FoxM1 Inhibition Sensitizes Resistant Glioblastoma Cells to Temozolomide by Downregulating the Expression of DNA-Repair Gene Rad51

Nu Zhang¹, Xinjian Wu¹, Lixuan Yang¹, Feizhe Xiao², Heng Zhang¹, Aidong Zhou³, Zhengsong Huang¹, and Suyun Huang³

Abstract

Purpose: Recurrent glioblastoma multiforme (GBM) is characterized by resistance to radiotherapy and chemotherapy and a poor clinical prognosis. In this study, we investigated the role of the oncogenic transcription factor FoxM1 in GBM cells' resistance to alkylator temozolomide (TMZ) and its potential molecular mechanism.

Experimental Design: FoxM1 expression levels were measured by immunohistochemical analysis in 38 pairs of primary and recurrent GBM tumor samples. Expression levels were also measured in primary recurrent GBM cell lines, and their responses to TMZ were characterized. In a mechanistic study, an siRNA array was used to identify downstream genes, and a chromatin immunoprecipitation assay was used to confirm transcriptional regulation.

Results: Recurrent tumors that were TMZ resistant expressed higher levels of FoxM1 than did primary tumors. Recurrent GBM cell lines expressed higher levels of FoxM1 and the DNA damage repair gene Rad51 and were resistant to TMZ. TMZ treatment led to increased FoxM1 and Rad51 expression. FoxM1 knockdown inhibited Rad51 expression and sensitized recurrent GBM cells to TMZ cytotoxicity. FoxM1 directly regulated Rad51 expression through 2 FoxM1-specific binding sites in its promoter. Rad51 reexpression partially rescued TMZ resistance in FoxM1-knockdown recurrent GBM cells. A direct correlation between FoxM1 expression and Rad51 expression was evident in recurrent GBM tumor samples.

Conclusion: Targeting the FoxM1-Rad51 axis may be an effective method to reverse TMZ resistance in recurrent GBM.

Introduction

Glioblastoma multiforme (GBM), the most malignant glioma, is characterized by rapid progression, high resistance to radiotherapy and chemotherapy, and an extremely poor clinical prognosis. Despite radical surgical resection and standard radiation therapy and chemotherapy, the 2-year survival rate of GBM patients remains less than 25%, and few survive beyond 5 years (1).

Clinical trials have shown that patient survival can be extended by adding the alkylator temozolomide (TMZ) to the treatment regimen (1). TMZ methylates the O6, N7 position of guanine, and the N3 position of adenine (2, 3). O6-methylguanine lesions account for most TMZ-induced cytotoxicity; this effect can be reversed with O6-methylguanine-DNA methyltransferase (MGMT; refs. 4–10). However, studies have shown that more than 40% of gliomas have MGMT downregulation and are still resistant to TMZ, indicating that a high MGMT level is only 1 mechanism (11–13).

Rad51 is one of the central components of the DNA double-strand break repair gene, whose expression can be induced by DNA damage (14, 15). After a DNA double-strand break occurs, Rad51 foci form at the sites of single-stranded DNA in lesions that promote homologous recombination (16–18). Rad51 overexpression, but not gene amplification or mutation, has been reported in human malignancies, such as pancreatic adenocarcinoma, soft tissue sarcoma, prostate cancer, and ovarian cancer (19–22). High Rad51 levels are associated with increased homologous recombination, which accounts for resistance to DNA-damaging reagents such as chemotherapy (21–24). Several studies have shown that Rad51 expression levels are elevated in GBM cell lines and that targeting Rad51 with
Rad51 antisense or imatinib can effectively sensitize cancer cells to radiation therapy (25–28). More recently, targeting Rad51 was found to increase GBM cells’ sensitivity to TMZ (29). However, the molecular mechanisms of Rad51 overexpression in GBM cells remain unclear.

The proliferation-specific oncogenic transcription factor FoxM1 is widely overexpressed in human tumors, including mammary, gastrointestinal, lung, and reproductive organ tumors (30–32). In a previous study, we found that FoxM1 is overexpressed in GBM and that its expression level is correlated with pathological grade and patients’ cumulative prognosis (33). The results of other previous studies revealed that FoxM1 mediates the resistance of a diverse spectrum of anticancer drugs, such as doxorubicin, lapa-tinib, gefitinib, imatinib, and cisplatin in breast cancer (34–37). A recent investigation confirmed that FoxM1 stabilization after DNA damage response is critical for the expression stimulation of DNA damage repair genes such as XRCC1 and BRCA2 in resistant breast cancer cells (35). However, whether FoxM1 overexpression is associated with GBM chemotherapy resistance is unknown.

