<td>M</td>
<td>Normal</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>9 months</td>
<td>M</td>
<td>Normal</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: Representative expression intensities for IGF-1R and IGF-I are depicted in Figure 5A and B, respectively.

aSex: M, male; F, female.

To further delineate the molecular basis for the observed antitumor activity of Hsp90 inhibitors in thymic cancer cells, we investigated the expression of well-established Hsp90 clients following Hsp90 inhibition. In TC1889 cells, PU-H71 treatment reduced the expression of EGFR, IGF-1R, cyclin-dependent kinase 4 (CDK4), Akt, RAF-1, phosphorylated Akt, and phosphorylated Erk1/2 in a concentration- and time-dependent manner (Fig. 1H). A marked reduction was achieved at PU-H71 concentrations >0.1 μM, which correlates well with the concentrations necessary to
Figure 1. Hsp90 inhibition induces multimodal antitumor activity in thymic epithelial tumor cells. A, cell viability reduction. TC1889 cells were incubated with PU-H71 and cell viability was analyzed using MTT-assays. Assays were performed in sextuple. Data are expressed as the mean ± SD (n = 3). B, induction of cell cycle arrest. TC1889 cells were incubated with PU-H71 and cell cycle distribution was assessed using FACS-analyses following PI-staining. Results of cells in G2/M are shown. Data are expressed as the mean ± SD (n = 3). C, induction of cell death. TC1889 cells were incubated with PU-H71 and cell death (hypodiploid cells in subG1) was assessed using FACS-analyses following PI-staining. Data are expressed as the mean ± SD (n = 3). D, induction of apoptosis. TC1889 cells were incubated with PU-H71 (1 μM) and PARP cleavage was investigated using Western immunoblotting. Representative results are shown (n = 3). Actin served as a loading control. fl., full length; cl., cleaved. E, caspase-dependence of apoptosis. TC1889 cells were incubated with PU-H71 and a broad caspase inhibitor (Casp), a caspase-8 inhibitor (Casp8) and a caspase-9 inhibitor (Casp9) and cell death was assessed after 72 hours using FACS-analyses following PI-staining. Data are expressed as the mean ± SD (n = 3). F, mitochondrial depolarization. TC1889 cells were incubated with PU-H71 (1 μM) and mitochondrial membrane potential was analyzed after 48 hours using FACS analysis following JC-1 staining. The uncoupler CCCP (100 μM) was used as a positive control inducing a marked shift in JC-1 fluorescence as compared to untreated controls (CO). Assays were performed in duplicate. Representative results are shown (n = 3). G, inhibition of invasiveness. TC1889 cells were pretreated for 24 hours with vehicle or PU-H71. Thereafter, viable cells able to migrate through Matrigel over a 48- and 72-hour period were quantified by phase contrast microscopy and data graphed. Data are expressed as the mean ± SD (n = 3). H, simultaneous degradation and inactivation of potential oncoproteins. (Left) Concentration dependence. TC1889 cells were treated with vehicle or PU-H71 and the expression of the indicated proteins was investigated after 24 hours using Western immunoblotting. (Right) Time dependence. TC1889 cells were treated with PU-H71 (1 μM) and the expression of the indicated proteins was investigated using Western immunoblotting. Representative results are shown (n = 3). Actin served as a loading control.
induce growth inhibition and apoptosis. In accordance with previous findings (16), expression of the inducible chaperone Hsp70 was increased. Essentially the same results were obtained with 17-AAG (Supplementary Fig. S1F), hence suggesting a common mechanism of action of Hsp90 inhibition. Similarly, PU-H71 treatment significantly reduced cell viability in the previously established thymoma cell line T1682, induced cell death as evidenced by increased hypodiploidy, and resulted in the simultaneous degradation and inactivation of aforementioned clients (Supplementary Fig. S2).

Collectively, Hsp90 inhibition exerts multimodal anti-tumorigenic effects and simultaneously affects the expression and activity of multiple potential oncoproteins in thymic epithelial tumor cells.

