BEAMing Up Personalized Medicine: Mutation Detection in Blood

Andrea L. Richardson1,3 and J. Dirk Iglehart2,3

BEAMing is a feasible, accurate, and sensitive method for detection of PIK3CA mutations in circulating tumor DNA in blood. Mutation status of PIK3CA may change between primary tumor and recurrence. The results suggest a new approach for noninvasive determination of current mutation status in patients with metastatic disease. Clin Cancer Res; 18(12); 3209–11. ©2012 AACR.

In this issue of Clinical Cancer Research, Higgins and colleagues report the feasibility and accuracy of PIK3CA mutation detection with the use of free circulating tumor DNA (ctDNA) from peripheral blood samples in a prospective study of patients with metastatic breast cancer (1).

The study uses a recently described mutation detection assay called BEAMing (Beads, Emulsification, Amplification, and Magnetics; Fig. 1), reported to be sensitive and capable of detecting mutations present in 1 in 10,000 DNA molecules (2–4). Higgins and colleagues cite 100% agreement in PIK3CA mutation status determined by BEAMing when it is compared with standard sequencing done on the same tumor samples. More important clinically, there was 100% concordance between mutations detected in paired tumor samples and plasma ctDNA when the samples were obtained from the patient concurrently. The technical feasibility of BEAMing on blood ctDNA is supported by the 100% success in determining the presence or absence of a PIK3CA mutation in all patients enrolled in a prospective study. In contrast, only 85% of the patients in this study had sufficient tissue for analysis.

The number of new targeted anticancer drugs under development and entering into human trials has grown dramatically, and many of these agents are specifically aimed at gene products that bear activating mutations (5). This approach has led to a number of recent successes in the treatment of solid tumors, including drugs targeting the receptor tyrosine kinase in non–small cell lung cancer, to name a few. To ensure that new agents are tested appropriately in the right population and that any potential efficacy is recognized, many early-phase trials attempt to enrich for patients with tumors containing the "presumed" target of the drug being tested. Caution should be taken when deciding the appropriate time during drug development to limit trial entry on the basis of a companion tumor biomarker, including results of a tumor genotype test. In the absence of strong preclinical data showing a tight correlation between a particular biomarker and drug sensitivity, trial eligibility should not be restricted too early (6). For instance, in early-phase trials of inhibitors of the phosphoinositide 3-kinase (PI3K)/mTOR pathway, responses are observed in patients both with and without detected mutations in the presumed target (7). For drugs with a validated role against a targeted mutation, efficient and cost-effective mutational analysis is needed that informs treatment selection. Many cancer centers are developing gene mutation-screening approaches that can be applied to archived formalin-fixed paraffin-embedded tumor samples (8, 9). These centers will undoubtedly encounter the logistical nightmare of identifying which tissue block is most appropriate for tumor DNA analysis, locating the blocks in the pathology archives, transferring the blocks to the correct laboratory for nucleic acid extraction, and reporting out mutational analysis in a way that can be used clinically. When primary tumor blocks cannot be located or tumor content is not adequate, an invasive biopsy procedure may be required to obtain tissue from a patient to determine if the individual is eligible for a particular trial or treatment.

BEAMing ctDNA may provide potential benefits that overcome some of these issues. Obtaining a blood sample is less invasive and risky than biopsy of metastatic lesions. Patients may be monitored for changes in mutation status or mutation burden over time by serial testing of blood during the course of treatment. In the study by Higgins and colleagues, the authors find a difference in PIK3CA mutation status in both directions, between the archived primary tumor and prospectively collected ctDNA in patients with recurrent metastatic disease in up to 27.5% of the cases. All of the changes in PIK3CA mutation status were seen when the recurrence was more than 3 years after the primary diagnosis. Thus, mutation status in the archived tumor sample may not reflect current mutation status in patients.
with recurrent metastatic disease, especially those with a long disease-free interval. The current study reports a non-invasive approach to assess mutation status at the time of tumor recurrence.

With tumor genome sequencing, we are beginning to understand the depth and breadth of intratumor heterogeneity within the primary tumor, between primary tumors and distant metastases, and between different metastatic sites (10). Higgins and colleagues report 2 patients in whom 2 different \( \text{PIK3CA} \) mutations were identified in ctDNA. This finding suggests "convergent evolution," in which different tumor subclones acquire different mutations presumably in the same "driver" gene. A recent study sequenced multiple areas of a renal cell carcinoma and several metastatic sites. The investigators identified 3 different mutations in the gene \( \text{SETD2} \), present in different regions of the tumor (11). The co-occurrence of multiple \( \text{PIK3CA} \) mutations in a breast cancer has also been reported (12). BEAMing mutation detection in free ctDNA may overcome issues of tumor heterogeneity by detection of rare mutations in minor cancer subclones, or in disparate subclones from different metastatic sites, which might not be identified by sequencing from a single site of disease. However, it is not clear how representative ctDNA will be of the various subclones of malignancy present throughout the body. Some subclones may release tumor DNA more readily than others. For instance, ctDNA might be more representative of bone metastasis compared with brain metastasis. Answers to these questions will require future clinical trials.

The BEAMing assay is not full gene or even full exon sequencing and will not identify all mutations in a particular gene. The assay is designed to detect specific commonly observed mutations in "hot spot" locations. For \( \text{PIK3CA} \), such hot spot mutations account for around 80% of all reported mutations. The current study only tested for 4 of the most common hot spot mutations in \( \text{PIK3CA} \). Therefore, a negative result for a BEAMing test cannot be interpreted as an absence of mutation in the gene. This feature is shared with most of the other currently available mutation detection methods being used for clinical mutation screening. The methods we will use in the future for cancer mutation assessment will depend on such factors as cost, breadth of mutation detection, specificity, and sensitivity. This study of the BEAMing technology suggests it may be a useful method for sensitive, but limited, mutation assessment from blood. However, it is not clear how representative ctDNA will be of the various subclones of malignancy present throughout the body. Some subclones may release tumor DNA more readily than others. For instance, ctDNA might be more representative of bone metastasis compared with brain metastasis. Answers to these questions will require future clinical trials.

Figure 1. Mutation detection from blood by BEAMing. Blood samples from patients with metastatic cancer contain free ctDNA released into the blood stream from tumor growing at primary or metastatic sites. Specific point mutations in targetable genes of interest such as \( \text{PIK3CA} \) can be detected in ctDNA using BEAMing technology. ctDNA molecules are loaded onto magnetic beads coated with specific PCR primers for the gene of interest. PCR is done on the beads in an oil and water emulsion (emulsion PCR) to amplify the DNA. Fluorescent-tagged probes specific for either the wild-type sequence or for particular common point mutations are added and hybridize to the amplified DNA. Magnetic flow cytometry of the beads is done to detect the fluorescent tag and quantify the number of beads containing mutated DNA. The results suggest that BEAMing ctDNA in blood plasma is a sensitive and accurate method for relatively noninvasive assessment of current mutation status in patients with metastatic disease.
determination from a blood sample. Additional clinical trials are required to confirm the positive and negative value of a BEAMing ctDNA mutation result for prediction of treatment response.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References
BEAMing Up Personalized Medicine: Mutation Detection in Blood
Andrea L. Richardson and J. Dirk Iglehart

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-12-0871

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2012/06/07/1078-0432.CCR-12-0871.DC1

Cited articles
This article cites 12 articles, 5 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/18/12/3209.full.html#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
/content/18/12/3209.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.