Myeloma-Specific Multiple Peptides Able to Generate Cytotoxic T Lymphocytes: A Potential Therapeutic Application in Multiple Myeloma and Other Plasma Cell Disorders

Jooeun Bae1,3, Robert Smith1,3, John Daley1,3, Naoya Mimura1,3, Yu-Tzu Tai1,3, Kenneth C. Anderson1,3, and Nikhil C. Munshi1,2,3

Abstract

Purpose: The efficacy of peptide vaccines may be enhanced by stimulating immune cells with multiple peptides derived from distinct tumor-associated antigens. We have evaluated the heteroclitic XBP1-US184–192 (YISPWILAV), heteroclitic XBP1-SP 367–375 (YLFPQLISV), native CD138 260–268 (GLVGLIFAV), and native CS1239–247 (SLFVLGLFL) peptides, which have strong HLA-A2 affinity and immunogenicity in combination, for their ability to elicit multiple myeloma antigen–specific responses.

Experimental Design: Multipeptide-specific cytotoxic T lymphocytes (MP-CTL) were generated by the stimulation of CD3+ T lymphocytes from HLA-A2+ individuals with either autologous mature dendritic cells or T2 cells pulsed with a cocktail of these four peptides.

Results: The peptide cocktail did not compromise tumor antigen–specific activity of CTLs. MP-CTLs displayed increased total, effector memory (CCR7–/CD45RO+), and activated (CD69+) CD3+CD8+ T lymphocytes. In addition, MP-CTL showed IFN-γ production, cell proliferation, and cytotoxicity against HLA-A2+ multiple myeloma cells, including cells of HLA-A2+ patients with multiple myeloma. Importantly, MP-CTLs showed specific responses in functional assays to each relevant peptide but not to an irrelevant HLA-A2–specific CMV pp65 (NLVPMVATV) peptide.

Conclusions: These results highlight the potential therapeutic application of vaccination with a cocktail of HLA-A2–specific peptides to induce CTLs with a broad spectrum of immune responses against multiple myeloma antigens.

Introduction

Multiple myeloma is a malignant disorder characterized by a multifocal proliferation and clonal expansion of long-lived plasma cells within the bone marrow, associated with skeletal destruction, serum monoclonal gammopathy, immunosuppression, and end-organ sequelae (1, 2). Despite aggressive chemotherapeutic regimens and novel therapies including immunomodulatory drugs (thalidomide, lenalidomide) and the proteasome inhibitor (bortezomib), development of acquired resistance to these agents is associated with refractory relapsed multiple myeloma (3). Alternatively, active-specific immunotherapy may provide more durable responses through induction of cytotoxic T lymphocytes (CTL) targeting cancer cells (4, 5). Although immunotherapy has shown a therapeutic benefit in cancer (6–8), this option is suboptimal in multiple myeloma and requires further improvement. The major challenges in developing a successful multiple myeloma–specific immunotherapy include heterogeneity of tumor-associated antigens (TAA) expression, frequent mutations of specific TAAs, tumor escape mechanisms, changes in immune cell function, and variability of the human T-cell repertoire. Thus, we hypothesized that use of immunogenic HLA-A2–specific epitopes from multiple TAAs may enhance induction of antigens-specific CTLs targeting malignant plasma cells and associated therapeutic efficacy in HLA-A2+ patients with multiple myeloma.

As target antigens, we selected XBP1 (X-box–binding protein 1), CD138 (syndecan-1), and CS1 (CD2 subset 1, CRACC, SLAMF7, CD319), which are associated with multiple myeloma pathogenesis and are highly expressed on the tumor cells. First, we propose XBP1 as an attractive therapeutic target antigen as XBP1 is a basic leucine zipper–containing transcription factor, which is required for the terminal differentiation of B lymphocytes to plasma cells and is uniformly expressed in cells and cell lines of all patients with multiple myeloma (9, 10). This antigen has...
Translational Relevance
In these studies, we provide evidence that a cocktail of four HLA-A2–specific peptides derived from the XBP1-unspliced, XBP1-spliced, CD138, and CS1 antigens induces multipeptide-specific cytotoxic T lymphocytes (CTL) with a characteristic phenotypic profile enriched for CD8+ effector memory T cells and distinct functional immunogenic properties against HLA-A2+ multiple myeloma cells. These results suggest the potential therapeutic application of this cocktail of peptides to induce CTLs with a broad spectrum of immune responses against antigens associated with multiple myeloma pathogenesis. This proposed multipeptide vaccine therapy might provide for targeted immunotherapy, alone or with optimal adjuvants and/or combinatorial drug therapies, to improve outcome in patients with plasma cell–related disorders.

