Carbonic Anhydrase IX Promotes Tumor Growth and Necrosis In Vivo and Inhibition Enhances Anti-VEGF Therapy

Alan McIntyre1, Shalini Patiar1, Simon Wigfield1, Ji-liang Li1, Ioanna Ledaki1, Helen Turley1,3, Russell Leek1,3, Cameron Snell1,3, Kevin Gatter1, William S. Sly4, Richard D. Vaughan-Jones2, Pawel Swietach3, and Adrian L. Harris1

Abstract

Purpose: Bevacizumab, an anti-VEGFA antibody, inhibits the developing vasculature of tumors, but resistance is common. Antiangiogenic therapy induces hypoxia and we observed increased expression of hypoxia-regulated genes, including carbonic anhydrase IX (CAIX), in response to bevacizumab treatment in xenografts. CAIX expression correlates with poor prognosis in most tumor types and with worse outcome in bevacizumab-treated patients with metastatic colorectal cancer, malignant astrocytoma, and recurrent malignant glioma.

Experimental Design: We knocked down CAIX expression by short hairpin RNA in a colon cancer (HT29) and a glioblastoma (U87) cell line which have high hypoxic induction of CAIX and overexpressed CA IX in HCT116 cells which has low CAIX. We investigated the effect on growth rate in three-dimensional (3D) culture and in vivo, and examined the effect of CAIX knockdown in combination with bevacizumab.

Results: CAIX expression was associated with increased growth rate in spheroids and in vivo. Surprisingly, CAIX expression was associated with increased necrosis and apoptosis in vivo and in vitro. We found that acidity inhibits CAIX activity over the pH range found in tumors (pK = 6.84), and this may be the mechanism whereby excess acid self-limits the build-up of extracellular acid. Expression of another hypoxia-inducible CA isoform, CAXII, was upregulated in 3D but not two-dimensional culture in response to CAIX knockdown. CAIX knockdown enhanced the effect of bevacizumab treatment, reducing tumor growth rate in vivo.

Conclusion: This work provides evidence that inhibition of the hypoxic adaptation to antiangiogenic therapy enhances bevacizumab treatment and highlights the value of developing small molecules or antibodies which inhibit CAIX for combination therapy. Clin Cancer Res; 18(11); 3100–11. ©2012 AACR.

Introduction

The increased metabolic production, and impaired removal, of CO2 and lactic acid can result in a highly acidic extracellular microenvironment (1, 2). Adaptation to this is crucial for cancer progression (3). Hypoxia-inducible factor (HIF), coordinates a shift in gene expression pattern, as part of the hypoxic response (4, 5). This includes increased expression of extracellular carbonic anhydrases IX (CAIX) and XII (CAXII; ref. 6). CAIX and CAXII expression has been identified in numerous cancer types and are generally associated with hypoxia (7–11). CA9 expression is regulated by HIF-1α where the HRE/HIF-1α-binding site is located at −3 of −10 position in the promoter region of this gene (6, 12). CAIX and CAXII facilitate transmembrane removal of CO2 (a weak acid) by hydrating extracellular CO2 and thereby maintaining a steeper efflux gradient (13). We recently identified a major role for CAIX in regulating intracellular and extracellular pH in spheroids (14). CAIX expression maintained a more alkaline and uniform intracellular pH while producing a more acidic extracellular pH (14). We identified that the majority of cellular acid is excreted across the membrane in the form of CO2 rather than lactic acid (15), highlighting the importance of extracellular CAs in maintaining favorable intracellular pH. The expression of CAIX is restricted in normal adult tissues (16, 17) and disruption of the mouse homolog of CAIX during development resulted in only gastric hyperplasia (18), therefore making it a good therapeutic target. CAIX is...
Translational Relevance

Although antiangiogenic therapy represents an important therapeutic strategy in cancer treatment, resistance is common. We identify increased expression of hypoxia-regulated CAIX in response to bevacizumab in xenografts. CAIX is a marker of poor prognosis in most tumor types and worse outcome in response to bevacizumab treatment. We showed that CAIX expression increased growth rate in xenografts, with increased expression of Ki-67 specifically in hypoxic areas of spheroids. CAIX was also associated with increased necrosis, a poor prognostic marker in many tumor types. We hypothesized that inhibiting this important hypoxia adaptation mechanism for regulating pH stress would sensitize cells to bevacizumab treatment. Indeed, CAIX knockdown or inhibition enhanced antiangiogenic therapy. This work shows the principle of targeting tumor hypoxic response mechanisms in combination with antiangiogenic therapy and highlights CAIX as a therapeutic target alone or in combination with anti-VEGF therapy.

a marker for poor clinical outcome in most cancer types (10, 19–21).