In this study, we found that FoxM1 expression levels were significantly elevated in recurrent GBM and that targeting FoxM1 sensitized resistant tumor cells to TMZ. In addition, FoxM1 transcriptionally regulated Rad51, and reexpressing Rad51 in FoxM1-knockdown cells partially rescued their TMZ resistance. Our findings show that the FoxM1-Rad51 axis plays an important role in GBM chemotherapy resistance and that targeting FoxM1 may be an efficient method to enhance TMZ sensitivity.

Antibodies and oligonucleotides

Antibodies against FoxM1 (K-19), Chk2 (B-4), Rad51 (C-10), and MGMT (C-5) were from Santa Cruz Biotechnology; antibodies against BRCA2 ab90541 (ab90541) were from Abcam. The antibody against actin (3C-10), and MGMT (C-5) were from Santa Cruz Biotechnology; antibodies against BRCA2 ab90541 (ab90541) were from Abcam. The antibody against actin was from Sigma. Fluorescent antibodies Alexa Fluor 488 and Alexa Fluor 596 were from Invitrogen.

The FoxM1 or Rad 51 short hairpin RNA (shRNA) lentivirus vectors were generated as previously described (32). The target sequences of FoxM1 shRNA are sh-FoxM1-1, 5′-CTCTTCTCCTCCAGATATA-3′; and sh-FoxM1-2, 5′-GGACCACCTTTCCACTTT-3′. The target sequence of Rad51 shRNA are sh-Rad51-1, 5′-CTATACAGGTGTTACCTATT-3′; and sh-Rad51-2, 5′-CCATTGGCCACACACCATT-3′. A hairpin shRNA with no homology to any human, mouse, and rat mRNA sequence in the NCBI RefSeq database (GenScript) was also cloned into the lentivector virus and used as a negative control (sh-control). The target sequences of 2 FoxM1 siRNA are the same as those of the FoxM1 shRNA shown above. A hairpin siRNA with no homology to any known mRNA sequences in the human, mouse, and rat genomes was used as a negative control (control siRNA; Ambion). Oligonucleotides used for real-time polymerase chain reaction (RT-PCR) and chromatin immunoprecipitation (ChiP) assays are described in Supplementary Table S2. The expression plasmid of Rad51 was from Fulengen, PR China.

Microarray analysis

Gene expression was analyzed using Human Genome U133 Plus 2.0 Array (Bohao). In brief, total RNA was
extracted using Trizol Reagent (Life technologies) according to the manufacturer’s instructions and purified using RNeasy micro kit (Qiagen). Total RNA was then amplified, labeled, and purified using GeneChip 3’IVT Express Kit (Affymetrix) to obtain biotin-labeled cRNA. Arrays were hybridized and washed using GeneChip Hybridization, Wash, and Stain Kit (Affymetrix) following the manufacturer’s instructions. Slides were scanned by GeneChip Scanner 3000 (Affymetrix) and Command Console Software 3.1 (Affymetrix) with default settings. Raw data were normalized using Gene Spring Software 11.0 (Agilent technologies). The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO series accession number GSE40051 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40051).

Cell transfection and virus infection

All transfections were conducted using Lipofectamine 2000 according to the manufacturer’s instructions (Invitrogen). To establish stable cell lines of different shRNA, shRNA constructs were transduced into glioma cells using lentivirus in the presence of polybrene (6 shRNA constructs were transduced into glioma cells using gene). Cells were treated with 500 ml lentivirus in the presence of polybrene (6 shRNA constructs were transduced into glioma cells using gene). To establish stable cell lines of different shRNA, 2000 according to the manufacturer’s instructions (Invitrogen). Cell transfection and virus infection GSE40051.

Patient tissue specimens

Our study included 38 randomly selected pairs of primary and recurrent GBM tumor samples (each pair was from the same patient) that had been histopathologically diagnosed in our department from 2000 to 2010. All 38 patients had received TMZ plus radiation therapy after surgery. The study was approved by the ethics committee of Sun Yat-sen University, with informed consent obtained from all subjects. Clinical information on the samples is summarized in Supplementary Table S3.