been implicated in the proliferation of malignant plasma cells and is differentially expressed between normal plasma cells and plasma cells from patients’ with monoclonal gammopathy of undetermined significance (MGUS) or multiple myeloma (11, 12). High amounts of immunoglobulin produced by plasma cells evoke estrogen receptor (ER) stress, which in turn activates IRE1-mediated XBP1 expression and subsequently mRNA splicing during plasma cell differentiation (10, 13, 14). As a consequence, the relative mRNA expression levels of spliced XBP1 compared with unspliced XBP1 are higher in multiple myeloma than in normal plasma cells (9), making XBP1 as a potential therapeutic target. The second potential target antigen we propose for the development of multiple myeloma–specific immunotherapy is CD138, a transmembrane heparan sulfate–bearing proteoglycan expressed by most multiple myeloma cells. CD138 is critical for the growth of tumor cells by providing CD138 on malignant plasma cells to prevent or reduce high levels of syndecan-1 in the serum, an indicator of poor prognosis in multiple myeloma (17–19), may have a direct in vivo function. The multiple myeloma cell lines, McCAR, MM1S, and U266, were obtained from American Type Culture Collection. The T2 cell line, a human B- and T-cell hybrid expressing HLA-A2 molecules, was provided by Dr. J. Mollendrem (University of Texas MD Anderson Cancer Center, Houston, TX). All cell lines were cultured in RPMI-1640 medium (Gibco-Life Technologies) supplemented with 10% fetal calf serum (FCS; BioWhittaker), 100 IU/mL penicillin, and 100 μg/mL streptomycin (Gibco-Life Technologies).

Materials and Methods
Cell lines
The multiple myeloma cell lines, McCAR, MM1S, and U266, were obtained from American Type Culture Collection. The T2 cell line, a human B- and T-cell hybrid expressing HLA-A2 molecules, was provided by Dr. J. Mollendrem (University of Texas MD Anderson Cancer Center, Houston, TX). All cell lines were cultured in RPMI-1640 medium (Gibco-Life Technologies) supplemented with 10% fetal calf serum (FCS; BioWhittaker), 100 IU/mL penicillin, and 100 μg/mL streptomycin (Gibco-Life Technologies).

Reagents
Mouse anti-human CD3, CD4, CD8, CCR7, CD45RO, CD69, CD107a, IFN-γ, and HLA-A2 monoclonal antibodies (mAb) conjugated with fluorescein isothiocyanate (FITC), phycoerythrin (PE), PerCP, PerCP-Cy5.5, allophycocyanin (APC), Pacific Blue, APC-H7, or PE-Cy7 were purchased from Becton Dickinson (BD)/Pharminen or BD/Biosciences. Recombinant human interleukin (IL)-2, IL-4, IFN-α, and TNF-α were purchased from R&D Systems, and granulocyte macrophage colony-stimulating factor (GM-CSF) was obtained from Immunoex.

Synthetic peptides
Heteroclitic XBP1-US184–192 (YISPWILAV), heteroclitic XBP1-SP367–375 (YLFPQLISV), native CD138260–268 (GLVGLIFAV), and native CS1239–247 (SLFVLGLFL) peptides were derived from XBP1-unspliced (US), XBP1-spliced (SP), CD138, and CS1 antigens, respectively. Influenza virus matrix protein mAb (GILGIVFTL) and CMV pp65 (NLVPMVATV) were selected as HLA-A2–specific control peptides. All peptides were synthesized by standard fmc (9-fluorenylmethyl-oxycarbonyl) chemistry, purified to...
more than 90% using reverse-phase chromatography and validated by mass spectrometry for molecular weight (biosynthesis). Lyophilized peptides were dissolved in dimethyl sulfoxide (DMSO; Sigma), diluted in AIM-V medium (Gibco-Life Technologies), and stored at –140°C.

Peptide-binding assay

A cocktail of 4 HLA-A2 peptides, including heteroclitic XBP1-US184–192, heteroclitic XBP1-SP367–375, CD138260–268, and CS1239–247, was evaluated for binding affinity using the T2 cell line, as described elsewhere (28). In brief, T2 cells were pulsed overnight with the multipeptide cocktail (25 μg/mL) plus 3 μg/mL human β2-microglobulin (Sigma). Following incubation, cells were stained with anti-human HLA-A2-FTTC mAb and analyzed using a FACSCanto II flow cytometer (Becton Dickinson).

Peptide stability assay

The multipeptide cocktail was examined for HLA-A2 stability, as described elsewhere (29). Briefly, T2 cells were pulsed overnight with the multipeptide cocktail (25 μg/mL) plus 3 μg/mL human β2-microglobulin, and the peptide/HLA-A2 complex stability was measured at 0, 2, 4, 6 and 14 hours after brefeldin A (BFA) treatment by staining cells with mouse anti-human HLA-A2-FTTC mAb and flow cytometric analysis.

