Abstract

Purpose: Glioblastoma multiforme (GBM) is an aggressive adult brain tumor with a poor prognosis. One hallmark of GBM is the accumulation of immunosuppressive and tumor-promoting CD4\(^+\)FoxP3\(^+\)GITR\(^+\) regulatory T cells (Tregs). Here, we investigated the role of indoleamine 2,3 dioxygenase (IDO) in brain tumors and the impact on Treg recruitment.

Experimental Design: To determine the clinical relevance of IDO expression in brain tumors, we first correlated patient survival to the level of IDO expression from resected glioma specimens. We also used novel orthotopic and transgenic models of glioma to study how IDO affects Tregs. The impact of tumor-derived and peripheral IDO expression on Treg recruitment, GITR expression, and long-term survival was determined.

Results: Downregulated IDO expression in glioma predicted a significantly better prognosis in patients. Coincidently, both IDO-competent and deficient mice showed a survival advantage bearing IDO-deficient brain tumors, when compared with IDO-competent brain tumors. Moreover, IDO deficiency was associated with a significant decrease in brain-resident Tregs, both in orthotopic and transgenic mouse glioma models. IDO deficiency was also associated with lower GITR expression levels on Tregs. Interestingly, the long-term survival advantage conferred by IDO deficiency was lost in T-cell–deficient mice.

Conclusions: These clinical and preclinical data confirm that IDO expression increases the recruitment of immunosuppressive Tregs that lead to tumor outgrowth. In contrast, IDO deficiency decreases Treg recruitment and enhances T-cell–mediated tumor rejection. Thus, the data suggest a critical role for IDO-mediated immunosuppression in glioma and support the continued investigation of IDO–Treg interactions in the context of brain tumors.

Introduction

Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain cancer. Even after surgical resection, irradiation, and chemotherapy, the median survival for patients with GBM remains at only 14.6 months, with 26% of patients alive after 2 years (1). Because of the invasiveness of GBM, it remains a significant challenge to resect all of the tumor cells during surgery. The incomplete surgical removal likely contributes to the high rate of relapse in patients. An additional factor that contributes to the poor prognosis in GBM is the potentially immunosuppressive tumor environment. The induction and/or maintenance of immunosuppression in GBM is due in part to the infiltration and accumulation of the highly immunosuppressive regulatory T cells (Tregs; CD4\(^+\)FoxP3\(^+\)CD25\(^+\)) (2–6).

The pathogenicrole of Tregs in brain tumors has previously been reported by several independent groups (3, 5, 7–9). Tregs constitutively express high levels of the receptor, glucocorticoid-induced tumor necrosis factor receptor–related protein (GITR; ref. 10), suppress the functions of antigen-presenting cells (APC) via the expression of immunosuppressive cytokines, interleukin-10 (IL-10), and transforming growth factor-beta (11) and arise from thymus-derived (natural; nTreg) or induced (iTreg; converted from a CD4\(^+\)FoxP3\(^-\)CD25\(^-\)) progenitors (12). Specific to GBM, Tregs accumulate at high levels (2, 7), universally express GITR (4), and are predominantly thymus-derived (5). Several factors have been implicated to be critical for recruiting Tregs to glioma including the Treg-recruiting chemokines, CCL2 and CCL22 (13), although there are other agents that may be involved (14). Moreover, while select chemokines control Treg recruitment, a "master" central regulator orchestrating Treg infiltration and/or accumulation has yet to be implicated in the context of CNS malignancy.
Indoleamine 2,3 dioxygenase (IDO) is a cytoplasmic enzyme that catabolizes the essential amino acid, tryptophan, to the metabolite, kynurenine (15). In vitro, previous work has shown that GBM cells can be induced to express IDO (16) and that this induction may be associated with tumorigenesis (17), although this had not been shown in vivo before this study. Moreover, IDO has been shown to potently inhibit T-cell activation and/or proliferation (18), while also regulating the recruitment (19), expansion (20), and activation of Tregs (21) through an APC-dependent mechanism. On the basis of these observations, it is no surprise that dendritic cell-expressed IDO has been positively associated with promoting tumorigenesis in tumors that localize outside of the central nervous system (CNS; ref. 22). However, given the immunospecialization of APCs in the brain (23), as well as previous evidence indicating that GBM cells express IDO (24), we hypothesized that IDO expression by glioma cells, rather than peripheral cells, would promote Treg accumulation and tumor outgrowth.