The Hsp90 client IGF-1R represents a novel therapeutic target that contributes to apoptosis evasion in thymic cancer cells

Given the lack of insight into molecular mechanism relevant to TEMs, we attempted to dissect the contribution of each of the investigated Hsp90 clients to the establishment of the malignant phenotype of TC1889 cells.

We first employed pharmacological inhibitors to independently block the function of the clients EGFR, IGF-1R, CDK4, RAF-1, and Akt (Supplementary Table S1). To corroborate our pharmacologically based strategy and to take liabilities like off-target effects of the inhibitors into consideration, we further employed RNA interference (RNAi) to silence the highly druggable and hence clinically relevant clients IGF-1R, EGFR, and CDK4 (18–20) independently.

The different inhibitors employed reduced cell viability in a concentration- and time-dependent manner with the IGF-1R inhibitor PPP being the most potent compound (IC50: ~0.25 μM; Fig. 2A). Regarding EGFR inhibition, we also tested irressa/gefitinib, a drug previously tested in clinical trials with patients suffering from TEMs (3) and found that none of the gefitinib concentrations employed (up to 50 μM) were sufficient to achieve a half maximal reduction of cell viability (Supplementary Fig. S3). Because the efficacy of EGFR inhibitors can be associated with specific EGFR mutations (21), we tested whether these mutations could be found in TC1889 cells. We did not detect mutations in exons 18 to 21 of the EGFR gene (data not shown). In support of the results obtained by our pharmacological approach, RNAi experiments revealed that substantial siRNA-mediated depletion of the clients analyzed was associated with a significant reduction in cell viability. Again, effects were strongest for IGF-1R knockdown with a ~40% decrease in viability for both siRNAs after 120 hours (Fig. 2B).

Given that Hsp90 inhibition induced apoptosis in thymic carcinoma cells, we next investigated the contribution of Hsp90 clients to the cancer hallmark of apoptosis evasion. Therefore, we examined the apoptosis phenotype of TC1889 cells after treatment with inhibitors for each client at low and high concentrations. Among the compounds examined, only the IGF-1R inhibitor PPP potently induced apoptosis at low concentrations as evidenced by increased hypodiploidy (>25% of cells in subG1) and by PARP cleavage (Fig. 2C and D). In addition, IGF-1R inhibition with PPP induced cell death in a thymoma cell line, as indicated by increased hypodiploidy and cell viability reduction (Supplementary Fig. S4A and B).

To strengthen our results that suggested an important role of the Hsp90 client IGF-1R and its potential to represent a valid therapeutic target in TEMs, we additionally analyzed the effects of a neutralizing IGF-1R antibody (αIR3) and of the IGF-1R inhibitors NVP-AEW541 (NVP) and BMS-536924 (BMS). Notably, all of these strategies to interfere with IGF-1R signaling reduced TC1889 cell viability and significantly induced apoptosis (Fig. 3A and B).

Related to IGF-1R inhibition-induced apoptosis, we also observed that inhibition of caspase-3, -8 and -9 reduced hypodiploidy associated with PPP treatment (Fig. 3C). In addition, PPP treatment induced mitochondrial depolarization (Fig. 3D), suggesting that, similar to Hsp90 inhibition, IGF-1R inhibition also unleashes intrinsic apoptosis in TC1889 cells.

Together, these results suggest that among the Hsp90 clients investigated, IGF-1R contributes to the malignant phenotype of thymic epithelial tumor cells by its anti-apoptotic properties. Given its druggability (22), IGF-1R might represent a potential therapeutic target in this cancer.

The IGF/IGF-1R signaling axis contributes to thymic cancer cell survival

To further investigate the relevance of IGF-1R-signaling in TEMs, we went on to analyze whether stimulation with IGF-I and -II affects cell viability. In TC1889 cells, IGF-I as well as IGF-II administration increased cell viability as compared to unstimulated controls. This effect was evident in cells grown in FCS-supplemented media but was considerably robust under serum-starvation conditions (Fig. 4A). Correspondingly, IGF-I and -II administration significantly reduced cell death as a consequence of serum-starvation (Fig. 4B), hence further suggesting a contribution of IGF-signaling to the antiapoptotic phenotype.