Generation of monocyte-derived dendritic cells

Monocyte-derived dendritic cells were generated as described elsewhere (30), with minor modifications. Briefly, monocytes isolated from peripheral blood mononuclear cells (PBMC) were cultured for 7 days in the presence of 1,000 U/mL GM-CSF and 1,000 U/mL IL-4 in RPMI-1640 medium (Gibco-Life Technologies) supplemented with 10% FCS. Fresh media plus GM-CSF and IL-4 was added to the cultures every other day. Mature dendritic cells (mDC) were obtained by adding 1,000 U/mL IFN-α plus 10 ng/mL TNF-α, along with fresh GM-CSF and IL-4 in 10% FCS-RPMI, on day 7 and then incubating for an additional 3 days.

Isolation of CD3⁺ **T cells from normal PBMCs**

CD3⁺ T cells were obtained from HLA-A2⁺ normal donors by negative selection using the EasySep magnet and RoboSep from StemCell Technologies. In brief, PBMCs were depleted of B cells, monocytes, natural killer (NK) cells, erythrocyte cells, platelets, and basophils using a cocktail of bispecific tetrameric antibody complexes. After the removal of magnetically labeled unwanted cells, the enriched CD3⁺ T cells were washed and examined by flow cytometry.

Isolation of primary CD138⁺ **cells from bone marrow mononuclear cells of multiple myeloma patients**

Primary CD138⁺ cells were isolated from bone marrow mononuclear cells obtained from both HLA-A2⁺ and HLA-A2⁻ patients with multiple myeloma using RoboSep CD138-positive immunomagnetic selection technology (StemCell Technologies), after appropriate informed consent.

Induction of MP-CTL

MP-CTLs were generated ex vivo by repeated multipeptide stimulation of CD3⁺ T lymphocytes obtained from HLA-A2⁺ normal donors. In brief, antigen-presenting cells (APCs; mDC or T2 cells) pulsed overnight with a cocktail of heteroclitic XBP1-US184–192, heteroclitic XBP1-SP367–375, CD138260–268, and CS1239–247 peptides (25 μg/mL total; 6.25 μg/mL/peptide) were irradiated (20 Gy) and then used to prime autologous CD3⁺ T cells at a 1:20 APCs/MP-to-CD3⁺ T-cell ratio in AIM-V medium supplemented with 10% human AB serum. Cultures were restimulated every 7 days with irradiated APCs/MP for a total of 4 cycles to generate MP-CTLs. IL-2 (50 U/mL) was added to the cultures 2 days after the second stimulation and was replenished until the culture was completed.

Phenotypic analysis of MP-CTL and identification of T cell subtypes

One week after the fourth stimulation, MP-CTLs and control T cells were evaluated for total CD3⁺ CD8⁺ T cells or naive, effector memory, and activated CD3⁺ CD8⁺ T cells by staining with CD3-PacBlue, CD8-APC-H7, CCR7-PE-Cy7, CD45RO-PE, and/or CD69-PerCP mAbs. After staining, the cells were washed, fixed in 2% paraformaldehyde PBS, and analyzed by flow cytometry.

CD107a upregulation and intracellular IFN-γ production

CD107a degranulation and IFN-γ-producing CD8⁺ CTLs were identified by cell surface marker and intracellular cytokine staining by flow cytometry. Briefly, MP-CTLs or control T cells were stimulated with HLA-A2⁺ McCAR or U266 multiple myeloma cell lines or with K562-A0201 cells pulsed with respective peptide in the presence of CD107a mAb. After 1-hour incubation, CD28/CD49d mAb (BD), as well as protein transport inhibitors, BFA (BD) and monensin (BD), were added to the cultures and incubated for an additional 5 hours. As a baseline control, MP-CTLs were cultured in media with CD28/CD49d mAb, BFA, and monensin alone. After incubation, cells were stained with CD3-PacBlue and CD8-APC-H7, CCR7-PE-Cy7, CD45RO-PE, and/or CD69-PerCP anti-human mAbs, followed by fixation/permeabilization (Cytofix/Cytoperm, BD) and staining with anti-IFN-γ FITC mAb to detect intracellular cytokine production. Finally, cells were washed with Perm/Wash solution (BD), fixed in 2% paraformaldehyde, and analyzed by flow cytometry.