There is evidence of resistance to therapy in most anti-VEGF clinical trials (22, 23). Resistance mechanisms may include vascular regrowth due to additional proangiogenic factors such as Delta-like ligand 1 (Dll1; ref. 24); protection of the tumor vasculature by increasing recruitment of pericytes, which dense cover vessels or proangiogenic mononuclear cells; or through co-opting normal vasculature by increased invasion into local tissues as reviewed by Bergers and Hanahan (25). In addition, antiangiogenic therapies induce hypoxia (26). This is likely to promote selection or adaptation of cells able to proliferate and survive in oxygen- and nutrient-deficient environments. Hypoxic adaptation occurs through HIF-1α stabilization and increased target gene expression. This hypoxic response could provide a further mechanism of resistance enabling tumors to overcome increased hypoxic conditions. CAIX expression was associated with poorer clinical outcome in response to antiangiogenic therapy (bevacizumab) in patients with metastatic colorectal cancer (27), malignant astrocytoma (28), and with worse progression-free survival in recurrent malignant glioma (29). VEGF, the target of bevacizumab and another target gene of HIF-1α, was not associated with worse outcome in these studies (27–29). These data suggest that CAIX may contribute to this angiogenesis-independent mechanism of resistance.

Two recent investigations of the role of CAIX in xenograft growth showed that CAIX knockdown by short hairpin RNA (shRNA) reduced xenograft tumor volume in one colon cancer cell line (30), one mouse breast cancer cell line, and one human breast cancer cell line (31). One of these studies showed upregulated CAXII expression in response to CAIX knockdown (26), where dual knockdown of both CAIX and CAXII reduced xenograft growth further (30). In this study, we constitutively knocked down CAIX expression in HT29 which have high levels of hypoxia-induced CAIX, to enable analysis of CAIX function. Conversely, we over-expressed CA9 in HCT116 which have low levels of hypoxic CAIX and CAXII.

We found that the capacity of CAIX to hydrate CO₂ is negatively affected by acidity, thereby producing a self-limiting mechanism if excess and accumulates. Overexpression of CAIX in HCT116 increased spheroid and xenograft growth rate. CAIX knockdown in HT29 cells reduced spheroid and xenograft growth rate. Surprisingly, CAIX expression increased necrosis in spheroids and xenografts (HT29 and HCT116) and increased markers for apoptosis in spheroids (HT29 and HCT116) and in vivo (HT29). CAIX expression also increased Ki-67 staining, a marker for proliferation (HT29). CAXII expression was upregulated in response to CAIX knockdown in spheroids and xenografts although not in 2-dimensional (2D) culture. We identified increased CA9 expression in response to bevacizumab treatment in U87 (glioblastoma cell line) xenografts. Furthermore, we investigated the role of CAIX in resistance to bevacizumab treatment in HT29 and U87 xenografts. The results show an enhanced effect, significantly reducing growth rate.

Materials and Methods

Cell culture

Cells were maintained in a humidified incubator at 5% CO₂ and 37°C. For hypoxic exposure, cells were grown at 0.1% O₂, 5% CO₂, and 37°C. HCT116 were maintained in McCoy’s 5A while HT29 and U87 were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) both supplemented with 10% FBS. For spheroid culture, aggregation was initiated by resuspending 4 × 10⁶ cells in 250 mL of medium in 1 L spinner flasks (Techne MCS) spun at 40 rpm at 37°C, 5% CO₂ or as described previously (32).

Stable transfection

The following constructs were used to generate stable cell lines: human CA9 cDNA (FLCA9; a gift from Dr. Jaromir Pastorek, Slovak Academy of Science, Bratislava, Slovak Republic) was cloned into pcDNA3.1(+) (Invitrogen). To knockdown CA9 in HT29, the HuSh-29 shRNA targeting CA9 (TR314250) and empty vector (R20003) were purchased from Origene. Cell lines were transfected with FuGENE 6 (Roche) according to manufacturer’s instructions. To knockdown CA9 in U87 a doxycycline inducible shCA9 (V3THS_363219) and shControl (shCTL; RHS4743) vectors were purchased from Thermo Scientific and lentivirus produced by the trans-lenti shRNA packaging kit (TLP4615) and cells transduced according to manufacturers instructions (Thermo Scientific). Cells were grown under selective pressure [HCT116, 0.4 mg/mL G418 (Invitrogen); HT29, 300 ng/mL puromycin; U87, 1 μg/mL puromycin (Invitrogen)] until no mock-transfected cells
remained. Individual clones were isolated with cloning cylinders (Sigma).