TMZ treatment

TMZ was obtained from Sigma-Aldrich (T2577) and dissolved in dimethyl sulfoxide. Cells were preincubated with various concentrations of TMZ (from 20 to 120 μmol/L) for 1 to 5 days before cell lysates were collected or viable cells were counted. Each experiment was conducted in triplicate.

Flow cytometry analysis

Cells were harvested and fixed in cold ethanol before being stained with propidium iodide (Sigma, 0.45 mg/mL). Resuspended cells were analyzed for DNA content on a flow cytometer. Flow cytometry analysis conducted in triplicate.

Colonies formation assays

Neurospheres were dissociated, and single cells in 0.6% top agar medium were plated in triplicate onto 60-mm dishes (300 cells per dish) that had been precoated with 1.2% agar medium before being treated with different concentrations of TMZ. Cells were incubated at 37°C, and the medium was replaced with fresh medium for every 3 to 4 days. Survived colonies were stained with crystal violet 14 days later and counted.

Promoter reporters and dual-luciferase assay

The Rad51 promoter and truncated promoters with different lengths were cloned into PGL3-Basic vector (Promega). The Rad51 mutant (Mut) promoter constructs were generated using the QuickChange site-directed mutagenesis kit (Stratagene). In the dual-luciferase assays, cells were cultured for 36 hours after transfection, and cell lysate was used to measure luciferase reporter gene expression using the dual-luciferase reporter assay system (Promega). Luciferase activities were normalized to the cotransfected pRL-TK plasmid. All experiments were conducted at least twice, in triplicate.

ChIP assay

ChIP assays were conducted using the ChIP assay kit (Cell Signaling). The resulting precipitated DNA samples were analyzed by semi-quantitative RT-PCR using primers that amplify the 4 regions of the Rad51 promoter. The PCR products were resolved electrophoretically on a 2% agarose gel and visualized by ethidium bromide staining.

Immunohistochemical analysis

An immunohistochemical analysis of human GBM specimens was conducted using anti-FoxM1 or anti-Rad51 antibody. Nonspecific immunoglobulin (IgG) was used as the negative control. We quantitatively scored tissue sections according to the percentage of positive cells and staining intensity, as previously described (33).

Immunofluorescence staining

Cells or frozen glioma sections were fixed with 4% paraformaldehyde, permeabilized with PBS containing 0.1% Triton X-100 (PBS-T), and blocked with 1% bovine serum albumin in PBS-T. Immunostaining was conducted using the appropriate primary antibodies and stained with 4, 6-diamidino-2-phenylindole, anti-rabbit IgG conjugated with Alexa Fluor 488 or anti-mouse IgG conjugated with Alexa Fluor 596. Images were acquired using a scanning confocal microscope (Olympus FluoView FV1000).

Real-time RT-PCR

Total RNA from cultured cells or frozen glioma tissues was extracted using the Trizol reagent (Invitrogen). Real-time RT-PCR assays were conducted as described previously (33). β-actin was used as an internal control. All experiments were conducted in triplicate.

Western blotting

Cells were harvested in sample buffer (62.5 mmol/L Tris-HCl [pH 6.8], 10% glycerol, and 2% sodium dodecyl sulfate) and boiled for 5 minutes. A Western blot analysis of cell lysates was carried out using the antibodies described earlier. The membranes were stripped and reprobed with an anti–β-actin monoclonal antibody as a loading control.
Intracranial tumor assay

All mouse experiments were approved by the Institutional Animal Care and Use Committee of Sun Yat-sen University. GBM cells were injected intracranially into nude mice as described previously (33). Animals were killed when they were moribund; the remaining animals were killed 160 days after GBM-cell injection. Tumor formation was determined by histologic analysis of H&E-stained sections.

Statistical analysis

We used Pearson’s correlation test to identify correlations in the human GBM data. We used Log-rank analysis for the in vivo survival study. In addition, we evaluated significant differences in vitro data using Student’s t test (2-tailed). A significance level set at \(P < 0.05 \) was considered significant for all the tests.