Herein, we present our comprehensive in vivo-based investigation showing the role of IDO in brain tumors. We show that the downregulation of IDO in human glioma is associated with a significant survival advantage in patients. Using the GL261 orthotopic and/or RasB8 transgenic mouse glioma models, we also show the impact of IDO competency on tumor-infiltrating Tregs in wild-type (WT) and IDO-deficient (IDO−/−) mice bearing IDO-competent and -deficient brain tumors, in addition to the analysis of RasB8 mice with variable IDO competency. Orthotopically, we show that IDO deficiency, specifically in tumor cells, is associated with a significant long-term survival advantage in immunocompetent mice, regardless of IDO expression in the periphery. This survival benefit is associated with a significant decrease in the level of brain tumor infiltrating Tregs. Similarly, the lack of IDO expression in RasB8 mice is also associated with decreased Treg recruitment to the brain, confirming that the effects of IDO expression on Treg recruitment are not exclusive to an orthotopic model. Furthermore, there is an association between the expression of tumor-derived IDO and GITR on infiltrating Tregs. Finally, we identify a contextual role for the effects of IDO on T cells as CD4+ CD8+, and Rag1-deficient mouse models with IDO-deficient brain tumors lose the long-term survival advantage. This work advances our understanding of the role of IDO in human glioma and provides further understanding into the interaction between IDO and Tregs in the context of brain tumors.

Materials and Methods

Mice, procedures, and murine glioma cell line

C57BL/6 (WT; Cat# 000664), IDO−/− (Cat# 005897), CD4−/− (Cat# 002663), CD8−/− (Cat# 002665), and Rag1−/− (Cat# 002216) mice were obtained from Jackson Laboratories, maintained in the University of Chicago Carlson Barrier Facility and intracranially injected between the ages of 6 and 8 weeks. Hemizygous transgenic RasB8 mice were obtained from Dr. Abijith Guha (Hospital for Sick Children, Toronto, Canada), endogenously expressing a single allele of oncogenic V12HA-ras and maintained in our laboratory. The RasB8 mice were backcrossed to a WT (IDO−/−) or IDO-deficient (IDO−/−) background. RasB8 mice were analyzed at 5 months postnatal and/or when symptomatic onset occurred including abnormal fur coat, hunched posture, lack of normal motion/activity and weight loss. All mouse strains used in the included studies were on the C57BL/6 background and were provided autoclaved food pellets and water ad libitum. All surgical procedures were completed in accordance with NIH guidelines on the care and use of laboratory animals for research purposes. Mice were euthanized by cervical dislocation. GL261 cells were obtained from NCI Frederick National Tumor Repository Lab and cultured in Dulbecco’s Modified Eagle’s Media supplemented with 10% fetal calf serum as well as streptomycin (100 mg/mL) and penicillin (100 U/mL) at 37°C in a humidified atmosphere of 95% air/5% CO2. No authentication of the cell line was conducted. Details about the genetic modifications of the GL261 cell line are enclosed in the supplementary methods and Supplementary Fig S1. All cell culture products were purchased from Gibco Invitrogen. Intracranial injection procedures are described further in the supplementary methods.

Flow cytometry

T-cell isolation and staining were conducted as previously described (5, 6; and detailed in the supplementary methods).

Immunofluorescence and histology

DOI−/− mice were intracranially injected (ic) with 4 × 105 V12 or IDO−/− GL261 cells, euthanized at 2 weeks post-injection, followed by brain extraction and flash freezing [in
62.5% n-Butyl Bromide (Fisher Scientific) + 37.5% 2-methylbutanone (Fisher Scientific) surrounded by crushed dry ice. Frozen brains were sectioned on the Microm cryostat with vacutome system (Thermo Scientific) with a temperature of −24°C and immersed into Tissue Tek O.C. T. Compound (Sakura Finetek USA, Inc.) at 8 μm intervals and thaw-mounted onto precleaned SuperFrost slides (Fisher Scientific). Sections were postfixed with 4% paraformaldehyde, blocked for nonspecific staining with 10% bovine serum albumin (BSA; A4503; Sigma-Aldrich) in PBS for 1 hour. Sections were incubated overnight with mouse anti-GFAP alexa fluor 488 (131-17719; Invitrogen) and rat anti-CD3-AF647 (145-2C11; Ebioscience) in PBS with 1% BSA at 4°C. Sections were washed extensively (PBS), 1 drop of glycerol was added and the slides were cover slipped. Images of antibody-stained sections were captured using the Sp5 Tandem Scanner 2-photon confocal microscope (Leica Microsystems) running LAS AF software (Leica Microsystems) using the argon and red NeHe laser lines. Fluorescent images were captured using the ×20 objective. For details on the method of tumor quantification, see the Supplementary methods.