Cell proliferation by carboxy fluorescein succinimidyl ester labeling

Proliferation of MP-CTLs was evaluated using carboxy fluorescein succinimidyl ester (CFSE), as described elsewhere (31) with minor modifications. In brief, MP-CTLs labeled with CFSE (Molecular Probes) were incubated with stimulator cells (from cells or cell lines of HLA-A2⁺ CD138⁺...
patients with multiple myeloma. As a control, MP-CTLs labeled were cultured in media alone. After a 5-day incubation, cells were harvested and stained with anti-CD3 and anti-CD8 mAbs and evaluated by flow cytometry to measure proliferation.

Cytotoxicity by calcein release assay

The cytotoxic activity of MP-CTLs was measured using a calcein release cytotoxicity assay, as described previously (32) with minor modifications. Briefly, target cells were labeled with calcein-AM (Molecular Probes) and incubated for 4 hours with MP-CTLs at various effector:target cell ratios in 96-well, U-bottom microtiter plates (triplicate wells/sample). The fluorescence of each supernatant was monitored at 490 nm excitation and 520 nm emission wavelengths using a VICTOR®-1420 multilabel counter (PerkinElmer). Cytotoxicity of CTLs was calculated as follows: % specific lysis = ([experimental release – spontaneous release]/[maximum release – spontaneous release]).

Statistical analysis

Results are presented as mean ± SE. Groups were compared using unpaired Student t test. Differences were considered significant when P < 0.05.

Results

A multipeptide cocktail of XBP1-unspliced, XBP1-spliced, CD138, and CS1-specific peptides display high HLA-A2 binding affinity and stability

The 4 immunogenic peptides including heteroclitic XBP1-US164–192 (YISPWILAV), heteroclitic XBP1-SP367–375 (YLFPQLISV), native CD138260–268 (GLVGLIFAV), and native CS1239–247 (SLFVLGLFL; Table 1) have been individually shown to induce an immune response. Here, we have evaluated the peptides as a multipeptide cocktail. The HLA-A2–specific binding and stability of the multipeptide cocktail was evaluated by measuring upregulation of HLA-A2 molecules on T2 cells by flow cytometry and compared with affinity of the HLA-A2–specific control influenza virus matrix protein (IVMP)58–66 peptide. The peptide-binding assay showed an increase in HLA-A2 mean fluorescence intensity (MFI) on T2 cells in a dose-dependent manner (0–50 μg/mL), reaching a plateau at a total peptide concentration of 25 μg/mL (6.25 μg/mL/peptide; MFI: 10,889.33 ± 2,888.48; Fig. 1A). Therefore, a total multipeptide concentration of 25 μg/mL (6.25 μg/mL/peptide) was selected for evaluation of HLA-A2–binding stability.

In the peptide-binding stability assay, T2 cells were pulsed overnight with 25 μg/mL of the multipeptide cocktail, washed to remove unbound peptides, and then treated with BFA to block cell surface expression of newly synthesized HLA-A2 molecules. T2 cells were then evaluated for their HLA-A2 MFI at 0, 2, 4, 6, or 14 hours post-BFA treatments. Flow cytometric analysis show that stability of the multipeptide cocktail was highly maintained up to 6 hours post-BFA treatment (MFI: 0 hour = 9,726.00 ± 1,373.24, 2 hours = 9,132.33 ± 1,435.51, 4 hours = 9,125.33 ± 1,130.62, 6 hours = 8,818.67 ± 413.50; Fig. 1B). At 14 hours post-BFA treatment, HLA-A2–specific affinity of multipeptide cocktail was decreased but was still greater (MFI: 6,793.67 ± 1,617.01) than affinity of the control IVMP58–66 peptide (MFI: 4,921.33 ± 1,428.16). On the basis of these results, we confirmed a high level of HLA-A2–specific affinity and stability of the multipeptide cocktail and then proceeded to further evaluate the cocktail for its immunogenicity and ability to induce multiple myeloma–specific CTLs.

Table 1. Native and heteroclitic epitopes evaluated as a multipeptide for targeting MM

<table>
<thead>
<tr>
<th>TAA</th>
<th>Identification</th>
<th>Type</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>XBP1-unspliced</td>
<td>XBP1164–192</td>
<td>Heteroclitic</td>
<td>YISPWILAV</td>
</tr>
<tr>
<td>XBP1-spliced</td>
<td>XBP1-SP367–375</td>
<td>Heteroclitic</td>
<td>YLFQPLISV</td>
</tr>
<tr>
<td>CD138</td>
<td>CD138260–268</td>
<td>Native</td>
<td>GLVGLIFAV</td>
</tr>
<tr>
<td>CS1</td>
<td>CS1239–247</td>
<td>Native</td>
<td>SLFVLGLFL</td>
</tr>
</tbody>
</table>
Patient-stimulated MP-CTLs produce IFN-γ in response to HLA-A2+ myeloma cells