Immunoblotting

Cell lysates were separated on 10% SDS-PAGE and transferred to polyvinylidene difluoride membrane. Primary antibodies were used at 1:1,000 unless otherwise stated. These were mouse anti-HIF-1α (BD Transduction Laboratories), mouse anti-CA9 (Gift from J. Pastorek, Institute of Virology, Slovak Republic), goat anti-CA12 (R&D Systems), mouse anti-Na⁺/K⁺-ATPase (1:5,000; Abcam), and mouse anti-β-tubulin (Sigma). Appropriate secondary horseradish peroxidase (HRP)-linked antibodies were used (Dako). Immunoreactivity was detected with chemiluminescence (Amer sham).

Quantitative PCR

RNA extraction and the quantitative PCR protocol have been described previously (33). Primer sequences: CA9 forward, CTGGAAGAATCGCTGAGG; CA9 reverse, TGGAGTAGCCGCTGAAGTC; CA12 forward, GCTCTGACACCGCTICA; CA12 reverse, GGAATAGGCTCAGAATGGACA; glyceraldehyde-3-phosphate dehydrogenase (GAPDH) forward, AGGCAAATCCCAAGCAC; GAPDH reverse, GCCAATTACGGACCAAGAC.

Flow cytometry

Cells were detached and resuspended on ice in 100 μL of PBS, at a concentration of 2 × 10⁶ cells per mL. Ten microliters of FITC Labeled CAIX (R&D systems) or isotype IgG antibody (R&D systems) was added and incubated for 1 hour at 4°C. Cells were washed with PBS and resuspended in 500 μL of PBS. Samples were analyzed by flow cytometry using a FACS C Libur flow cytometer (BD Biosciences) and CellQuest software (BD Biosciences).

CA activity assay

HCT116 cells were harvested to a total cell count of the order 10¹⁰ to 10¹¹ in HEPES-buffered DMEM. Cells were lysed in 20 mmol/L HEPES, 20 mmol/L Mes, protease inhibitor (Roche), 30 mmol/L KCl, 0.5% Triton X, and a pH adjusted to the desired starting point between 6.5 and 8. The membrane fraction was separated from the cytosolic fraction by centrifugation at 100,000 rpm for 40 minutes. The pellet, containing the membrane fraction, was resuspended in fresh lysis buffer. The total CA activity was measured by a kinetic assay (as previously described; ref. 14). The pH sensitivity of CA activity was elucidated by adjusting lysis buffer pH to 6.5, 7.0, 7.5, and 8.0. CA activity was quantified relative to the spontaneous rate measured in lysis buffer only or in extracts treated with the broad spectrum CA inhibitor, acetazolamide (100 μmol/L). The CO₂ hydration rate constant was estimated by fitting experimental pH time courses with model predictions, run for different rate constants. The model consisted of 3 ordinary differential equations for pH, CO₂, and HCO₃⁻ and included pH sensitivity of the CO₂ hydration rate constant. Kinetic data were normalized to the protein content (per 1 mg/mL), measured by the Bradford assay (Biorad). The pH dependence of CA activity was fitted with a Hill equation, featuring the spontaneous hydration rate (k_{spont}), the maximum catalyzed activity (k_{max}), half-maximal pH (pK), and cooperativity (n or Hill number):

\[
\frac{k_{hydration} = k_{spont} + k_{max} \times (10^{-pK})^n}{(10^{-pK})^n + (10^{-pK})^m}
\]

Xenograft studies

Mice were housed at Cancer Research UK Laboratories (Clare Hall) and procedures were carried out under a Home Office license. Cells were hypoxized and washed twice in serum-free medium before inoculation in mice. Six- to 7-week-old female BALB/c nu/nu mice were injected subcutaneously in the lower flank with 100 μL Matrigel (BD Bioscience) and 1 × 10⁶ cells suspended in 100 μL of serum-free medium. Tumor growth was monitored 3 times per week measuring the length (L), width (W), and height (H) of each mouse with calipers. Volumes were calculated from the formula 1/6 × π × L × W × H. When tumors reached 1.44 cm³ the mice were sacrificed by cervical dislocation. Ninety minutes before sacrifice, mice were injected intravenously with 2 mg of pimonidazole (hypoxyprobe-1; Chemicon International) as described previously (24). For bevacizumab treatment mice were injected intraperitoneally every 3 days (10 mg/kg), until sacrifice, once of 2 of 5 mice from any group had xenografts which had reached 150 mm³ in size. If required, doxycycline was given through the feed at 625 mg/kg ad libitum (SDS services) from the start of the experiment.