Results

FoxM1 expression is upregulated in recurrent GBMs

Immunohistochemical staining of FoxM1 protein was conducted in 38 randomly selected paraffin-embedded GBM primary and recurrent tumor sample pairs. The patients had been treated with radiation therapy and chemotherapy after surgery. Compared with primary tumors, most recurrent tumors exhibited higher FoxM1 staining intensity and more nuclear distribution (Fig. 1A, left). To quantify FoxM1 expression in the 38 pairs of specimens, we scored FoxM1 expression (Supplementary Table S4), as we described previously (33). The FoxM1 expression level in recurrent samples was markedly increased compared with that in primary samples (Fig. 1A, right and Supplementary Fig. S1A). Next, we determined FoxM1 expression levels in 2 pairs of frozen tumor specimens, including primary tumors and the corresponding recurrent tumors. As shown in Fig. 1B and C, FoxM1 was upregulated in recurrent tumor samples, both at the mRNA and protein levels.

To exclude the possibility that FoxM1 overexpression in recurrent GBMs was because of other types of cells rather than tumor cells, we established 2 primary cultured cell lines from the paired primary and recurrent GBM1 samples, respectively. As shown in Fig. 1D, compared with the primary GBM cells, the recurrent GBM cells showed significant overexpression of FoxM1. Moreover, DNA damage genes, such as BRCA2, Chk2, and Rad51, were all upregulated in recurrent GBM cells more so than in primary GBM cells (Fig. 1D). However, no obvious difference in MGMT expression was detected, indicating that TMZ resistance in recurrent GBMs is not because of higher MGMT levels. We also detected the expression of FoxM1 and the DNA damage genes in U87, NHA, and another primary cultured recurrent GBM cell line (GBM2). Likewise, FoxM1 and the DNA-damage genes were highly expressed in primary cultured recurrent GBM cells but lower in NHA and U87 cells (Supplementary Fig. S1B and S1C). These results suggest that FoxM1, along with DNA damage genes, are upregulated in recurrent GBMs.

FoxM1 and DNA repair gene are upregulated by TMZ in recurrent GBMs and correlated with TMZ resistance

Tumor recurrence in these patients indicates that the recurrent GBM cells may be TMZ resistant. We, therefore, analyzed the response of the 2 primary cultured cell lines from the primary and the corresponding recurrent GBM1 sample to TMZ treatment. TMZ had little effect on the viability of the recurrent GBM cells compared with primary GBM cells after 5 days (Fig. 2A). Furthermore, clonogenic survival of the primary GBM cells was significantly reduced along with a different TMZ concentration gradient, but not in the recurrent GBM1 cells (Fig. 2B). We also analyzed cell viability and clonogenic survival in NHA, U87, and 2 recurrent GBM cells after treating them with TMZ. The results revealed that NHA and U87 cells were sensitive but recurrent GBM cells were resistant to TMZ treatment (Supplementary Fig. S2). Moreover, after TMZ treatment, more U87 cells were arrested in G2 stage (Supplementary Fig. S3). Together with the data shown in Supplementary Fig. S1C,
these results suggest that the TMZ sensitivities of the above cell lines are inversely correlated with their FoxM1 expression levels.

Next, we determined the expression of FoxM1 and the DNA damage genes in primary and recurrent GBM cells after treating them with TMZ for 1 to 5 days. As shown in Fig. 2C, compared with the primary GBM cells, FoxM1 and Rad51 expression was dramatically increased in recurrent GBM cells. However, no obvious difference in BRCA2 and Chk2 expression was found between these 2 cell lines by TMZ treatment. Previous studies indicated that Rad51 forms repair-associated foci after DNA damage at sites of replication fork collapse (14, 15) and that high Rad51 levels are predictive of stronger radiation therapy or chemotherapy resistance in human cancers (25–27). Indeed, after TMZ treatment, the percentage of cells with more than 5 Rad51 foci was higher in recurrent GBM cells than in primary GBM cells (Fig. 2D).

These results suggest that high FoxM1 and Rad51 levels contribute to TMZ resistance in recurrent GBM cells.