MP-CTLs include a high proportion of CD8+ CTL producing IFN-γ in response to HLA-A2+ multiple myeloma cells

Figure 1. HLA-A2–specific binding affinities and stability of XBP1-US, XBP1-SP, CD138, and CS1 multipeptide cocktail. A, HLA-A2-binding capacity of multipeptide cocktail. T2 cells were pulsed overnight with a cocktail of heteroclitic XBP1-US1-192 (YSPWILAV), heteroclitic XBP1-SP127-375 (YLFPQLISV), native CD138230-239 (GLVGLIFAV), and native CS1239-247 (SLFVGLFL) peptides in serum-free AIM-V media at total peptide concentrations ranging from 0 to 50 μg/mL. Influenza virus matrix protein56-65 (IVMP56-65) and GILGFVFTL) was used as an HLA-A2–specific positive control peptide. Following overnight peptide pulsing, T2 cells were harvested, washed, and stained with HLA-A2-FITC mAb for flow cytometric analyses. HLA-A2 specificity of the MP cocktail is shown as an increase in HLA-A2 MFI on T2 cells. The HLA-A2 binding was dose-dependent with the MFI plateau observed at the concentration of 25 μg/mL. The values represent the mean MFI ± SE of 3 separate experiments. B, HLA-A2 stability of MP cocktail. The MP cocktail (25 μg/mL) was added to T2 cells and incubated with BFA to block the protein transport of newly synthesized HLA-A2 molecules. The binding stability of MP was measured on T2 cells at 0, 2, 4, 6, and 14 hours post-BFA treatment and analyzed for their cytotoxic activity against cells or cell lines of HLA-A2+ patients with multiple myeloma (Fig. 5). The cells of HLA-A2+ patients with multiple myeloma were effectively lysed by MP-CTLs at various effector:target cell ratios (donor A MP-CTL: patient #1: 0%–48%, patient #2: 9%–42%; donor B MP-CTL: patient #1: 0%–45%, patient #2: 1%–35%). In addition, MP-CTLs similarly show a high level of cytotoxicity against BME-22 (donor A MP-CTL: 8%–36%; donor B MP-CTL: 0%–74%) cell line. In a separate experiment, MP-CTLs were cultured in media alone for 6 hours and analyzed using a CFSE proliferation assay. MP-CTLs also proliferated in response to MCCAR (proliferating cells: 57%) and U266 (proliferating cells: 49%) multiple myeloma cell lines (Fig. 3). MP-CTLs also proliferated in response to CD138+ MM cells from 3 HLA-A2+ patients with multiple myeloma (proliferating cells: 33%, 29%, or 41%). In addition, MP-CTLs also proliferated in response to CD138+ MM cells from 3 HLA-A2+ patients with multiple myeloma (proliferating cells: 33%, 29%, or 41%). In addition, MP-CTLs also proliferated in response to MCCAR (proliferating cells: 57%) and U266 (proliferating cells: 49%) multiple myeloma cell lines. MP-CTLs cultured in media alone displayed only a low-level (5%) proliferation. Taken together, these data show the proliferation of MP-CTLs in response to either cells or cell lines of HLA-A2+ patients with multiple myeloma.

MP-CTLs induce specific lysis of HLA-A2+ MM cells

Next, we evaluated the cytotoxic activity of MP-CTLs using a 4-hour calcine release assay. MP-CTLs generated from different HLA-A2+ donors’ CD3+ T cells were evaluated for their cytotoxic activity against cells or cell lines of HLA-A2+ patients with multiple myeloma (Fig. 5). The cells of HLA-A2+ patients with multiple myeloma were effectively lysed by MP-CTLs at various effector:target cell ratios (donor A MP-CTL: patient #1: 0%–48%, patient #2: 9%–42%; donor B MP-CTL: patient #1: 0%–45%, patient #2: 1%–35%). In addition, MP-CTLs similarly show a high level of cytotoxicity against MCCAR cells (donor A MP-CTL: 8%–36%; donor B MP-CTL: 0%–74%) and U266 (donor A MP-CTL: 0%–83%, donor B MP-CTL: 2%–43%) multiple myeloma cell lines. Compared with MP-CTLs, control CD3+ T cells from the same donors showed a significantly lower level of cytotoxicity against cells or cell lines of HLA-A2+ patients with multiple myeloma. In addition, MP-CTLs did not lyse HMC-mismatched tumor cells, including the HLA-A2+ multiple myeloma cell line (MM1S) or HLA-A2− myeloma cell line.
multiple myeloma cells from 3 different patients (data not shown). Taken together, these data confirm the HLA-A2–restricted cytotoxic activity of MP-CTLs against HLA-A2+ multiple myeloma cells.