Immunohistochemistry

Immunohistochemistry was carried out as previously described (24). The following primary antibodies were used at room temperature for 1 hour: CAIX (M75, 1:50); HIF-1 (BD Biosciences; 1:100); pimonidazole (hypoxyprobe-1; Chemicon International; 1:50); CD34 (MCA1825; AbD Serotec; 1:50); cleaved caspase-3 (RnD systems; 1:2,000), CA9 forward, CTTGGAAGAATCGCTGAGG; CA9 reverse, TGGAGTAGCCGCTGAAGTC; glyceraldehyde-3-phosphate dehydrogenase (GAPDH) forward, AGGCAAATCCCAAGCAC; GAPDH reverse, GCCAATTACGGACCAAGAC.

Statistics

Statistical analysis including the Student t test, one-way ANOVA, and linear regression of log transformed growth data were carried out as appropriate with GraphPad Prism 4.0b.
Results

Validation of stable transfectants

HCT116 cells were transfected with the CA9 coding sequence (FLCA9) or empty vector (EV). CAIX was over-expressed relative to empty vector shown by immunoblot and flow cytometry (Fig. 1A).

HT29 was transfected with an shRNA targeting CA9 (shCA9) or empty vector. CAIX knockdown in shCA9 was shown by quantitative PCR and immunoblot compared with empty vector (Fig. 1B). The expression of CA9 in shCA9 was 6% the empty vector levels at 0.1% O2 for 72 hours (***, P < 0.001, n = 3).

Acidity inhibits CAIX activity in vitro in HCT116

HCT116 FLCA9 and empty vector membrane extracts were prepared and tested for CA activity. The subcellular fractionation was assessed by immunoblotting the membrane fraction for Na+/K+-ATPase, a membrane-specific protein (Fig. 1E). Membrane extracts from empty

U87 cells were transduced with an shCA9 or a non-targeting shRNA (shCTL). CA9 knockdown in shCA9 was shown by quantitative PCR (***, P < 0.001, n = 3; Fig. 1C) and by immunoblotting at a range of doxycycline concentrations (Fig. 1D).
vector cells showed hydration at the spontaneous rate, with similar CO₂ hydration rates in the presence of acetazolamide, a CA inhibitor. In FLCA9, CAIX was catalytically active in the membrane fraction and inhibition to basal empty vector levels occurred in the presence of acetazolamide. CA activity was markedly reduced by decreasing pH, with CA activity almost completely inhibited at pH 6.0 and a pKₐ (pH for half-maximum rate) between 6.81 and 6.86 (Fig. 1F). Best-fitting Hill curves to the pH-sensitivity data yielded Hill cooperativity numbers near 2 for full-length CAIX. As a consequence of this, the pH sensitivity of CAIX to pH is steeper than for other CA isoforms (36).

CAIX expression increases growth rate in 3D culture and in vivo

We found a significant increase in growth rate in HCT116 FLCA9 spheroids (***, P < 0.001, n = 3; Fig. 2A) and xenografts (****, P < 0.001, n = 10; Fig. 2B) compared with empty vector.

CAIX knockdown reduced the growth rate of HT29 spheroids (*, P < 0.05, n = 3; Fig. 2C) and xenografts (*, P < 0.05, n = 5; Fig. 2D) compared with empty vector.

CAIX expression promotes necrosis, apoptosis, and proliferation in spheroid culture and in vivo

We characterized the spheroids and xenograft tumors for several immunohistologic markers related to cell survival and angiogenesis.

CAIX expression

In HCT116 spheroids, the percentage of CAIX-positive cells was greater in FLCA9 (95%) than empty vector (5%; ***, P < 0.001, n = 5; Fig. 3A). Similarly in HCT116 xenografts, the percentage of CAIX-positive cells was greater in FLCA9 (FL/1, 55% and FL/3, 75.5%) than empty vector (EV; EV/5, 12.5% and EV/6, 13.5%; ***, P < 0.001, n = 10; Fig. 4A).