Patient datasets and data analysis

All glioma patient data was publicly available in deidentified form and obtained from the NCI Repository for Molecular Brain Neoplasia Data (REMBRANDT) database (https://caintegrator.nci.nih.gov/rembrandt; ref. 25), using the data available on April 18, 2012. Thus, no Institutional Review Board approval was needed. There were 343 glioma patient samples that were correlated between IDO expression and overall survival. Although all of the patient samples are represented in the Kaplan–Meier Survival Plot, not all of the patients in the database were identified for glioma subtype. Thus, only those patients that were positively identified as astrocytoma or GBM were used in the analysis for calculating the percentage of patients with upregulated, intermediate or downregulated IDO expression. The differences between groups were analyzed by log-rank P value. The graphs were created using Rembrandt data for Affymetrix probes 210029 using the Lowest Geometric Mean Intensity and associated survival data. Up- or down-regulation among glioma specimens refers to a twofold (or greater) change in IDO expression, when compared with specimens from nonglioma patients.

Statistical analysis

Survival curves were calculated according to the method of Kaplan–Meier. Overall, survival is defined as the time from injection of GL261 cells to day 150 of the time course. The P value was obtained by log-rank statistical analysis and was considered significant when P ≤ 0.05. For nonsurvival curves, data are presented as ± SEM and were analyzed by 2-way ANOVA, 1-way ANOVA, or the 2-tailed Student’s t test and a P value ≤ 0.05 were considered significant. Post hoc analyses were conducted using the Newman–Keuls method for multicomparison procedures. All analyses were conducted using GraphPad Prism version 4.00 (GraphPad Software, Inc.).

Results

Upregulation of IDO in glioma is associated with a poor prognosis

Previous work has shown that the upregulation of glioma-expressed tryptophan dioxygenase, an enzyme associated with mediating tryptophan catabolism, is positively correlated to an earlier time of death in patients (26). However, whether other enzymes that mediate tryptophan catabolism, such as IDO, have a similar correlation between patient survival and expression pattern has not been determined. Using the Repository of Molecular BRAin Neoplasia DaTa (REMBRANDT) and on the basis of a sample size of data taken from 343 glioma patients, we analyzed the molecular expression levels for IDO in glioma specimens and correlated those data to patient survival (Fig. 1A). IDO expression was upregulated (triangles; n = 75), intermediately expressed (squares; n = 215) and downregulated (circles; n = 53) in 75, 215, and 53 patients, respectively. The overall survival of patients with upregulated, intermediate, and downregulated expression in glioma specimens was 24.9 ± 2.76, 34 ± 2.71, and 44.3 ± 6.21 months, respectively. Moreover, glioma upregulated for IDO was significantly correlated to an earlier average time of death (postdiagnosis), when compared with patients with intermediate (P < 0.05)- and downregulated (P < 0.005)-expressing glioma. To better understand whether the increased IDO expression in glioma was associated with a particular grade of astrocytoma, we also investigated the percentage of grades II, III, and IV astrocytoma associated with upregulated-, intermediate-, and downregulated-IDO expression. Figure 1B shows that of the IDO-upregulated specimens, 17%, 10%, and 73% of specimens were associated with astrocytoma grades II, III, and IV, respectively. Figure 1C shows that of the IDO-intermediately expressed specimens, 22%, 16%, and 62% of specimens were associated with astrocytoma grades II, III, and IV, respectively. Figure 1D shows that of the IDO-downregulated specimens, 29%, 20%, and 50% were associated with astrocytoma grades II, III, and IV, respectively. Further analysis correlating the absolute expression level of IDO with survival, age of diagnosis and Karnofsky score, among grade(s) II, III, and IV astrocytoma, is presented in Supplementary Fig. S2. Collectively, the data show that upregulated IDO expression in glioma predicts a poor prognosis in patients and that this expression level tends to predominate in high-grade glioma; although it is not an absolute indicator of a GBM diagnosis.

Peripheral IDO expression neither affects survival nor T-cell levels in brain tumors

Previous work has shown that IDO expression by dendritic cells (DC) plays a critical role in regulating the antitumor immune response (22). Coincidentally, it has also been shown that CNS-resident glia express IDO under...
neuroinflammatory conditions (27–29). However, no investigation has determined whether peripheral IDO is a critical source of immune regulation in the context of brain tumors. To investigate whether non-tumor–derived IDO plays a critical role in regulating T-cell levels in brain tumors, we injected GL261 cells into the brain of WT or IDO-deficient (IDO\(^{-/-}\)) mice. Figure 2A and B indicates that peripheral (non–tumor-derived) IDO did not significantly affect the frequency nor absolute number of CD4\(^{+}\), CD8\(^{+}\), or CD4\(^{+}\)FoxP3\(^{+}\) regulatory T cells in the brain or draining lymph nodes (dLN) at 3 weeks post-ic. To determine whether peripheral IDO expression is required to affect overall survival from brain tumors, we injected GL261 cells into the brain of WT or IDO-deficient (IDO\(^{-/-}\)) mice and found an average survival time of 30 and 28 days, respectively (Fig. 2C). Collectively, these data suggest that the peripheral expression of IDO neither affects the T-cell response in the brain tumor and draining lymph nodes nor does it affect the overall survival.