A subsequent analyses of signal transduction pathways revealed that, under serum-starvation conditions, IGF-I administration induced the activation of Akt, GSK3β, MEK1/2, and Erk as evidenced by respective phosphorylations of conserved residues (Fig. 4C). IGF-1R inhibition with PPP, αIR3, BMS, as well as NVP reduced the IGF-I–induced activation of PI3K/Akt and MAPK/Erk signaling. However, inhibitory effects, particularly on Akt phosphorylation (Fig. 4C), were more marked with NVP and BMS which are both known to also inhibit the insulin receptor (22). Essentially the same results were obtained for IGF-I and -II stimulation under normal growth conditions with 10% FCS (Supplementary Fig. S5 and data not shown).

Surprisingly, in unstimulated nonstarved TC1889 cells, PPP treatment for longer time periods (24–72 hours) resulted in an increase in the activity of MAPK/Erk signaling...
Figure 2. Hsp90 clients contribute to the establishment of the malignant phenotype of thymic carcinoma. A, cell viability reduction. TC1889 cells were treated with pharmacological inhibitors against the Hsp90 clients indicated and cell viability was assessed using MTT-assays. Assays were performed in sextuple. Data are expressed as the mean ± SD (n ≥ 3). B, RNAi. TC1889 cells were transfected with the indicated siRNAs against the select Hsp90 clients and the expression of respective proteins was investigated using Western immunoblotting. Representative results are shown (n = 3). Actin served as a loading control. Cell viability following transfection with respective siRNAs was measured using MTT-assays. Assays were performed in sextuple and data are expressed as the mean ± SD (n = 3). C, induction of cell death. TC1889 cells were treated with pharmacological inhibitors against select Hsp90 clients and cell death was evaluated by FACS-analyses following PI-staining. Data are expressed as the mean ± SD (n = 3). D, induction of apoptosis. TC1889 cells were treated with vehicle or the indicated pharmacological inhibitors against select Hsp90 clients and PARP cleavage was analyzed by Western immunoblotting. Representative results are shown (n = 3). Actin served as a loading control. fl., full length; cl., cleaved.
as indicated by augmented expression of phosphorylated Erk and MEK1/2, whereas Akt phosphorylation was only slightly decreased (Fig. 4D). Essentially the same results, although less pronounced, were obtained by inhibition of IGF-1R with the neutralizing antibody aIR3. Treatment with the IGF-1R/IR inhibitors NVP and BMS both induced a marked decrease in phosphorylated Akt, which corresponded to their aforementioned strong inhibitory effect on IGF-stimulated Akt signaling. Effects on MAPK/Erk signaling with these compounds were however heterogeneous, with BMS rather decreasing Erk phosphorylation, whereas NVP activated Erk (Fig. 4D). Corresponding findings were obtained for 48 hours compound treatment in serum-starved cells (Supplementary Fig. S6). Regarding IGF-1R inhibition with PPP, an activation of MAPK/Erk signaling was also detected following treatment with this drug in thymoma cells (Supplementary Fig. S4). Besides, we generally noticed that, in TC1889 cells, mono-targeted pharmacological inhibition of the Hsp90 clients EGFR, RAF-1, CDK4, and Akt resulted in differential activation of MAPK/Erk and/or PI3K/Akt signaling after 48 and 72 hours (Supplementary Fig. S7).
Figure 4. Relevance of the IGF/IGF-1R signaling axis in thymic carcinoma cells. A, cell viability increase. TC1889 cells were treated with IGF-I or -II under normal growth conditions (10% FCS) as well as serum-starvation conditions (0% FCS) and cell viability was assessed using MTT-assays. Assays were performed in sextuple. Data are expressed as the mean ± SD (n ≥ 3). B, apoptosis rescue. TC1889 cells were treated with vehicle, IGF-I or -II (100 ng/mL) for 72 hours under serum-starvation conditions. Cell death was evaluated by FACS-analyses following PI-staining. Data are expressed as the mean ± SD (n = 2). C, TC1889 cells were serum-starved for 16 hours, treated with vehicle or the IGF-1R inhibitor PPP, NVP, BMS, or the neutralizing IGF1R antibody αIR3 for 2 hours, and then stimulated with IGF-I (100 ng/mL) for 15 min. The activity of PI3K/Akt- and MAPK/Erk-signaling was investigated by an analysis of the expression of phosphorylated Akt, GSK3β, MEK1/2, and Erk using Western immunoblotting. Representative results are shown (n = 3). Actin served as a loading control. D, TC1889 cells were treated with vehicle or PPP, NVP, BMS, or αIR3. The activity of PI3K/Akt- and MAPK/Erk-signaling was investigated as mentioned earlier. Representative results are shown (n = 3). Actin served as a loading control.
Taken together, these results confirm a growth-stimulating, antiapoptotic property of the IGF-signaling axis in thymic cancer cells. Moreover, these findings demonstrate that IGF signaling is, at least partly, mediated via the PI3K/Akt and MAPK/Erk pathway. Finally, our findings reveal that the IGF-1R inhibitors employed elicit varying effects on IGF signaling.