In HT29 spheroids, CAIX expression was decreased in shCA9 (2.5%) compared with empty vector (18%; ***, P < 0.001, n = 5; Fig. 3B). The same was true in the xenografts shCA9 (6%) compared with empty vector (17%; ***; P < 0.001, n = 5; Fig. 4B).

Necrosis

In HCT116 spheroids, the proportion of necrosis was higher in FLCA9 (15%) than in empty vector (5%; *, P < 0.01, n = 5; Fig. 3A). The proportion of necrosis was significantly higher in FLCA9 HCT116 xenografts (FL/1, 39.5% and FL/3, 28.6%) than in empty vector (EV/5, 6.9% and EV/6, 12.1%; *, P < 0.05, n = 10; Fig. 4A).

Conversely in the HT29 spheroids and xenografts, the shCA9 had less necrosis (spheroids, 19% and xenografts, 13%) than empty vector [spheroids, 36% and xenografts, 35%; spheroids, ***, P < 0.001, n = 5 (Fig. 3B) and xenografts, *; P < 0.05, n = 5 (Fig. 4B)].

Apoptosis

HCT116 FLCA9 spheroids showed increased apoptosis compared with empty vector as determined by immunostaining for activated caspase-3 (2.9% and 6.0%, respectively; ***, P < 0.001, n = 5; Fig. 3A) although this was not found in the xenografts (Fig. 4A).

Increased apoptosis was found in the HT29 empty vector spheroids and xenografts compared with shCA9 (spheroids, 9% and 5%; ***, P < 0.001, n = 5; Fig. 3B and xenografts, *; P < 0.05, n = 5; Fig. 4B).

Figure 2. CAIX increases growth rate in spheroids and xenografts. A, spheroid growth curves of HCT116 (***, P < 0.001, n = 3). B, xenograft growth curves of HCT116 (***, P < 0.001, n = 5). C, spheroid growth curves of HT29 (*, P < 0.05, n = 3). D, xenograft growth curves of HT29 (*, P < 0.05, n = 5). Error bars represent SD.
Ki-67

In HT29 xenografts, the percentage of Ki-67–positive nuclei was higher in empty vector (89%) than in shCA9 (55%), \(P < 0.001, n = 5; \) Fig. 4B). In HT29 spheroids, Ki-67 positivity was higher in hypoxic areas in empty vector (32%) than in shCA9 (15%), \(P < 0.01, n = 5; \) Fig. 5B). Hypoxic areas were defined by pimonidazole staining. There was no difference in Ki-67 positivity in HCT116, FLCA9 or empty vector spheroids (Fig. 3A), or xenografts (Fig. 4A).

Pimonidazole

Reduced pimonidazole staining was associated with CAIX expression in spheroids, HCT116 FLCA9 (15%) and empty vector (20%), \(*, P < 0.05, n = 5; \) Fig. 3B), HT29 empty vector (32%), and shCA9 (55%), \(***, P < 0.001, n = 5; \) Fig. 3B). This was due to the increase in necrosis in hypoxic areas of CAIX-positive spheroids, which reduced the amount of viable hypoxic tissue. CAIX expression did not effect the distance from the edge of the spheroids that pimonidazole staining began. There was no difference in pimonidazole staining in xenografts in HCT116 (Fig. 4A) or in HIF-1\(\alpha \) staining in HT29 (Fig. 4B).

CD34

CAIX expression did not affect CD34 staining, a marker for blood vessels in xenografts in HCT116 (Fig. 4A) and HT29 (Fig. 4B).

CAIX expression results in more viable tumor cells

CAIX increased growth rate while also increasing necrosis. Therefore, it was unclear whether CAIX expression increased the amount of viable tumor tissue at a given time point. To calculate the volume of the viable tumor, we subtracted the percentage of necrotic tumor (determined by histology, Figs. 3 and 4) from the endpoint volumes of the xenografts and spheroids expressing CAIX. These viable tumor volumes of the CAIX expressors were greater than the volumes of the spheroids and xenografts which lacked CAIX expression at the same time point.
time point. However, the latter were allowed to continue to grow to assess final growth curves. This analysis revealed that the CAIX expressors had increased viable tumor volume in HCT116 xenografts (66% more viable tumor at day 14, $^*/P < 0.01, n = 10$) and spheroids (19% more viable tumor at day 13, $^*/P < 0.01, n = 5$) and HT29 xenografts (52% more tumor tissue at day 20, $^*/P < 0.05, n = 5$) and spheroids (81% more viable tumor at day 16, $^*/P < 0.001, n = 5$; Supplementary Fig. S1).