Tumor-derived IDO decreases survival and increases Treg recruitment in brain tumors

As our previous data show that peripheral IDO is unimportant to the level of T-cell infiltration in brain tumors, we next determined whether tumor-derived IDO was involved. We compared WT mice ic. with IDO-competent GL621 cells [transduced with a scrambled shRNA (vector control; V\(_C\))] or with IDO-deficient GL261 cells [transduced with IDO-
specific shRNA (IDO_{shRNA}). As shown in Fig. 3A and B, the inhibition of IDO had profound effects on the levels of brain tumor-infiltrating T-cell levels. As the ratio of Tregs:effector T cells has been shown to reflect the overall likelihood of an effective antitumor response, we analyzed both the frequency of, as well as the absolute numbers of T cells in the brain. In the first week post-ic. injection, there were no significant changes in the frequency and absolute cell number of T cells in the brain. However, by 2 weeks post-ic. injection, the level of Tregs were significantly increased in the IDO competent, when compared with IDO-deficient brain tumors (P < 0.05). This difference was further increased at 3 weeks post-ic. injection (P < 0.01). However, this effect was highly localized as there were no significant differences in Treg levels in the tumor-draining lymph nodes or spleen (Supplementary Fig. S3). Also, in contrast to the increased level of Tregs in the brain, the frequency of CD8⁺T cells decreased at 2 and 3 weeks post-ic. injection in IDO competent, when compared with the IDO-deficient brain tumors. Collectively, these data suggest that the expression of IDO by brain tumors increases the ratio of immunosuppressive Tregs to cytotoxic CD8⁺ T cells.

To understand the functional importance of the T-cell infiltration, we also studied the interaction between IDO and T cells using WT, CD4-deficient (CD4^{-/-}; CD4⁺T cell-deficient), CD8-deficient (CD8^{-/-}; CD8⁺T-cell-deficient), and recombine activating gene 1-deficient (Rag1^{-/-}; deficient for functional T and B cells) mice with IDO-competent and IDO-deficient brain tumors. Figure 3C shows that WT (immunocompetent) mice with IDO-competent brain tumors have an average survival of 30 days post-ic. injection, whereas most WT mice ic. injected with IDO-deficient tumors survive until 150 days (when the study was terminated; P < 0.001). In contrast, T-cell–deficient mice were incapable of mediating long-term survival. CD4^{-/-} mice with IDO-competent and IDO-deficient brain tumors survive an average of 20 and 34.5 days post-ic. injection, respectively. Similarly, CD8^{-/-} mice with IDO-competent and IDO-deficient brain tumors survive an average of 21.5 and 31 days post-ic. injection, respectively. Finally, Rag1^{-/-} mice with IDO-competent and IDO-deficient brain tumors survive an average of 28 and 33 days post-ic. injection, respectively. Taken together, these data show that brain tumor-derived IDO increases Tregs while simultaneously
decreasing the frequency of CD8\(^+\) T cells that suppresses tumor rejection and leads to mortality. Conversely, the inhibition of IDO is associated with a reduction of Tregs and an increased frequency of CD8\(^+\) T cells leading to effective tumor rejection and long-term tumor immunity. Moreover, this protective immune-mediated response is critically dependent on the coordinated response by both CD4\(^+\) and CD8\(^+\) T cells as it is abrogated by both types of T-cell deficiency.