FoxM1 regulates Rad51 promoter activity in GBM cells

To screen the downstream genes of FoxM1, a microarray analysis was conducted after FoxM1 knockdown by siRNA in the U87 glioma cell line. We found that Rad51 is a potential downstream target of FoxM1, as the Rad51 mRNA level was decreased in the microarray analysis (Supplementary Table S7). To further test this result, we generated 2 stable cell lines of FoxM1 knockdown using recurrent GBM1 and GBM2 cells, referred to as shFoxM1-1 and shFoxM1-2, respectively. As shown in Fig. 3A and B, Rad51 was decreased in FoxM1-stable knockdown cell lines, both at the protein and mRNA levels. These data suggest that FoxM1 regulates Rad51 expression.

To determine whether FoxM1 directly regulates Rad51 expression at the transcriptional level, we amplified and cloned a 2.6-kb Rad51 promoter plasmid and generated several other plasmids harboring different truncated fragments of the promoter (Fig. 3C, left). By using the 2.6-kb Rad51 promoter plasmid, we found that silencing FoxM1 in GBM1 and GBM2 cells dramatically reduced Rad51 promoter activity (Fig. 3C). Promoter activities driven by the truncated fragments, including those covering regions –20 to –500 (P2), –20 to –1,000 (P3), –20 to –1,500 (P4), –1,000 to –1,500 (P5), –1,500 to –2,600 (P6), and –500 to –1,000 (P7), were also analyzed. The results revealed that promoter activities driven by P2, P3, P4, and P7 fragments were dramatically decreased by FoxM1 ShRNA as the P1 fragment, whereas no obvious response was found in fragments P5 and P6 after FoxM1 knockdown (Fig. 3C). These data show that FoxM1 is involved in the transactivation of Rad51 through the promoter region from –20 to –1,000.

We further determined whether FoxM1 activates Rad51 expression through the direct binding of the promoter region by conducting a ChIP assay with 4 pairs of primers covering 4 regions of the Rad51 promoter: –900 to –1,150, –574 to –925, –244 to –595, and +1 to –302. FoxM1 binds to regions 2 (nucleotides –595 to –500) and 3 (nucleotides –244 to –595) of the Rad51 promoter in GBM1, GBM2, and U87 cells (Fig. 3D). Overall, these results indicate that FoxM1 transactivates Rad51 expression by directly binding to Rad51 promoter in GBM cells.
FoxM1-binding sites are critical for activating the Rad51 promoter in GBM cells

To determine the functional role of FoxM1-binding sites in Rad51 gene regulation, various Mut reporters harboring different predicted Mut-binding sites of FoxM1 were generated from the wild-type (WT) Rad51 promoter construct, including site 1 (mutation 1) and site 2 (mutation 2), and site 1 plus site 2 (Fig. 4C). Compared with the WT Rad51 promoter, disruption of site 1 or site 2 significantly attenuated Rad51 promoter activity (Fig. 4D). Moreover, disruption of both site 1 and site 2 simultaneously further decreased Rad51 promoter activity (Fig. 4D), suggesting that both of the binding sites are critical for Rad51 promoter activation mediated by FoxM1 in GBM cells.

FoxM1 inhibition increased chemosensitivity to TMZ-resistant GBM cells

We next determined whether FoxM1 is involved in TMZ resistance in recurrent GBM cells using GBM stable cells overexpressing FoxM1 shRNA. GBM1 and GBM2 stable cells and the corresponding control stable cells were treated with 60 μmol/L of TMZ for 1 to 5 days. FoxM1 induction by TMZ was significantly attenuated in FoxM1 knockdown cells (Fig. 5A). TMZ-induced expression levels of Rad51, BRCA2, and Chk2 genes were also attenuated in FoxM1 stable knockdown cells (Fig. 5A, left). Moreover, FoxM1 knockdown significantly decreased the number of Rad51 foci (Fig. 5B), increased TMZ-induced G2 arrest (Fig. 5C), decreased cell viability after 5 days of TMZ treatment (Supplementary Fig. S4), and decreased colony survival after longer TMZ treatment (Fig. 5D). Together, these results indicate that FoxM1 decreases TMZ chemosensitivity in recurrent GBM cells.