Although we acknowledge a likely overestimation in the amount of viable tumor in the CAIX-deficient groups (HCT116 empty vector and HT29 shCA9), as necrosis was not subtracted from these volumes, this would only make the results more significant. Necrosis was not subtracted from the CAIX-deficient groups (HCT116 empty vector and HT29 shCA9) because data on the amount of necrosis was only available at the time of sacrifice of these controls, not the earlier date on which the CAIX expressors were ended.

CAIX knockdown increases CAIXII expression in 3D culture and in vivo but not in 2D culture in HT29

In HT29, no effect was identified on CAIXII RNA or protein levels in response to CAIX knockdown in 2D culture (Fig. 1B). In 3-dimensional (3D) culture CAIX knockdown increased CA12 expression at the RNA (by ~2-fold, $^*/P < 0.05, n = 5$; Fig. 5B) and protein level by immunohistochemistry (from 1% to 2% of cells; $^*/P < 0.001, n = 5$; Fig. 5D). In vivo CAIX knockdown did not increase CA12 RNA expression (Fig. 5C) but did increase CAIXII protein expression in shCA9 (5%) compared with empty vector (2%; $^*/P < 0.05, n = 5$; Fig. 5E).

Knockdown of CAIX enhances antiangiogenic therapy reducing growth rate in vivo

We identified that CA9 expression was increased ($^*/P < 0.001, n = 5$) in response to bevacizumab treatment with material from a previous xenograft experiment using, the glioblastoma cell line, U87 (ref. 24; Supplementary Fig. S2). HT29 empty vector and shCA9 were grown as xenografts with and without bevacizumab treatment (Fig. 6A). The shCA9 clone grew more slowly than the empty vector clone as before (75.9% the growth rate of the empty vector; $^*/P < 0.05, n = 5$). Bevacizumab treatment also reduced xenograft growth rate (68% the rate of empty vector control; $^*/P < 0.05, n = 5$). The HT29 shCA9 clones treated with bevacizumab grew significantly more slowly.

Figure 4. CAIX expression is associated with increased necrosis in HCT116 xenografts and increased necrosis, apoptosis, and proliferation in HT29 xenografts. A, representative immunohistochemical images of HCT116 empty vector (EV) and FLCA9 xenografts and bar chart of scoring. CAIX expression and proportion of necrosis were significantly different between empty vector and FLCA9. B, representative immunohistochemical images of HT29 empty vector and shCA9 xenografts and bar chart of scoring. CAIX expression, proportion of necrosis, cleaved caspase-3, and Ki-67 expression were significantly different between empty vector and shCA9. CAIX, HIF-1, cleaved caspase-3, Ki-67, and CD34 expression staining is shown in dark brown. H&E, dark pink denotes viable tissue, the light pink stain denotes necrosis. Error bars represent SD. N denotes areas of necrosis. Arrows point to positive staining. Scale bars represent 200 μm. Ki-67 images have a top right × 20 inset image with scale bars representing 100 μm. ($^*/P < 0.001; ^*/P < 0.05, n = 5$).
than shCA9-untreated xenografts or empty vector bevacizumab-treated xenografts (37% the growth rate of untreated empty vector; \(^*\), \(P < 0.05\), \(n = 5\); Fig. 6A). This was at least an additive reduction in growth rate. shCA9 xenografts had reduced CAIX expression compared with empty vector clones when treated with vehicle (PBS; \(^*\), \(P < 0.01\), \(n = 5\)) and with bevacizumab (\(^{**}\), \(P < 0.001\), \(n = 5\); Supplementary Fig. S3). HT29 cells were also treated with acetazolamide in combination with bevacizumab. Acetazolamide or bevacizumab treatment alone did not significantly reduce growth rate however, both in combination, reduced growth significantly compared with untreated (\(^*\), \(P < 0.05\), \(n = 5\)) or bevacizumab-treated alone (\(^*\), \(P < 0.05\), \(n = 3\); Fig. 6B).