The global loss of IDO significantly decreases Treg recruitment to the brain

Although we established that tumor-derived IDO expression significantly affects the tumor-resident immune response, we sought to further determine the effects of global IDO deficiency on Tregs, given the previous work showing the critical impact of peripheral IDO expression on immune-mediated tumor immunity (22). Similarly to what was observed in WT mice, IDO\(^{-/-}\) mice had significantly fewer Tregs in IDO-deficient brain tumors, when compared with IDO-competent tumors (\(P < 0.05\); Fig. 4A). Interestingly, we also observed that Tregs were also decreased in the cervical dLNs of IDO\(^{-/-}\) with IDO-deficient brain tumors, which had not been observed in WT mice (Supplementary Fig. 3; \(P < 0.05\)) or in the spleens of tumor-bearing mice. This specific interaction suggests that IDO expressing cells in tumor draining lymph nodes, as has previously been ascribed to APCs, play a critical role in Treg expansion outside of the tumor microenvironment (21), yet have little impact on Treg recruitment to the actual malignancy. Accordingly, IDO\(^{-/-}\) mice with IDO-competent brain tumors survive an average of 26.5 days post-ic. injection, whereas most IDO\(^{-/-}\) mice with IDO-deficient brain tumors survive until 150 days post-ic. injection (when the
study was terminated; \(P < 0.002; \) Fig. 4B). Importantly, in vitro analysis of apoptosis and proliferation attributes showed no differences between the \(V_c \) and IDO\(_{kd} \) GL261 cell lines (Supplementary Fig. S4). To assess whether the effects of global IDO deficiency were restricted to an orthotopic tumor model, we also analyzed the RasB8 transgenic glioma model that was on an IDO-competent or IDO-deficient background. IDO-competent RasB8 mice showed an increased Treg frequency (\(P < 0.05 \)) and absolute cell number (\(P < 0.01 \)) in the brain, when compared with IDO-deficient counterparts (Fig. 4C). Also in accordance with what was observed in the orthotopic model, Treg levels were decreased in the draining lymph nodes of IDO\(-/-\) RasB8 mice, confirming the critical role of IDO in this anatomical location; although this effect was not as exaggerated in the RasB8 transgenic model, when compared with the GL261 orthotopic model. Collectively, these data show a series of local interactions between IDO expression and Treg accumulation when comparing the brain tumor with the periphery. However, it is important to note that brain tumor expression of IDO overrides the peripheral contribution of IDO in so far as determining the level of brain-resident Tregs, as well as overall impact on survival.

IDO deficiency in brain tumors is associated with decreased T cell infiltration

Our data show that T cell levels increase in IDO-competent brain tumors over time. However, it was not clear whether T-cell infiltration was simply due to a function of increasing tumor size or if IDO expression endowed the tumor with special T-cell–recruiting capabilities. To determine this, we chose to quantify the average size of...
IDO Regulates Treg Infiltration in Brain Tumors

Figure 5. The expression of IDO in brain tumors is associated with increased T cell level infiltration. A, indoleamine IDO−/− mice were ic. injected with 4 × 10⁵ GL261 cells transduced with scrambled shRNA (vector control, Vc; white bars) or shRNA specific to IDO (IDO knockdown, IDOkd; black bars). Mice were euthanized at 1, 2, or 3 wp-ic., brains were flash frozen and systematically sectioned throughout the tumor injection site. Brain sections were stained with hematoxylin and eosin and scanned by the CRi Pannoramic Whole Slide Scanner. In each section, tumors (black arrows) were traced using the Pannoramic Viewer software and the area was digitally calculated. Scale bar, 1 mm. Bar graphs representing the Vc (white bars) and IDOkd (black bars) median tumor volume are represented for the 1, 2, and 3 wp-ic. time points. The 2 wp-ic. tumor volumes were then divided by the absolute amount of CD3+ T cells and found no differences between overall tumor cell levels in IDO competent and IDO-deficient brain tumors. Finally, to determine whether increasing the level of IDO expression would negatively impact survival in IDO competent, when compared with IDO-deficient brain tumors. As shown in Fig. 6A–C, mice bearing IDO-competent or IDO-deficient brain tumors at 2 and 3 wp-ic. injection. However, the actual level of expression for GITR varied widely and depended on the T-cell–subtype. Figure 6A shows that for CD4+FoxP3− regulatory- T cells in the brain, dLNs and spleen of WT mice at 1, 2, and 3 wp-ic. with IDO-competent or IDO-deficient brain tumors. As shown in Fig. 6A–C, mice bearing IDO-competent tumors were associated with upregulated GITR expression on CD4+FoxP3− regulatory- T cells in the brain, when compared with mice bearing IDO-deficient tumors at 2 and 3 wp-ic. injection. However, the actual level of expression for GITR varied widely and depended on the T-cell–subtype. Figure 6A shows that for CD4+FoxP3−

IDO-regulated GITR expression on CD4+FoxP3− regulatory- T cells in the brain, when compared with mice bearing IDO-deficient tumors at 2 and 3 wp-ic. injection. However, the actual level of expression for GITR varied widely and depended on the T-cell–subtype. Figure 6A shows that for CD4+FoxP3−