MP-CTLs generate individual immune responses to each relevant peptide

Finally, we evaluated whether CTLs generated using multipeptide cocktail respond to each of the peptides individually. MP-CTLs were analyzed for their ability to degranulate (CD107a expression) and produce intracellular IFN-γ in response to heteroclitic XBP1-US184–192 (YISPWI-LAV), heteroclitic XBP1-SP367–375 (YLFPQLISV), native CD138260–268 (GLVGLIFAV), and native CS1239–247 (SLFVLGLFL) peptides. The analyses were conducted by measuring the specific MP-CTL response to K562-A’0201 cells (33) pulsed with the respective peptide. As controls, we used non–peptide-pulsed K562-A’0201 cells or K562-A’0201 cells pulsed with an irrelevant HLA-A2–specific CMV pp65 (NLVPMVATV) peptide. Figure 6A shows a representative flow cytometric analysis of the peptide-specific response from donor A MP-CTLs. The MP-CTLs showed a high proportion of CD107a+IFN-γ+/CD3+CD8+ T cells (gated Q2) in response to XBP1-US (2.7%), CD138 (1.7%), and CS1 (12.5%) peptides but not to XBP1-SP (0.2%) peptide. No response was observed to the irrelevant CMV pp65 peptide (0.2%) or to the nonpeptide (0.2%) controls. Further analyses were conducted using MP-CTLs generated from 3 additional HLA-A2+ donors (Donors B, C, and D) for their CD107a degranulation or IFN-γ production in

Figure 2. Distinct phenotype of MP-CTLs. MP-CTLs were generated from HLA-A2+ normal donors’ CD3+ T cells by repeated stimulation with irradiated APCs pulsed with a cocktail of peptides (25 μg/mL; 6.25 μg/peptide) derived from XBP1-US, XBP1-SP, CD138, and CS1 antigen. One week after their fourth stimulation, the MP-CTLs were evaluated for their phenotypic profile by flow cytometry. The MP-CTL obtained from 2 different donors (donors A and B) showed a higher percentage of total CD8+ T cells than the control unstimulated CD3+T cells. The MP-CTLs were further characterized as having higher frequencies of effector memory cells (CD45RO+), higher activated (CD69+) cells, and a corresponding lower percentage of naïve cells (CD45RO–CD62L+) within the CD3+CD8+ T-cell subset.

Figure 3. IFN-γ production by MP-CTLs. Intracellular IFN-γ production was measured by flow cytometry after stimulation of the MP-CTLs with HLA-A2+ multiple myeloma cell lines. The effector memory (CD45RO+/CCR7+) and activated (CD69+) CD8+ T cells within the MP-CTL showed increased IFN-γ production (% IFN-γ+ cells) in response to the HLA-A2+ multiple myeloma cell lines (McCAR, U266). In contrast, control T cells did not produce IFN-γ in response to the multiple myeloma cell lines.

Figure 4. Effector memory (CD45RO+) and activated (CD69+) CD8+ T-cell responses to heteroclitic (XBP1-US184–192, YISPWI-LAV), heteroclitic (XBP1-SP367–375, YLFPQLISV), native (CD138260–268, GLVGLIFAV), and native (CS1239–247, SLFVLGLFL) peptides. The analyses were conducted by measuring the specific MP-CTL response to K562-A’0201 cells (33) pulsed with the respective peptide. As controls, we used non–peptide-pulsed K562-A’0201 cells or K562-A’0201 cells pulsed with an irrelevant HLA-A2–specific CMV pp65 (NLVPMVATV) peptide. Figure 6A shows a representative flow cytometric analysis of the peptide-specific response from donor A MP-CTLs. The MP-CTLs showed a high proportion of CD107a+IFN-γ+/CD3+CD8+ T cells (gated Q2) in response to XBP1-US (2.7%), CD138 (1.7%), and CS1 (12.5%) peptides but not to XBP1-SP (0.2%) peptide. No response was observed to the irrelevant CMV pp65 peptide (0.2%) or to the nonpeptide (0.2%) controls. Further analyses were conducted using MP-CTLs generated from 3 additional HLA-A2+ donors (Donors B, C, and D) for their CD107a degranulation or IFN-γ production in
response to K562-A’0201 cells presenting each individual peptide (Fig. 6B). Specific responses were detected in MP-CTLs generated from each of these donors against all the relevant peptides but not to irrelevant HLA-A2–specific CMV pp65 peptide. However, variations were detected among the CTLs generated from different individuals in the level of specific response in degranulation and IFN-γ production to each relevant peptide. Therefore, these studies indicate that the multipeptide cocktail including XBP1-US, XBP1-SP, CD138, and CS1 epitopes can induce response to respective peptides, with specific CTLs targeting multiple antigens on HLA-A2+ multiple myeloma cells.