U87 xenografts with doxycycline-inducible shCA9 were treated with bevacizumab. The shCA9 without doxycycline and the shCTL with or without doxycycline xenografts grew at the same rate (Fig. 6C). CA9 knockdown (33% reduction, \(P < 0.05\), \(n = 5\)) or bevacizumab treatment alone (38% reduction, \(P < 0.05\), \(n = 5\)) significantly reduced xenografts growth rate. CA9 knockdown and bevacizumab treatment in combination significantly reduced growth rate further (>50%), more than CA9 knockdown (\(^*\), \(P < 0.05\), \(n = 5\)) or bevacizumab treatment (\(^*\), \(P < 0.05\), \(n = 5\)) alone.

Bevacizumab treatment reduced the number of blood vessels in the HT29 xenografts as determined by CD34 staining [empty vector: \(P < 0.05\), \(n = 5\); shCA9: \(P < 0.05\), \(n = 5\)].
CAIX knockdown enhances bevacizumab treatment in xenografts. A, xenograft growth curves of HT29 clones ± bevacizumab treatment. B, xenograft growth curves of HT29 wt ± acetazolamide (ATZ) ± bevacizumab treatment. C, xenograft growth curves of U87 doxycycline (Dox)-inducible shCTL ± Dox and shCA9 ± Dox xenografts. D, xenograft growth curves of U87 doxycycline (Dox)-inducible shCA9 ± Dox ± bevacizumab. Arrows denote the start of bevacizumab treatment and/or acetazolamide treatment at 150 mm3 xenograft volume. (***, P < 0.001; **, P < 0.01; *, P < 0.05, n = 5).
surprising as we initially expected CAIX to reduce necrosis by improving intracellular pH control. The overall effect of this was increased tumor volume with more viable tumor and more necrosis at the same time point in the CAIX expressors, of both HCT116 and HT29 cell lines. The increase in apoptosis associated with CAIX offers a mechanism to explain the increased pathologic necrosis.

We hypothesize that the necrosis may represent regions where CAIX expression has maintained a high level of proliferation (as shown in Fig. 5A) through the maintenance of a more uniformly alkaline intracellular pH. This would increase metabolic demand and deplete substrates in the hypoxic milieu. We previously identified that necrosis also induces infiltration of macrophages which may contribute to an aggressive tumor phenotype (44, 45) and necrosis is associated with poor prognosis in many cancer types including colorectal cancer (46). So the well-recognized observation of CAIX staining around necrotic areas may reflect a causative role in necrosis.

CAIX expression was associated with Ki-67 positivity in HT29, particularly in the hypoxic areas in HT29 spheroids. This is in agreement with data that CAIX maintains an intracellular environment conducive for growth under hypoxic conditions. CAIX expression increased growth in the HCT116 spheroids and xenografts, however there was no difference in Ki-67 staining. While Ki-67 stains proliferative cells, staining does not relate to the time required for an intermitotic cycle completion (44).

A recent study identified CAXII upregulation in response to CAIX knockdown in 2D culture at the RNA and protein level (30). We have identified CAIX upregulation in response to CAIX knockdown in 2D culture and in vivo, but not in 3D culture. The cause of this difference requires further study, but it may be related to differences in pH or oxygen tension between 2D and 3D culture.

We investigated CAIX knockdown in combination with antiangiogenic therapy (bevacizumab) in 2 tumor types. CAIX was recently associated with poor outcome in patients with metastatic colorectal treated with bevacizumab (27). Here, we show for the first time that CAIX knockdown and bevacizumab treatment was additively reducing xenograft growth rate in the colon adenocarcinoma cell line HT29 and synergistically increased the glioblastoma cell line U87. In addition, the CA inhibitor acetazolamide enhanced bevacizumab treatment in HT29 xenografts. Our results provide experimental evidence that is consistent with previous immunohistologic data (27–29), showing that CAIX is part of a resistance mechanism that enables tumors to adapt to the increased hypoxia induced by bevacizumab treatment. On the basis of these data, detection of CAIX induction levels, possibly detected in blood serum or urine (48), in response to bevacizumab could help in predicting outcome to bevacizumab treatment. This highlights also the general principle of targeting the hypoxia survival mechanisms in combination with bevacizumab treatment, particularly given the chemotherapy and radiotherapy resistance of such hypoxic areas.