IDO-regulated GITR expression on CD4+FoxP3− regulatory- T cells in the brain, when compared with mice bearing IDO-deficient tumors at 2 and 3 wp-ic. injection. However, the actual level of expression for GITR varied widely and depended on the T-cell–subtype. Figure 6A shows that for CD4+FoxP3−
effector T cells, GITR expression was $2,088_{\pm}^{C6}10^3$ in the brain of IDO-competent tumor-bearing mice at 1 wp-ic. and significantly upregulated to $4,142_{\pm}^{C6}126$ and $3,003_{\pm}^{C6}42$ at 2 and 3 wp-ic., respectively ($P < 0.01$). In contrast, the level of GITR expression by CD4$^+$ FoxP3$^+$ T cells in the brains of IDO-deficient tumor-bearing mice was $1,899_{\pm}^{C6}95$, $2,425_{\pm}^{C6}223$, and $1,678_{\pm}^{C6}128$ at 1, 2, and 3 wp-ic. injection, respectively, and not significantly different from one another. A similar trend in the regulation of GITR on CD8$^+$ T cells was observed, albeit, at a lower overall level of relative expression (Fig. 6B). Specifically, GITR expression was $817.8_{\pm}^{C6}41$ in the brain of IDO-competent tumor-bearing mice at 1 wp-ic. injection and significantly upregulated to $1,536.2_{\pm}^{C6}116$ and $2,169_{\pm}^{C6}22$ at 2 and 3 wp-ic. injection, respectively ($P < 0.01$), whereas the level of GITR expression by CD8$^+$ cytotoxic T cells in the brain of IDO-deficient tumor-bearing mice was $781_{\pm}^{C6}18$, $1,079_{\pm}^{C6}45$, and $810_{\pm}^{C6}90$ at 1, 2, and 3 wp-ic. injection, respectively, and not significantly different from one another. In accordance with previous reports, Tregs expressed a much higher level of GITR when compared with CD4$^+$ non-Tregs and CD8$^+$ cytotoxic T cells (10). Specifically, Fig. 6C shows that GITR expression was $9,108_{\pm}^{C6}584$ in the brain of IDO-competent tumor-bearing mice at 1 wp-ic. injection and upregulated to $16,360_{\pm}^{C6}747$ at 2 wp-ic. injection ($P < 0.01$) and further upregulated to $21,133_{\pm}^{C6}504$ at 3 wp-ic. injection ($p < 0.01$). In contrast, the level of GITR expression by Tregs in the brains of IDO-deficient tumor-bearing mice was $8,692_{\pm}^{C6}420$, $10,132_{\pm}^{C6}573$, and $6,869_{\pm}^{C6}1,974$ at 1, 2, and 3 wp-ic. injection, respectively, and not significantly different from one another. Notably, GITR levels were not significantly changed in tumor-draining lymph nodes or the spleen throughout the time course. Collectively, these data suggest that IDO expression plays a critical role in the regulation of GITR on tumor-infiltrating T cells and particularly with regard to Tregs.

Figure 6. Brain tumor–expressed IDO upregulates GITR levels on tumor-infiltrating T cells. WT mice were ic. injected with 4×10^5 GL261 cells transduced with scrambled shRNA (vector control, V_c; white bars) or shRNA specific to IDO (IDO knockdown, IDOkd; black bars). The mean fluorescence intensity of GITR expressed by (A) CD4$^+$ FoxP3$^+$ T cells, (B) CD8$^+$ T cells, and (C) CD4$^+$ FoxP3$^+$ regulatory T cells isolated from the brains, ipsilateral cervical dLN and spleen of tumor-bearing mice were analyzed at 1, 2, and 3 weeks postinjection. All T cell populations were initially identified by the expression of CD3. Bar graphs in A–C are shown as mean ± SEM and are representative of 2 independent experiments ($n = 5$ mice/group). D, when IDO is absent from brain tumors, GITR expression remains low on infiltrating T cells. Moreover, while Treg levels remain decreased, CD4$^+$ non-Tregs and CD8$^+$ cytotoxic T cells are increased, resulting in effective tumor rejection. Reciprocally, when IDO is expressed, GITR expression is upregulated on infiltrating T cells; this is particularly evident on Tregs. This is coincident with a significant increase in the ratio of Tregs, when compared with CD4$^+$ non-Tregs and CD8$^+$ cytotoxic T cells. The increased fraction of immunosuppressive Tregs is then associated with decreased tumor rejection and increased outgrowth. *, $P < 0.05$; **, $P < 0.01$.

Wainwright et al.

Clinical Cancer Research

Published OnlineFirst August 29, 2012; DOI: 10.1158/1078-0432.CCR-12-2130

Downloaded from clincancerres.aacrjournals.org on May 28, 2017. © 2012 American Association for Cancer Research.
Discussion

The potent immunosuppression induced by GBM is one of the primary obstacles to finding effective immunotherapies (30, 31). This immunosuppression is associated with a significant accumulation of Tregs within the tumor microenvironment (2–4, 32, 33) and is considered to be one of the primary obstacles inhibiting the tumor rejection functions of CD8+ cytotoxic T cells. It is, therefore, important that future immunotherapies simultaneously arm effector CD8+ cytotoxic T cells, while simultaneously inhibiting immunosuppressive mechanisms. Relevant to this requirement, IDO is a molecule that has been shown to serve as a central regulator of both immunosuppression, as well as T-cell function (18, 34). However, before this investigation, a comprehensive analysis of IDO in tumors of the CNS had not been conducted. Here, we elucidate the role of IDO in brain tumors and the overall impact on tumor immunity.

