Aflibercept in Pediatric Solid Tumors: Moving Beyond the Trap

Cindy H. Chau and William D. Figg

Angiogenesis plays a pivotal role in the growth and metastasis of adult and pediatric solid tumors. Clinical investigation of angiogenesis inhibitors is currently under way for childhood cancers. While the pediatric study of aflibercept provides a proof-of-principle, challenges remain in developing clinical endpoints and biomarkers of angiogenesis for pediatric trials. Clin Cancer Res; 18(18); 4868–71. ©2012 AACR.

In this issue of Clinical Cancer Research, Glade Bender and colleagues report on the pediatric phase I trial of aflibercept, a novel soluble decoy receptor that neutralizes circulating VEGF (1). A promising angiogenesis inhibitor, aflibercept (also called VEGF-Trap) is a recombinant protein comprising portions of the extracellular ligand–binding domains of human VEGF receptors (VEGFR) 1 and 2 fused to the constant region (Fc) of human immunoglobulin G (IgG1).

Malignancies depend on increased vascularization and the formation of a new network of blood vessels called angiogenesis for tumor growth, invasion, and metastasis. Because Folkman and colleagues’ landmark report (2) that inhibition of angiogenesis by means of holding tumors in a nonvascularized dormant state would be an effective strategy to treat human cancer, the search for angiogenic factors, regulators of angiogenesis, and antiangiogenic molecules over the next 4 decades has shed light on angiogenesis as an important therapeutic target for anticancer drug development. The most clinically relevant proangiogenic factor is VEGF, and the use of anti-VEGF agents has been validated in the clinic with the approval of the humanized anti-VEGF monoclonal antibody bevacizumab followed by several VEGF receptor tyrosine kinase inhibitors (TKI—sorafenib, sunitinib, pazopanib, and axitinib) that target different parts of the angiogenic pathway (Fig. 1). However, the clinical efficacy of angiogenesis inhibitors has recently been met with numerous phase III failures in trials that showed modest survival benefits despite improvement in progression-free survival.

Aflibercept potentially represents the next generation of angiogenesis inhibitors as a decoy receptor fusion protein rationally designed to sequester multiple VEGF ligands [all VEGF-A isoforms, VEGF-B, and placental growth factor (PIGF)] with higher and broader affinity than their natural receptors (3), and thus can inhibit the binding and activation of the cognate VEGF receptors. Because previous studies have shown evasive resistance with treatment of anti-VEGF therapies by inducing compensatory proangiogenic pathways, such as upregulating PIGF levels, the targeting of both VEGF and PIGF has the potential to reduce the development of resistance and increase efficacy without significantly increasing toxicity (4). Preclinical studies of aflibercept in various tumor xenograft models, including pediatric cancers, have shown inhibition of tumor growth, angiogenesis, and metastasis; reduction in microvessel density and perfusion; inhibition of ascites formation; and improved survival (reviewed in ref. 5). Early-phase clinical studies have provided a proof-of-principle and shown an initial significant survival advantage with a manageable safety profile. Among late-phase studies, 3 phase III trials in lung, pancreatic, and prostate cancer failed to show an overall survival (OS) benefit, whereas the phase III study in adults with metastatic colorectal cancer showed significant improvements in OS, progression-free survival, and response rates (5).

The current phase I study by Glade Bender and colleagues extends the clinical evaluation of aflibercept to the pediatric population with refractory solid tumors to determine the maximum tolerated dose (MTD), pharmacokinetics, and dose-limiting toxicities (DLT). The MTD was established as 2.5 mg/kg/dose every 14 days in contrast to the adult recommended dose of 4 mg/kg. At this MTD, the ability to achieve free aflibercept concentrations in excess of bound aflibercept levels was achieved but not sustained throughout the dosing interval. Three patients had stable disease for more than 13 weeks. The most common non-DLTs were hypertension and fatigue. Biomarker analyses showed a significant decrease in VEGF and an increase in PIGF from baseline observed in response to treatment by day 2.

The timeliness of this study underscores the importance of understanding the biology of the angiogenic process in pediatric versus that of adult solid tumors and delineating the mechanism of angiogenesis inhibition of specific agents in each respective target patient population. Past experience with the development of antiangiogenic agents for the
pediatric population raises concerns about the toxicities specific to the growing child, the on- and off-target effects of angiogenesis inhibitors, and their long-term impact on cardiovascular, endocrine, and bone health in children with cancer (6). Clinical experience with VEGF inhibitors in early-phase pediatric trials has shown comparable pharmacokinetic parameters and equivalent recommended doses, as well as similar class toxicity between the adult and pediatric populations (Table 1). In the current study, children tolerated lower doses of aflibercept than adults did despite similar pharmacokinetic parameters due to the presence of dose-limiting tumor hemorrhage, pain, and necrosis.

Table 1. Comparison of adult versus pediatric pharmacokinetics and toxicities in various angiogenesis inhibitors for refractory solid tumors

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adult population</th>
<th>Pediatric population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab</td>
<td>Dose 10 mg/kg i.v. every 2 wks; 15 mg/kg i.v. every 3 wks</td>
<td>10 mg/kg i.v. every 2 wks; 15 mg/kg i.v. every 3 wks</td>
</tr>
<tr>
<td></td>
<td>Half-life (T1/2) 20 d</td>
<td>12 d</td>
</tr>
<tr>
<td></td>
<td>Common toxicities Hypertension, proteinuria, bleeding, headache, infusion reactions</td>
<td>Rash, mucositis, proteinuria, lymphopenia, hypertension, infusion reactions</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>Dose 400 mg p.o. twice daily by continuous infusion</td>
<td>200 mg/m² p.o. daily for 28 d</td>
</tr>
<tr>
<td></td>
<td>Half-life 25–48 h</td>
<td>>24 h</td>
</tr>
<tr>
<td></td>
<td>Common toxicities Rash, hand-foot syndrome, gastrointestinal symptoms, hypertension</td>
<td>Hypertension, rash, hand-foot syndrome, aminotransferase elevations</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>Dose 50 mg p.o. daily for 4 wk (every 6 wks)</td>
<td>15 mg/m² p.o. daily for 4 wks (every 6 wks); 25–50 mg p.o. daily x 4 wks (every 6 wks) for GIST</td>
</tr>
<tr>
<td></td>
<td>Half-life 41–86 h</td>
<td>39 h</td>
</tr>
<tr>
<td></td>
<td>Common toxicities Fatigue, gastrointestinal symptoms, rash, hand-foot syndrome, hypertension</td>
<td>Myelosuppression, aminotransferase elevations, gastrointestinal symptoms, fatigue</td>
</tr>
</tbody>
</table>

Abbreviations: GIST, gastrointestinal stromal tumors; p.o., orally.
References

Aflibercept in Pediatric Solid Tumors: Moving Beyond the Trap

Cindy H. Chau and William D. Figg

Updated version
Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-12-2212

Supplementary Material
Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2012/09/12/1078-0432.CCR-12-2212.DC1

Cited articles
This article cites 10 articles, 7 of which you can access for free at: http://clincancerres.aacrjournals.org/content/18/18/4868.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.