The effect of CAIX in knockdown, reducing xenograft tumor growth alone, and at least additively in combination with antiangiogenic therapy, and the association between CAIX expression and increased necrosis, identifying a further mechanism to explain CAIX association with poorer outcome, highlight potential mechanisms by which CAIX inhibitory therapeutics, such as antibodies (49) and small-molecular inhibitors (50), may be used optimally.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors' Contributions

Conception and design: A. McIntyre, S. Wigfield, J.-L. Li, A.L. Harris
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): A. McIntyre, S. Wigfield, J.-L. Li, I. Ledaki, R. Leek, K.C. Gatter, R.D. Vaughan-Jones, P. Swietach
Analysis and interpretation of data (e.g., statistical analysis, bioinformatics, computational analysis): A. McIntyre, S. Wigfield, J.-L. Li, I. Ledaki, R. Leek, C. Snell, K.C. Gatter, P. Swietach, A.L. Harris
Writing, review, and/or revision of the manuscript: A. McIntyre, S. Wigfield, J.-L. Li, R. Leek, K.C. Gatter, W.S. Sly, P. Swietach, A.L. Harris, A. McIntyre, S. Wigfield, J.-L. Li, I. Ledaki, R. Leek, C. Snell, K.C. Gatter, P. Swietach, A.L. Harris
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A. McIntyre, S. Wigfield, H. Turley, R. Leek, K.C. Gatter
Study supervision: A. McIntyre, K.C. Gatter, A.L. Harris
Provided reagent: W.S. Sly

Grant Support

This work was supported by funds from Cancer Research UK, EU Framework 7 Metoxia (to A.L. Harris), The Royal Society, Medical Research Council (to P. Swietach), and NIH grant GM034182 (to W.S. Sly).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received July 20, 2011; revised March 20, 2012; accepted March 29, 2012; published OnlineFirst April 12, 2012.

References

Clinical Cancer Research

23.
24.
25. Bersges G, Hanahan D. Modes of resistance to anti-angiogenic ther-
aply billing for bevacizumab is directly

Published OnlineFirst April 12, 2012; DOI: 10.1158/1078-0432.CCR-11-1877

pression of hypoxia-inducible factors 1alpha and Zalp1ha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyn-

13. Swietach P, Wigfield S, Supuran CT, Harris AL, Vaughan-Jones RD. Cancer-associated, hypoxia-inducible carbonic anhydrase IX facili-

14. Swietach P, Wigfield S, Cobden P, Supuran CT, Harris AL, Vaughan-Jones RD. Tumor-associated carbonic anhydrase 9 spatially regu-
lates intracellular pH in three-dimensional multicellular growths. Bio-

plementary DNA sequence and expression in human and rat aliment-

17. Liao SY, Rodgers WH, Kauderer J, Bon

evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreati

Correction: Carbonic Anhydrase IX Promotes Tumor Growth and Necrosis In Vivo and Inhibition Enhances Anti-VEGF Therapy

In this article (Clin Cancer Res 2012;18:3100–11), which was published in the June 1, 2012, issue of Clinical Cancer Research (1), the colon cancer cell line HT29 EV (empty vector) and shCA9 95 clones were mistakenly identified and are in fact shCA9 and EV clones derived from HCT116, an alternative colon cancer cell line. Short tandem repeat (STR) analysis was performed using the PowerPlex 18 Primer Kit (Promega). Amplicons were separated by capillary electrophoresis on ABI Prism genetic analyzers. An experienced researcher performed the STR analysis. The STR profile of the HT29 clones is more similar to HCT116 and not to HT29, 89% compared with 39%, respectively. The authors regret this error. The change of cell line has only minor effects on the paper as there is no comparison between cell lines and all comparisons are done within cell line pairs. Each of these includes a control compared against the same cells with the expression of CAIX modulated either by overexpression or by shRNA knockdown. In addition now to the CAIX knockdown comparison with EV in HCT116, this paper also utilizes overexpression of CAIX in HCT116 compared against an HCT116 EV control. Differences between the HCT116 EV clones are likely due to clonal variation. The results, therefore, show comparison of overexpression of CAIX against control and CAIX knockdown against control and remain experimentally valid. The original conclusions remain correct.

Reference

Published OnlineFirst February 26, 2014.
doi: 10.1158/1078-0432.CCR-14-0324
©2014 American Association for Cancer Research.
Carbonic Anhydrase IX Promotes Tumor Growth and Necrosis In Vivo and Inhibition Enhances Anti-VEGF Therapy

Alan McIntyre, Shalini Patiar, Simon Wigfield, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-11-1877

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2012/04/12/1078-0432.CCR-11-1877.DC1

Cited articles
This article cites 50 articles, 19 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/18/11/3100.full.html#ref-list-1

Citing articles
This article has been cited by 17 HighWire-hosted articles. Access the articles at:
/content/18/11/3100.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.