Discussion

The discovery and application of novel immunogenic peptides offers a potentially new immunotherapeutic option, either as a vaccine or cellular therapy. The XBP1,
Figure 6. Peptide-specific activities of MP-CTLs in degranulation and IFN-γ production. MP-CTLs generated with a cocktail of XBP1-US, XBP1-SP, CD138, and CS1 peptides were evaluated for their respective peptide-specific responses. Specific activities of MP-CTLs were measured in response to the individual peptide-pulsed APCs by detecting the increase of CD107a+ T cells within MP-CTLs generated from a single donor (donor A). The MP-CTL showed peptide-specific responses to the XBP1-US, CD138, or CS1 peptide presented in K562-A*0201 cells. In contrast, the MP-CTL did not show specific responses to the XBP1-SP, irrelevant HLA-A2-specific CMV peptides (NLVPVMATV) or no peptide-pulsed K562-A*0201 cells. B, peptide-specific activities of MP-CTLs generated from donors B, C, and D. Peptide-specific CD107a+ degranulation and IFN-γ production was further investigated in MP-CTLs generated from 3 additional HLA-A2+ donors (donors B, C, and D). The MP-CTLs generated from each of these donors showed specific responses to all the relevant XBP1-US, XBP1-SP, CD138, and CS1 peptides. Their responses show an increase in the frequency of total CD107a upregulation (top) and IFN-γ production (bottom).

CD138 and CS1 antigens have been implicated in multiple myeloma pathogenesis, and all are more highly expressed on cells of patients with multiple myeloma than on normal plasma cells. Indeed, the therapeutic potential of targeting these antigens has been evaluated with promising preclinical and clinical studies (34, 35). However, immunologic tolerance to antigens as self-proteins may inhibit development of an effective immune response and therefore be detrimental to developing an effective therapeutic strategy (36–38). To bypass tolerance and enhance peptide immunogenicity, we designed heteroclitic peptides YISPFLILAV or YLFQQLISV from nonspliced or spliced XBP1 protein, respectively, which have higher HLA-A2 affinities than their originally identified native XBP1-US184–192 (NISPWILAV) or XBP1-SP257–275 (EFPQLISV) peptides (25). In previous studies, we and others have shown that heteroclitic peptides can generate functional CTLs against tumor cells with cross-reactivity to their corresponding native peptides, suggesting their clinical applicability (29, 39, 40). In addition, the native peptides from CD138 and CS1 antigens, CD138260–268 (GLVGLIFAV) and CS1239–247 (SLFVLGLFL), were highly specific to the HLA-A2 locus, maintained a strong MHC/peptide stability complex, and induced functional anti–multiple myeloma CTLs (26, 27). Therefore, the CD138260–268 and CS1239–247 peptides were used in their native form and were not further modified. These peptides, especially in combination, may be useful for the development of a vaccine strategy to treat multiple myeloma–related diseases.

In the current studies, we evaluated the ability of a cocktail of these 4 HLA-A2 peptides to induce specific CTL responses against the respective multiple myeloma target antigens. We hypothesized that a multi-epitope vaccine would allow for a wider repertoire of tumor-associated peptides to be presented, thereby inducing a more robust immune response against tumor cells than vaccines specific for
to a single antigen, which may lose activity following specific antigen mutation or deletion on tumor cells. Moreover, this approach can also overcome the variation or absence of the appropriate T-cell repertoire, which can result in the lack of peptide-specific CTL induction to a single antigen-based vaccine. Therefore, we propose that a cocktail of immunogenic peptides capable of generating CTLs to multiple myeloma-associated antigens represents a more promising immunotherapeutic strategy.

We recognize the potential concern of epitope dominance and competition among these peptides specific to the same HLA molecules, which may impair or block the full spectrum of immune response against all of the target antigens (41). When using a mixture of peptides specific to the same MHC locus, a specific concern arises whether the lower affinity peptides will effectively bind and present in MHC molecules to induce T-cell responses in the presence of higher affinity peptides. In clinical trials of multipeptide vaccines, each peptide has been administered at a different injection site to avoid this possibility of competition among peptides (42–44). However, this requirement might limit feasibility of this approach, as many novel peptides specific to TAAs have been defined. Here, we investigated whether the 4 peptides selected can be applied in combination to induce MP-CTLs. In these studies, we generated MP-CTLs ex vivo by stimulating HLA-A2+ normal donors’ CD3+ T cells with APCs pulsed with a cocktail of the 4 immunogenic peptides. To avoid potential competition in HLA-A2 affinity among the specific peptides, we avoided excess concentrations of an individual peptide by using a minimum concentration of multipeptide (25 μg/mL total; 6.25 μg/peptide) to pulse the APCs during CTL generation.