IGF-1R is overexpressed in thymic tumors

Given the potential relevance of IGF-1R for the malignant antiapoptotic phenotype of thymic epithelial tumor cells, we finally investigated whether these functional *in vitro* data are matched by expression data in human TEMs. Using Western immunoblot analyses, we initially found that IGF-1R expression in normal thymus samples was hardly detectable, whereas IGF-1R was expressed in the vast majority of TEMs (Supplementary Fig. S8). To corroborate and extend this finding and to take into account that the results may have been confounded by the presence of lymphocytic infiltrates, particularly in normal thymus samples, we performed immunohistochemistry employing tissue micro arrays (TMA; Fig. 5 and Table 1). Considering IGF-1R expression in the epithelial compartment only, a low expression intensity of IGF-1R was observed in normal thymus (Fig. 5A, arrow). Overall, a trend was observed for higher IGF-1R expression in TEMs as compared to normal thymus ($P = 0.0005$) and significant differences were observed between normal thymus and thymic tumors ($P = 0.006$). In direct comparison to normal thymus, a higher expression of IGF-1R was observed in type B2 ($P = 0.032$), and type B3 thymoma ($P = 0.008$), as well as thymic carcinoma ($P = 0.008$). Statistical analyses also revealed that there were significant differences regarding IGF-1R expression and Masaoka stages ($P = 0.044$), with advanced stages showing higher IGF-1R expression (Supplementary Tables S2 and S3). In addition, an analysis of IGF-I expression (Fig. 5B and Table 1) revealed a trend toward higher expression in thymic carcinoma ($P = 0.012$), however no statistically significant differences could be calculated when normal thymus were compared with TEMs.

Taken together, IGF-I shows a trend for higher expression in TEMs and IGF-1R is significantly overexpressed in advanced TEMs, hence suggesting that IGF-1R contributes to malignancy of thymic tumors.

Figure 5. The Hsp90 client IGF-R1 is overexpressed in thymic tumors. IGF-1R and IGF-I protein expression in normal thymus, different thymoma subtypes and thymic carcinomas evaluated by immunohistochemistry. Clinical data of each specimen and respective stagings are given in Table 1. A, IGF-1R: normal thymus (case no. 38, score: 1); thymomas: type A (case no. 8, score: 2), type AB (case no. 12, score: 1), type B1 (case no. 20, score: 2), type B2 (case no. 23, score: 2), type B3 (case no. 30, score: 3); thymic carcinoma (case no. 36, score: 3). B, IGF-I: normal thymus (case no. 38, score: 1); thymomas: type A (case no. 8, score: 1), type AB (case no. 14, score: 1), type B1 (case no. 16, score: 2), type B2 (case no. 23, score: 1), type B3 (case no. 31, score: 3); thymic carcinoma (case no. 34, score: 2).
Discussion