Rad51 rescues TMZ resistance in FoxM1-silenced GBM cells

To determine whether TMZ resistance in recurrent GBM tumor cells is dependent on Rad51, we inhibited Rad51 expression by sh-Rad51 in GBM cells (Fig. 5A, left). Rad51 knockdown significantly decreased the number of Rad51 foci induced by TMZ treatment (Fig. 5B), increased TMZ-induced G2 arrest (Fig. 5C), decreased cell viability...
after 5 days of TMZ treatment (Supplementary Fig. S4), and decreased colony survival after longer TMZ treatment (Fig. 5D). Moreover, reexpression of Rad51 in FoxM1-silenced GBM cells resulted in increased levels of BRCA2 and Chk2 expression (Fig. 5A, right). Interestingly, when Rad51 was overexpressed, FoxM1 expression levels were also slightly increased (Fig. 5A, right). We further analyzed the cell responses to TMZ after Rad51 reexpression in FoxM1-silenced GBM 1 cells. Rad51 reexpression increased the number of Rad51 foci (Fig. 5B). Furthermore, Rad51 overexpression partially rescued cells from G2 arrest induced by TMZ (Fig. 5C) and attenuated TMZ-induced cytotoxicity in FoxM1-knockdown GBM cells (Fig. 5D and Supplementary Fig. S4). These data suggest that Rad51 partially rescues TMZ resistance after FoxM1 knockdown.

Figure 4. FoxM1-binding sites in the Rad51 promoter are critical for Rad51 transactivation. A, Western blotting showing the knockdown of FoxM1 using specific siRNAs in recurrent GBM1 and GBM2 cells. SiRNA, with a sequence that does not target genes, was used as a negative control. B, relative promoter activity of Rad51 after transfecting FoxM1 siRNAs in GBM1 and GBM2 cells. C, schematic structure of the putative FoxM1-binding sites in Rad51 promoter. FoxM1-binding site sequences are shown in both WT and Mut forms. D, Rad51 promoter activities of the promoter, with or without mutations, in the predicted FoxM1-binding sites. All experiments were repeated in triplicate; **, P < 0.001.

FoxM1 and Rad51 expression levels were correlated in recurrent GBM specimens and were independently predictive of poor prognosis

Co-localization of FoxM1 and Rad51 in recurrent GBM samples was analyzed by immunofluorescence staining. FoxM1 and Rad51 showed overlapping expression in recurrent GBM cells, mostly in the nucleus (Fig. 6A). We further conducted an immunohistochemical analysis of FoxM1 and Rad51 proteins in 38 recurrent GBM samples. FoxM1 and Rad51 expression levels were positively correlated in recurrent GBM samples, as determined by Pearson’s correlation test (Fig. 6B, r = 0.77, P < 0.001). Moreover, FoxM1 and Rad51 protein levels were significantly correlated with survival duration in recurrent GBM (P < 0.05; Fig. 6C and D). However, the FoxM1 protein level was not correlated
with MGMT promoter methylation status or IDH1 R132 mutation in patient samples (Supplementary Tables S5 and S6).

Discussion

In this study, we found that FoxM1 expression levels were higher in recurrent than in original GBM tumors and that targeting FoxM1 sensitized recurrent GBM cells to TMZ cytotoxicity. Mechanistically, FoxM1 directly regulated the DNA-damage repair gene *Rad51* at the transcriptional level. Knocking down FoxM1 inhibited Rad51 expression, and reexpression of Rad51 partially rescued FoxM1 knockdown’s inhibitory effect on TMZ resistance.

FoxM1 promotes tumorigenesis by activating a series of cell cycle genes (39–42). As FoxM1 may be a therapeutic target for malignant tumors, its role in chemotherapy has become the focus of recent research (43). Carr and colleagues (35) confirmed that FoxM1 mediates breast cancer cells’ resistance to trastuzumab and paclitaxel by directly regulating the expression of the tubulin-destabilizing protein stathmin. Kwok and colleagues (37) also reported that acquired cisplatin resistance in breast cancer cells occurs through induction of FoxM1 and its proposed downstream targets, BRCA2 and XRCC1. Our immunohistochemical analyses revealed that FoxM1 expression was elevated in recurrent GBMs. In primary culture GBM cell lines, FoxM1 expression was upregulated compared with in U87 cells and NHA cells, both at the mRNA and protein levels. In accordance with clinical data, at least in some aspect, primary GBM cells derived from recurrent GBM also exhibited relatively higher resistance to TMZ. Primary GBM cells were sensitized to TMZ cytotoxicity after FoxM1 knockdown.