Our data showed that simultaneous pulsing with a 4-peptide cocktail did not compromise the functional immune activity of resultant MP-CTLs. Importantly, MP-CTLs showed specific functional activities, IFN-γ production, CD107 degranulation, and cell proliferation triggered by each relevant peptide but not to an irrelevant peptide, which bind to the same MHC class I molecules, which may impair or block the full spectrum of immune response against all of the target antigens (41). When using a mixture of peptides specific to the same MHC class I molecules, does not compromise immunogenicity of lower affinity peptides.

These data suggest that immunogenic peptides administered in a mixture may generate functional CTLs in patients. In addition, several reports using a mixture of peptides with different HLA-A2 affinities further support our observation. For example, a prior study showed that CTLs generated by ex vivo stimulation with a peptide mixture show reactivity to 3 different peptides at a level comparable with that obtained by stimulation with each individual peptide separately (45). This study also showed that CTL recognition of lower affinity peptides specific to HLA-A2 molecules was maintained when target cells were copulsed with higher affinity peptides. Other investigators have also reported that competition among peptides for MHC binding does not significantly inhibit T-cell induction or activities (46, 47). Our in vitro studies used normal donor T cells and dendritic cells to optimize vaccine development. Importantly, defects in both T cells and dendritic cells have been described in patients with multiple myeloma. Thus, we are currently in the evaluation of the multipeptide for their ability to elicit tumor-specific immune response using patients’ T cells and dendritic cells. In addition, their functional capacity to respond to multipeptide vaccine, as well as its clinical relevance, will be assessed in a clinical trial.

Other considerations that influence the success of vaccine trials include selection of an optimal adjuvant, inclusion of MHC class II–specific peptides, selection of the appropriate patient population, as well as concomitant chemotherapy, mAb therapy, or immunomodulatory drug therapy. For example, a previous phase III randomized trial did not show a superior clinical response to the gp100 peptide vaccine combined with ipilimumab (anti-CTLA4) compared with ipilimumab alone (48). However, the gp100 peptide vaccine showed an improved clinical response in a more recent phase III trial reported, when it was co-administered with IL-2 (8). This difference both highlights the need for further validation of these results and suggests important differences in adjuvant therapies administered with the vaccine. Besides anti-CTLA4 and IL-2, the efficacy of other adjuvants such as CpG, GM-CSF, IFN-α, and montanide ISA51 has been reported in various studies (7, 49–51). Importantly, combination studies with vaccines must be designed very carefully, as patients may already have received chemotherapy with long-lasting negative effects on their immune systems, thus weakening the potential benefit of a therapeutic vaccine. In our separate studies, we have shown that conventional chemotherapy used in multiple myeloma is detrimental to the function of immune-mediated responses (52, 53). However, our and other recent studies have shown that the immunomodulatory agent lenalidomide increases immune stimulatory properties and inhibits regulatory T cells in multiple myeloma (54); thus, the efficacy of a vaccine may be enhanced when used in combination with lenalidomide. In addition, induction of CD4+ T cell response using MHC class II peptides may be critical for establishing more long-term immunity to the HLA-A2–specific peptides (55, 56).

In summary, we have developed an immunotherapy targeting multiple TAAs using a cocktail comprised of XBP1-US, XBP1-SP, CD138, and CS1–specific epitopes, which may be applied in multiple myeloma and other plasma cell disorders. This proposed novel vaccine-based therapy will first be evaluated as an individual immunotherapy but may require additional incorporation of optimal adjuvants, MHC class II peptides, and/or immunomodulatory agents in suitable patient populations.
Disclosure of Potential Conflicts of Interest
J. Bae, K.C. Anderson, and N.C. Munshi have ownership interest (including patents) and are consultant/advisory board members in OncoPep Inc. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: J. Bae, K.C. Anderson, N.C. Munshi
Development of methodology: J. Bae, J. Daley, K.C. Anderson, N.C. Munshi
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J. Bae, J. Daley, Y.-T. Tai, K.C. Anderson, N.C. Munshi
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J. Bae, J. Daley, Y.-T. Tai, K.C. Anderson, N.C. Munshi

References

Myeloma-Specific Multiple Peptides Able to Generate Cytotoxic T Lymphocytes: A Potential Therapeutic Application in Multiple Myeloma and Other Plasma Cell Disorders

Jooeun Bae, Robert Smith, John Daley, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-11-2776

Cited articles
This article cites 56 articles, 24 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/18/17/4850.full#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/18/17/4850.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.