Here, we dissected protumorigenic mechanisms relevant to TEMs and identified novel therapeutic targets. To our knowledge, this is the first functional analysis of factors relevant to TEMs that therefore differentiate itself from the descriptive nature of other studies, which are solely based on expression analyses by immunohistochemistry or global gene expression arrays (e.g., 23–25). Importantly, we provide evidence that the molecular chaperone Hsp90 plays a vital role in the maintenance of the cancer phenotype of thymic epithelial tumor cells. We demonstrate that Hsp90 "safeguards" the stability and activity of multiple molecules, such as IGF-1R, CDK4, and EGFR, which we found to differentially contribute to the survival of thymic cancer cells. In this regard, Hsp90 may rather support malignancy by capacitating various protumorigenic aberrations (8), than act as a classical oncprotein; a phenomenon referred to as "nononcogene addiction" (26). Consequently, inhibition of Hsp90 interferes with multiple malignancy driving mechanisms and elicits multimodal antineoplastic activity (11). We show here that, in thymic cancer cells, this is reflected by the induction of cell cycle arrest and apoptosis, as well as the abrogation of invasiveness.

Given the observed antitumor potency of Hsp90 inhibition, alongside its known mechanism of onco-client degradation, we hypothesized that characterizing the protumorigenic role of specific Hsp90 clients in thymic carcinoma cells might enable us to obtain insights into the largely unknown mechanisms of malignancy in this cancer. Using this biased approach, we show that IGF-1R contributes to the cancer hallmark of apoptosis evasion in thymic malignancies. Subsequent expression analyses in human thymic tumors moreover revealed that IGF-1R is overexpressed particularly in highly aggressive, advanced stage TEMs. Recently, TMA analyses in a large panel of TEMs (n = 132) confirmed an overexpression of IGF-1R and found correlations with WHO classification, stage, and relapse (27). Interestingly, loss of heterozygosity in the 6q23.3-25.3 region, harboring among others IGF-2R, has been observed to be the most frequent chromosomal aberrations in TEMs (24). Absence of IGF-2R, which sequesters IGF, might theoretically lead to locally increased IGF concentrations (28). Moreover, comprehensive genomic analyses revealed that IGF2BP3/IMP-3, a translational activator of IGF mRNA (29), is highly overexpressed in thymic carcinomas (25). Our initial analyses revealed that, although a trend towards higher IGF-I expression in thymic carcinoma could be observed, IGF-I was not statistically significantly overrepresented in TEMs when compared to normal thymus. Nevertheless, support that IGF-signaling might represent a potential oncogenic mechanism in TEMs stems from transgenic mice overexpressing either IGF-II or the IGF-binding protein 4 (IGFBP4). Whereas thymic size is markedly increased in the former mouse models (30, 31), it is decreased in the latter, being associated with apoptosis (32). Consequently, the IGF-signaling axis that plays a relevant role in thymic epithelial cells under physiological conditions (33) might be exploited by an up-regulation of IGF-1R in TEMs to manifest the malignant phenotype. In fact, prolonged disease stabilization was observed in a patient with metastatic thymoma in a phase 1 study of IGF-1R monoclonal antibodies (34). Additional experiments are necessary to analyze the protumorigenic contribution of IGF-signaling in thymic tumors. Uncovering the effector mechanisms of IGF-1R-mediated signaling cascades that eventually contribute to apoptosis evasion in TEMs will very likely help in the identification of novel treatment strategies. Meanwhile, a phase 2 trial with an anti-IGF-1R antibody is currently being conducted in patients with TEMs (27).

Regarding other Hsp90 clients, our results support the notion that CDK4 contributes to thymic carcinoma cell survival. Correspondingly, previous reports have shown that inactivation of p16INK4A, which results in higher CDK4 activity (35), is involved in the progression of TEMs (36). Regarding EGFR, which is frequently overexpressed in TEMs (23), mutations that alter its susceptibility towards different inhibitors are rare in this cancer (37–39). Accordingly, we observed a rather poor performance of EGFR inhibitors in TC1889 cells, which do not harbor relevant EGFR mutations (data not shown). Further analyses are compulsory in order to reveal the actual importance of CDK4 and EGFR signaling in the malignancy of TEMs.