In the CNS, the expression of IDO is normally maintained at low to undetectable levels. However, inflammatory processes activated by bacterial byproducts or the proinflammatory cytokine, IFN-γ, rapidly upregulate IDO expression by glia (35). Moreover, IDO activity contributes to the suppression of proinflammatory T-cell responses in the CNS, based on studies showing the exacerbation of pathology related to the experimental autoimmune encephalomyelitis model (mouse model of multiple sclerosis) in the context of pharmacologic IDO inhibition (28, 36). Although this effect would be undesirable in an autoimmune disorder of the CNS, it would be greatly appreciated in the context of CNS tumors, whereby IDO inhibition would lead to decreased immunosuppression and subsequently more effective immune-mediated tumor rejection. However, before this investigation, the in vivo role of IDO in the context of CNS malignancy had not been investigated comprehensively.

Here, we have shown that IDO expression by brain tumors, alone, promotes tumor outgrowth in an orthotopic mouse model. This was based on the analysis of the orthotopic GL261 cell–based tumor model that was deficient for, normal for, or overexpressed IDO in WT and/or IDO−/− mice. Using these models, we found a reciprocal relationship whereby IDO-competent brain tumors were infiltrated by an increased frequency of Tregs, coincident with a decreased frequency of CD8+ T cells, when compared with IDO-deficient brain tumors. These changes were coincidental with a significant reduction of overall T-cell levels in IDO-deficient, when compared with IDO-competent brain tumors, even when taking into account the difference in overall tumor size. These data were further supported by the analysis in the spontaneously developing RasB8 mouse glioma model whereby global IDO competency led to a significant increase in the overall level of Tregs found in the brain, suggesting that this IDO-regulated Treg accumulation is a generalizable phenomenon and not exclusive to the GL261-based brain tumor model. More importantly, our data show that IDO-deficient brain tumors lead to a significant and long-term survival advantage with clinically relevant benefits. It is also important to understand that this survival benefit is maintained both in the presence and absence of peripheral IDO competency. This suggests that the tumor, rather than tumor-draining lymph node APCs, plays an overarching role in regulating the antitumor immune response. Although determining if this effect is specific to CNS malignancies requires further investigation.

Our data further elucidate IDO T-cell–mediated mechanisms through the use of T-cell–deficient mice whereby CD4+ and/or CD8+ T-cell deficiency abrogates the long-term survival mediated by IDO deficiency in immunocompetent mice. Finally, we reveal the impact of IDO on GITR expression levels by demonstrating a strong upregulation on IDO-competent tumor-infiltrating T cells, potentially providing additional future therapeutic value as it has recently been shown that targeting Treg-expressed GITR can positively impact tumor immunity (37, 38). It was interesting to find that all T-cell subtypes upregulated GITR expression, although Tregs showed the highest level of expression (5–10× higher than that of CD4+FoxP3+ and CD8+ T cells). Collectively, our data are summarized schematically in Fig. 6D.

Our results from animal models parallel the glioma patient data showing that the upregulation of IDO expression by brain tumors is associated with a significantly worse prognosis in patients. It is interesting that the upregulation of IDO was more common among GBM patients, when compared with lower tumor grades that were more associated with downregulated IDO expression. This suggests that one of the selective pressures brain tumors may use to transit from earlier to later stages of astrocytoma may be through the upregulation of IDO. Furthermore, these data also implicate IDO as a future biomarker for the use in predicting the course of treatment (i.e., whether or not to administer an IDO inhibitor), as well as predicting the overall survival in patients. However, it is not yet known whether patients with upregulated and downregulated IDO expression will possess similar responses to pharmacologic IDO inhibitors, such as 1-methyl tryptophan (1-MT). Clinical trials aimed at IDO inhibition are currently recruiting patients with solid tumors. Perhaps an interesting retrospective follow-up to this trial will be whether patients with upregulated IDO expression do better when administered a pharmacologic IDO inhibitor compared with those patients with downregulated IDO expression.

It has been established that IDO-expressing tumors systemically alter the accumulation of tryptophan catabolites (39). The first catabolic byproduct of IDO catabolism, kynurenine, was recently highlighted as a critical catabolite involved in mediating immunosuppression in glioma (26). Coincidentally, kynurenine has been associated with the expansion of Tregs via interaction with the aryl hydrocarbon receptor (Ahr) in CD4+ T cells (40). It was, therefore, interesting to find that Treg levels were simultaneously decreased in brain tumors and dLN, but not in the spleen, in the context of global IDO deficiency. This may reflect a combination of factors including the lack of locally draining...
tumor-produced kynurenine, the limited migration pattern of brain tumor APCs, as well as the involvement of primarily thymus-derived, rather than tumor-induced Tregs. Notably, the effects of kynurenine on Ahr-expressing thymus-derived Tregs are currently unknown and are thus a future target of investigation.