Reports have shown that elevated Rad51 expression protects human head and neck tumor cells from apoptosis and enhances chemotherapy resistance by decreasing DNA damage and overcoming G₂ arrest (44). The results of a
recent study showed that Rad51 protein was elevated in 53% of GBM primary tumor patients but 70% of recurrent GBM patients (29). Rad51 levels were also inversely correlated with sensitivity to TMZ cytotoxicity (45). However, the mechanism of Rad51 upregulation in recurrent GBMs is unknown. We found that FoxM1 crucially regulated Rad51 expression by directly interacting with the promoter through FoxM1-binding sites; mutation of the 2 sites significantly decreased Rad51 promoter activity, both alone and in combination. Furthermore, when Rad51 was over-expressed in FoxM1-knockdown GBM cells, the cells became resistant to TMZ, indicating that the FoxM1-Rad51 axis plays a critical role in TMZ resistance. However, Rad51 overexpression has only a partial rescue effect in vitro, suggesting that other FoxM1 target genes, such as BRCA2, are involved in TMZ resistance. Furthermore, Rad51 re-expression partially rescued the tumor inhibition mediated by FoxM1 knockdown and Rad51 knockdown increased the TMZ sensitivity of recurrent GBM cells in vivo, although animal experiments with different doses of TMZ are needed in future studies. Finally, we found that FoxM1 expression levels are directly correlated with Rad51 levels in relapsed GBM specimens, and both are independent prognostic markers for survival duration in recurrent GBM patients.

Our findings are consistent with previously published results that Rad51 overexpression is correlated with clinical outcome, such as in lung, head, neck, and breast carcinomas (44, 46, 47). Other studies have reported that inhibition of several FoxM1 downstream genes, such as survivin and PLK1, can sensitize breast cancer cells to chemotherapy (48, 49). In our recently published paper, we showed that FoxM1 levels are much higher in glioma-initiated cells, which are more resistant than other cancer cells to current therapies (32). Moreover, FoxM1 inhibition can impair the self-renewal of glioma-initiated cells (32). These results...
indicate that FoxM1 plays a key role in tumor cell resistance and that targeting it is an effective method of increasing tumor cells’ chemosensitivity. In summary, our study provides clinical and molecular evidence that FoxM1 mediates TMZ resistance in GBMs by directly regulating Rad51 expression and describes a novel potential therapeutic target for recurrent GBMs.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: N. Zhang, H. Zhang, Z. Huang, S. Huang
Development of methodology: L. Yang, F. Xiao, H. Zhang, Z. Huang, S. Huang
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): X. Wu, L. Yang, F. Xiao, S. Huang
Analysis and interpretation of data (e.g., statistical analysis, bioinformatics, computational analysis): X. Wu, A. Zhou, H. Zhang, S. Huang
Writing, review, and/or revision of the manuscript: H. Zhang, A. Zhou, Z. Huang, S. Huang

References

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): Z. Huang, S. Huang
Study supervision: S. Huang

Acknowledgments
The authors thank Ann M. Sutton for editing this article.

Grant Support
This work was supported in part by NCI grants R01 CA157933 and R21 CA152623, the National Natural Science Foundation of China (81001119), Grant Awarded to New Teacher From Chinese Ministry of Education (20111011121012), The Fundamental Research Funds for the Central Universities (11ykzd06), and the Natural Science Foundation of Guangdong Province, China (10451008901004231 and 2009B060700031) and Science and Technology Planning Project of Guangdong Province, China (2010B031600057).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received January 12, 2012; revised August 13, 2012; accepted September 7, 2012; published OnlineFirst September 12, 2012.

FoxM1 Inhibition Sensitizes Resistant Glioblastoma Cells to Temozolomide by Downregulating the Expression of DNA-Repair Gene \textit{Rad51}

Nu Zhang, Xinjian Wu, Lixuan Yang, et al.

Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-12-0039

Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2012/09/12/1078-0432.CCR-12-0039.DC1

This article cites 48 articles, 19 of which you can access for free at: http://clincancerres.aacrjournals.org/content/18/21/5961.full#ref-list-1

This article has been cited by 1 HighWire-hosted articles. Access the articles at: http://clincancerres.aacrjournals.org/content/18/21/5961.full#related-urls

Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/18/21/5961. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.