Besides allowing an insight in protumorigenic mechanisms of TEMs, our studies interestingly also revealed that mono-targeted inhibition of every onco-client alone, as exemplified by IGF-1R inhibition, can be associated with a prolonged activation of vital signaling cascades, for example MAPK/Erk signaling. Off-target effects of the substances employed, as well as varying selectivity, for example, the IGF-1R inhibitors NVP and BMS are known to also inhibit the insulin receptor (22), might contribute to these effects. Given that certain inhibitors elicit differential effects depending on the respective genetic background of cancer cells (40) care has to be taken in interpreting our results related to signaling pathways modified by the substances used. Additional studies are mandatory to comprehensively address this topic. Still, activation of potentially compensatory signaling pathways as a consequence of targeted inhibition of one factor could generally be related to the plasticity and adaptability of signaling networks (41). As previously demonstrated in other malignancies, these mechanisms can contribute to the occurrence of secondary resistance against single agent approaches (41–43). Further analyses are warranted to delineate whether compensatory pathway activation as a means of acquired resistance also relates to our initial observations. So far, our attempts to develop TC1889 cells resistant to PPP have failed (data not shown).

Overall, a concurrent shutdown of multiple oncogenic mechanisms relevant to TEMs, including the parallel inhibition of PI3K/Akt- and MAPK/Erk-signaling has only been observed for Hsp90 inhibition, which was in contrast to all
other single agent approaches tested here. Consequently, acquired resistance against Hsp90 inhibitors is unlikely to develop on the background of a dynamic switching between signaling circuitries. All currently known de novo or acquired resistance mechanisms of cancer cells against Hsp90 inhibitors relate to the chemical structure of geldanamycin analogs (44). Nonquinone Hsp90 inhibitors were not found to share this liability (45–47). The herein observed multimodal antitumor activity of the purine-scaffold Hsp90 inhibitor PI-H71, which has previously been reported to be well-tolerated in vitro (16, 48, 49) may provide a first rational for the initiation of clinical trials with novel Hsp90 inhibitors for individuals with advanced TEMs.

In summary, our approach allowed us to obtain valuable insights into protumorigenic mechanisms involved in an inadequately understood cancer. Strikingly, the findings related to IGF-1R obtained in our in vitro model of thymic carcinomas could be matched by observations from patient-derived tumor samples hence underpinning the potential value of our thymic carcinoma cell line model. Until the development of animal models with which thymic epithelial tumorigenesis can be recapitulated, in vitro studies like the one described here might assist in the identification of potential therapeutic targets and treatment strategies for this peculiar cancer type.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Ms. Eva Eiteneuer and Mr. Rudolf Jung for excellent technical assistance. We thank members of the Breuhahn lab for their valuable support. We are highly indebted to Dr. Josef Högel (University of Ulm) for his expert assistance with statistical analyses.

Grant Support

This work was supported by “Mr. William H. and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research” and “The Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center” to G. Chiosis, by grants from the Deutsche Krebshilfe to M.A. Kern and P. Schirmacher (Ke1076/85), and by grants from the “Forschungsschwerpunktkprogramm des Landes Baden Württemberg” (Kapitel. 1423:ThG 74).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 28, 2010; revised December 1, 2010; accepted December 10, 2010; published online First March 3, 2011.

References

Relevance of Hsp90 and IGF-1R in Thymic Carcinomas

Heat Shock Protein 90-Sheltered Overexpression of Insulin-Like Growth Factor 1 Receptor Contributes to Malignancy of Thymic Epithelial Tumors

Marco Breinig, Philipp Mayer, Andreas Harjung, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-10-1689

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2011/04/14/1078-0432.CCR-10-1689.DC1

Cited articles
This article cites 49 articles, 18 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/17/8/2237.full.html#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
/content/17/8/2237.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubsl@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.