The Treg accumulation in IDO-competent brain tumors was associated with a significant and time-dependent upregulation of GITR. The selective increase in GITR expression on tumor-infiltrating, but not dLN- and spleen-resident Tregs, may predispose those tumor-resident Tregs to low-dose GITR mAb–mediated therapy; potentially minimizing the immunotoxic effects created by systemic administration. In support of this hypothesis are data from a mouse melanoma model showing that GITR mAb decreases the stability and intratumoral accumulation of Tregs, coincident with the regression of small-established tumors (38). More recently, the phosphorylation status of c-Jun N-terminal kinase was identified to be a critical regulator of immunosuppressiveness in Tregs, as well as a downstream target of activated GITR, potentially providing additional therapeutic value (41).

Collectively, our data provide the foundation and rationale for further investigation into determining the role of IDO in brain tumors. Future directions include the therapeutic targeting of IDO with the pharmacologic inhibitor, 1-MT, as well as other agents identified to have the potential for IDO modulation such as Imatinib (42) and Acyclovir (43). Downstream catabolite production (i.e., kynurenine), for IDO modulation such as Imatinib (42) and Acyclovir (43), Downstream catabolite production (i.e., kynurenine), Treg levels and T-cell–expressed GITR will be among the outcome measures analyzed. Finally, to provide better preclinical tools for future therapeutic testing, we are currently developing transgenic models that faithfully recapitulate high-grade glioma and are conditionally deficient for IDO.

Inhibiting immunosuppression in glioma is one of the most critical barriers to effective and long-lasting antitumor immunity (30, 31). Here, we have shown that the upregulation of IDO expression in patient glioma strongly predicts a poor prognosis. This association from glioma patients was then applied to mouse models confirming that tumor-derived IDO expression contributes to a decreased lifespan in a T-cell–dependent manner. Moreover, the IDO expression in brain tumors was coincident with increased Treg recruitment and upregulated GITR expression levels. Collectively, these data imply IDO as central player in regulating brain tumor immunity, independently of peripheral sources, as well as providing the rationale for increased clinical and preclinical efforts for understanding its full impact in brain tumors.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors' Contributions
Conception and design: D.A. Wainwright, A.U. Ahmed, M.S. Lesniak
Development of methodology: D.A. Wainwright, I.V. Balyasnikova, M.S. Lesniak
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): D.A. Wainwright, A.L. Chang, K.-S. Moon, Y. Han
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): D.A. Wainwright, A.L. Chang, A.U. Ahmed, K.-S. Moon, B. Auffinger, M.S. Lesniak
Writing, review, and/or revision of the manuscript: D.A. Wainwright, B. Auffinger, M.S. Lesniak
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): D.A. Wainwright, B. Auffinger
Study supervision: D.A. Wainwright
Helped with experimentation: A.L. Tobias

Acknowledgments
The authors thank Ms. Lingiao Zhang, M.S. for her expertise in the statistical analysis of our studies. The authors also thank Prof. Robert Dantzer, D.V.M./Ph.D. (MD Anderson Cancer Center) for his suggestions and critical comments during the preparation of this work.

Grant Support
This work was supported by the NIH grants R01 CA138587 [M.S. Lesniak], NIH R01 CA122930 [M.S. Lesniak], NIH U01 NS069997 [M.S. Lesniak], and NIH F32 NS073366 [D.A. Wainwright].

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received June 26, 2012; revised August 1, 2012; accepted August 18, 2012; published OnlineFirst August 29, 2012.

References
IDO Regulates Treg Infiltration in Brain Tumors

35. Saito K, Markey SP, Heyes MP. Chronic effects of gamma-interferon on quinolinic acid and indoleamine-2,3-dioxygenase in brain of C57BL/6 mice. Brain Res 1991;546:151-4.

IDO Expression in Brain Tumors Increases the Recruitment of Regulatory T Cells and Negatively Impacts Survival

Derek A. Wainwright, Irina V. Balyasnikova, Alan L. Chang, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-12-2130

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2012/08/29/1078-0432.CCR-12-2130.DC1
http://clincancerres.aacrjournals.org/content/suppl/2012/11/08/1078-0432.CCR-12-2130.DC2

Cited articles
This article cites 42 articles, 18 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/18/22/6110.full#ref-list-1

Citing articles
This article has been cited by 16 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/18/22/6110.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.